RNA干扰技术阻断c-fes表达对HL-60细胞增殖、分化和凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:白血病是血液系统最常见的一种异质性造血干细胞的恶性克隆性疾病,随着分子生物学技术的发展,白血病的病因学已经从群体医学、细胞生物学进入分子生物学的研究。通过这些研究,目前较为详尽地阐述了白血病发生过程的分化基因学说日益受到关注,该学说认为分化基因突变可以阻止细胞的终末分化,使早期细胞堆积导致癌变。
     c-fes基因是参与并调节正常造血细胞的生成及其功能的酪氨酸激酶原癌基因,其表达与髓系分化的程度相关,是一个与分化相关的基因。在细胞的生长过程中,原癌基因通过基因易位、基因扩增、插入及点突变等途径被激活转变成癌基因,使细胞获得不死性和恶性增殖的能力。研究表明,c-fes在髓系白血病及其他肿瘤性疾病中均有表达,在白血病细胞分化过程中具有重要作用,尤其在髓系细胞分化过程中的作用更为明显,同时在凋亡途径中具有重要作用。将特异性的c-fes反义寡核苷酸和HL-60细胞共同孵育以抑制c-fes的表达,细胞并没有分化,而是呈现了早期的细胞死亡,该死亡表现出了凋亡的形态学和分子学特征。我们可以推断c-fes基因产物在粒细胞的分化过程中发挥了抗凋亡的作用。
     RNAi技术是针对转录后阶段的基因沉默,能特异性地抑制如癌基因、癌相关基因或突变基因的过度表达,使这类基因保持在静默或休眠状态,进而下调相应蛋白水平及功能。为此,本实验中我们采用RNAi技术将c-fes shRNA序列转染入HL-60细胞,初步探讨下调c-fes基因表达对白血病细胞增殖、分化和凋亡的影响。同时进一步观查干扰前后不同时段,不同浓度亚砷酸对HL-60细胞增殖、凋亡和分化情况的影响,探讨以c-fes基因作为急性髓系白血病治疗靶点的可行性。
     方法:1应用体外细胞培养技术,采用脂质体转染的方法干扰HL-60细胞的c-fes mRNA。实验分四组:空白对照组、脂质体对照组、空质粒转染对照组、c-fes shRNA重组质粒转染组。应用流式细胞仪检测c-fes蛋白,以评估转染效率。2以不同浓度亚砷酸(0.1μmol/L、0.5μmol/L、1.0μmol/L、2.0μmol/L)干预上述4组,于不同时段(0h、24h、48h、72h)采用RQ-PCR技术检测c-fes mRNA水平变化,采用瑞式染色观察细胞的生长情况,采用四甲基偶氮唑蓝(MTT)实验了解细胞增殖抑制情况,NBT还原实验检测细胞分化,应用Annexin-V/FITC检测细胞凋亡。
     结果:1 c-fes shRNA转染抑制了c-fes蛋白的表达:FCM结果显示c-fes shRNA可显著下调c-fes mRNA的表达,且对c-fes蛋白的下调从干扰后12h即出现,最高下调率为76.36%,出现在干扰后48h,但持续时间较短,72h后c-fes蛋白略有回升。
     2 c-fes shRNA组经As2O3 (0.1μmol/L、0.5μmol/L、1.0μmol/L、2.0μmol/L)诱导后,细胞更早地呈现染色质固缩,核碎裂等凋亡特征,最为明显的是在浓度为2.0μmol/L的As2O3处理后在72h即出现了凋亡特征性的高峰改变,可见细胞核染色质凝集,核边集,细胞被分裂成数个质膜包裹的小体即凋亡小体,而且随着作用时间的延长,视野中的活性细胞逐渐减少,凋亡细胞相应增多。
     3 CON组、LIP组及KB组随着As2O3浓度的增加和时间的延长,RQ-PCR检测显示c-fes mRNA的表达水平均呈逐渐增强趋势,但三组之间c-fes mRNA表达水平无明显差异(P>0.05)。c-fes shRNA组在与低浓度(0.1μmol/L、0.5μmol/L)As2O3处理不同时段(0h、24h、48h、72h)后,c-fes mRNA表达水平均未升高。72h后c-fes mRNA的表达水平略有回升,但仍旧比同时期的CON组、LIP组及KB组低。
     4 CON组、LIP组、KB组的之间的细胞抑制率、细胞分化指数、细胞凋亡指数均无显著性差异(P>0.05)。
     5 CON组、LIP组及KB组HL-60细胞随着As2O3浓度的增加,白血病细胞的增殖抑制率呈明显升高趋势,c-fes shRNA组HL-60细胞随着As2O3浓度的增加及作用时间的延长,白血病细胞的抑制率又显著高于同期对照组(P<0.05)。
     6 As2O3在0.1μmol/L、0.5μmol/L浓度时对CON组、LIP组、KB组的HL-60细胞有明显的诱导分化作用,并且呈现一定的剂量依赖性和时间依赖性的量效关系。As2O3在0.1μmol/L、0.5μmol/L时,c-fes shRNA组HL-60细胞在12h时分化指数与未经任何处理的HL-60细胞无显著性差异(P>0.05),24h、48h时分化指数降低,到48h时分化指数降到最低,明显低于未经任何处理的HL-60细胞,有统计学差异(P<0.05)。在1.0μmol/L、2.0μmol/L浓度的As2O3诱导下,分化指数一直处于较低水平,在24h时分化指数降到最低。
     7用流式细胞仪与Annexin-V/FITC试剂盒检测,c-fes shRNA组经As2O3 (0.1μmol/L、0.5μmol/L、1.0μmol/L、2.0μmol/L)诱导后,FITC+ /PI-和FITC+ /PI+细胞数显著增加,显著高于同期对照组(P<0.05)。其中在2.0μmol/L的浓度下,24h时FITC+/PI-和FITC+ /PI+细胞数明显增加,达到了41.36%。
     结论: 1 c-fes shRNA序列阻断了HL-60细胞c-fes mRNA表达,成功地使c-fes的表达水平受抑制,有效地阻滞了HL-60的分化和增殖,诱导了HL-60细胞的凋亡。
     2亚砷酸与c-fes shRNA联合作用于白血病细胞,能够更加有效地抑制肿瘤细胞的增殖,诱导HL-60细胞的凋亡,而且二者联合应用可以减少亚砷酸的剂量,使其在较小剂量,更早期时即发挥了强大的生物学效应。
The leukemia is one of the most common heterogeneity hematopoietic malignancies, and the research has been into molecular biology from colonia medicine and cell biology as the development of the technology of molecular biology. Now cell differentiation can be seen as a much more predominant theory. It presumed that genetic mutation could prevent terminal differentiation of cells and cause cumulate of the immature cells to induce canceration.
     c-fes belongs to protein-tyrosine kinase family which implicated in the regulation of the generation and fuction of the common hematopoietic cells, c-fes mRNA protein levels and kinase activity increase upon induction of granulocyte cell differentiation. During the process of the cell growth, proto-oncogene is activated into oncogene through gene translocation、gene amplification、insertion and point mutation, then cell will have immortality and malignancy proliferation .Recent research has shown that c-fes expressed in many kinds of neoplastic disease, the c-fes proto-oncogene is expressed at high levels in the terminal stages of granulocytic differentiation. In addition, c-fes has been implicated in apoptosis pathways. It was observed that inhibition c-fes by incubating the HL-60 cells with a specific c-fes antisense oligodeoxynucleotide, the cells, rather than differentiating, underwent premature cell death showing the morphological and molecular characteristics of apoptosis. It is concluded that a possible role of the c-fes gene product is to exert an antiapoptotic effect during granulocytic differentiation.
     RNA interference (RNAi) is the most effective gene silencing technology, which can specifically inhibit the transcription of target genes, and in turn reduce the expression level and function of the corresponding protein. Therefore, using RNAi technology, we choose c-fes as the target gene. We transiently transfected c-fes shRNA into HL-60 cells by lipofectamine reagent. After observing the proliferation、differentiation and apoptosis, the experiment advanced to investigate the effect of combination use arsenious oxide with siRNA.
     Methods:1 Using in vitro cell culture technique, we transfected c-fes shRNA into HL-60 cells by lipofectamine reagent.The cells were divided into four groups:①blank control group;②transfection reagent group of lipofectamineTM2000;③plasmid KB group;③pGenesil1.1c-fes shRNA group. In order to detect the interference effect, we observe the expression of c-fes protein in HL-60 cells using FCM.
     2 The four groups of HL-60 cells were cocultured with different concentrations of As2O3 (0.1μmol/L、0.5μmol/L、1.0μmol/L、2.0μmol/L). By using the RQ-PCR technology,we detected the changes of c-fes mRNA level in different time interval(0h,24h,48,72h). The following detection regarding the proliferation、differentiation and apoptosis was observed as above-mentioned. Cells were stained with Wright-Giemsa for general morphology. The inhibition rate of HL-60 cells was examined by methyl-thiazolyl-tetrazolium(MTT) test . The differentiation of HL-60 cells were examined by NBT reduction reaction. Annexin-V/FITC staining was used to evaluated the apoptosis rate.
     Results:1 c-fes shRNA inhibited c-fes protein expression: FCM results showed that c-fes protein could be significantly reduced by c-fes shRNA. The reduction appeared from 12h after interference, and the maximum reduction rate was 76.36%, which appeared at 48h. However, transient transfection of c-fes shRNA could only present for a limited period, and the c-fes protein had gone up at 72h after transfection.
     2 The cell morphology appeared to apoptosis earlier after treated with low concentrations of As2O3(0.1μmol/L、0.5μmol/L、1.0μmol/L、2.0μmol/L)in c-fes shRNA group, it is peaked up 72 hours after treated with 2.0μmol/L As2O3.The nucleolus almost disappearance, karyoplasmic ratio diminished, karyomorphism irregular, more vacuole in intracytoplasm, the effect was in a time-dependent manner.
     3 With the growing of As2O3 concentration and time, RQ-PCR analysis of CON group, LIP group and KB Group showed that there was a gradually increased tendency of c-fes mRNA expression levels ,but no significant differences were found among the three groups (P>0.05). The c-fes mRNA expression levels of c-fes shRNA group did not elevated after the treatment with low concentration (0.1μmol/L, 0.5μmol/L) As2O3 in different time interval (0h, 24h, 48h, 72h). The expression level of c-fes mRNA increased slightly after 72h, but still lower than the CON group, LIP group and KB of the same period.
     4 There were no significant difference among the CON group, LIP group and KB group regarding the proliferation、differentiation and apoptosis(P>0.05). 5 Treated with the different concentrations of As2O3(0.1μmol/L、0.5μmol/L、1.0μmol/L、2.0μmol/L), the inhibition rate increased as the concentration raised in the CON group, LIP group and KB group. The inhibition rate in c-fes shRNA group was higher than the concurrent group as does and time extend(P<0.05).
     6 Treated with the concentrations of As2O3(0.1μmol/L、0.5μmol/L), HL-60 showed significantly differentiated and in dose-dependent and time-dependent manner in the CON group, LIP group and KB group. The differentiation rate of HL-60 cells in c-fes group had no significant difference with the untreated group 12 hours after cocultured with As2O3 by 0.1μmol/L、0.5μmol/L(P>0.05), 24 hours and 48 hours descended, and were lowest at 48 hours(P<0.05). With the concentrations of As2O3(1.0μmol/L、2.0μmol/L), the differentiation rate of HL-60 cells kept in a low level, with a maximum reduction at 24 hours.
     7 Flow cytometry (FCM) with the Annexin-V/FITC staining displayed a promoted apoptosis with concentrations of As2O3(0.1μmol/L、0.5μmol/L、1.0μmol/L、2.0μmol/L)after interference The apoptosis rate in c-fes shRNA group was higher than the concurrent group as does and time extend(P<0.05),with 41.36% at 24 hours by 2.0μmol/L.
     Conclusion:1 RNA interference targeting c-fes shRNA reduced the c-fes expression successfully. In the meantime, the growth status and differentiation of HL-60 cells were significantly inhibited, and HL-60 cells were induced apoptosis.
     2 Cocultured with different concentrations of As2O3 after RNA interference, the growth status and differentiation of HL-60 cells were more severe inhibited, and HL-60 cells were induced apoptosis more effective, what’s more, the combination use can decrease the dose of As2O3.
引文
1 Faderl S , O'Brien S, Pui CH,et al. Adult acute lymphoblastic leukemia: concepts and strategies, Cancer 2010(116) :1165-1176
    2 Smithgall TE, Rogers JA, Peters KL,et al.The c-fes family of protein-tyrosine kinases, Crit Rev. Oncog 1998(9):43-62
    3 Yates KE,Lynch MR,Wong SG,et al.Human c-fes is a nuclear tyrosine kinase, Oncogene 1995(10):1239-1242
    4 Zirngibl R,Schulze D,Mirski SE,et al.Subcellular localization analysis of the closely related Fps/Fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/Fes in vesicular trafficking, Exp. Cell Res. 2001(266):87-94
    5 Carlson A, Yates KE, Slamon DJ,et al.Spatial and temporal changes in the subcellular localization of the nuclear protein-tyrosine kinase, c-fes, DNA Cell Biol. 2005(24):225-234
    6 Matsuda T,Fukada T,Takahashi-Tezuka M,et al.Activation of Fes tyrosine kinase by gp130,an interleukin-6 family cytokine signal transducer,and their association, J. Biol. Chem. 1995(270):11037-11039
    7 Kirito K, Nakajima K, Watanabe T, et al.Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation, Blood 2002(99):102-110
    8 Tiemann K and Rossi JJ .RNAi-based therapeutics-current status, challenges and prospects, EMBO Mol. Med. 2009(1):142-151
    9 Thomas M , Greil J, and Heidenreich O.Targeting leukemic fusion proteins with small interfering RNAs: recent advances and therapeutic potentials, Acta Pharmacol. Sin. 2006 (27):273-281
    10 Wohlbold L, van der KH, Miething C, et al.Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571), Blood2003(102):2236-2239
    11 Thomas X and Troncy J, Arsenic, a beneficial therapeutic poison - a historical overview, Adler. Mus. Bull. 2009 (35):3-13
    12 Zhang XH, Hu Y, Bao L, et al.Arsenic trioxide downregulates the expression of annexin II in bone marrow cells from patients with acute myelogenous leukemia, Chin Med. J. (Engl. )2009 (122):1969-1973
    13 Antman KH,et al. Introduction: the history of arsenic trioxide in cancer therapy, Oncologist. 6 Suppl 2001(2):1-2
    14 Ghavamzadeh A, Alimoghaddam K., Ghaffari SH, et al. Treatment of acute promyelocytic leukemia with arsenic trioxide without ATRA and/or chemotherapy, Ann. Oncol. 2006 (17):131-134
    15 Kantarjian H, O'Brien S, Cortes J,et al. Therapeutic advances in leukemia and myelodysplastic syndrome over the past 40 years, Cancer 2008 (113):1933-1952
    16 Wang GJ, Li W, Cui JW, et al.Therapeutic effects of combination of arsenic trioxide with low-dose all-trans retinoic acid on induction of remission acute promyeloeytic leukemia, Zhonghua Yi. Xue. Za Zhi. 2005(85) :1093-1096
    17 Jia P,Chen G,Huang X, et al.Arsenic trioxide induces multiple myeloma cell apoptosis via disruption of mitochondrial transmembrane potentials and activation of caspase-3, Chin Med. J. (Engl. )2001 (114) :19-24
    18 Pu YS, Hour TC,Chen J, et al.Arsenic trioxide as a novel anticancer agent against human transitional carcinoma-characterizing its apoptotic pathway, Anticancer Drugs 2002(13):293-300
    19 Zhou Y, Huang X, and Cai X,et al.Mechanisms of arsenic trioxide-induce d apoptosis in myeloma cells, Zhonghua Zhong. Liu Za Zhi. 2001(23) : 181-183
    20 Wang W , Adachi M, Zhang R,et al.A novel combination therapy with arsenic trioxide and parthenolide against pancreatic cancer cells, Pancreas 2009(38): e114-e123
    21 Wang J, Li L, Cang H,et al. NADPH oxidase-derived reactive oxygen species are responsible for the high susceptibility to arsenic cytotoxicity in acute promyelocytic leukemia cells, Leuk. Res.2008 (32):429-436
    22 Dolniak B , Katsoulidis E, Carayol N, et al.Regulation of arsenic trioxide-induced cellular responses by Mnk1 and Mnk2, J. Biol. Chem. 2008 (283):12034-12042
    23 Raghu KG , Yadav GK, Singh R, et al. Evaluation of adverse cardiaceffects induced by arsenic trioxide, a potent anti-APL drug, J. Environ. Pathol. Toxicol. Oncol. 2009 (28) :241-252
    
    1 Roebroek AJ, Schalken JA, Verbeek JS, et al. The structure of the human c-fes/fps proto-oncogene. EMBO 1985,4(11):2897-2903
    2 Sundaresan S, Francke U. Insulin-like growth factor I receptor gene is concordant with c-fes protooncogene and mouse chromosome 7 in somatic cell hybrids. UNITED STATES,1989,15(4):373-376
    3 Greer P, Haigh J, Mbamalu G, et al. The Fps/fes protein-tyrosine kinase promotes angiogenesis in transgenic mice. Mol Cell Biol, 1994, 14(10): 6755-6763
    4 Smithgall TE, Rogers JA, Peters KL, et al. The c-fes family of protein-tyrosine kinases. Crit Rev Oncog, 1998,9(1):43-62
    5 Cheng HY, Schiavone AP, Smithgall TE. A point mutation in the N-terminal coiled-coil domain releases c-fes tyrosine kinase activity and survival signaling in myeloid leukemia cells. Mol Cell Biol, 2001, 21(18):6170-6180
    6 Greer PA, Meckling-Hansen K, Pawson T. The human c-fps/fes gene product expressed ectopically in rat fibroblasts is nontransforming and has restrained protein-tyrosine kinase activity. Mol Cell Biol , 1988, 8(2): 578-587
    7 Zirngibl R, Schulze D, Mirski SE, et al. Subcellular localization analysis of the closely related Fps/fes and Fer protein-tyrosine kinases suggests a distinct role for Fps/fes in vesicular trafficking. Exp Cell Res,2001, 266(1):87-94
    8 Yates KE, Gasson JC. Role of c-fes in normal and neoplastic hemato- poiesis. Stem Cells,1996,14(1):117-123
    9 Matsuda T, Fukada T, Takahashi-Tezuka M, et al. Activation of fes tyrosine kinase by gp130,an interleukin-6 family cytokine signal transducer, and theirassociation. J BiolChem,1995,270(19):11037-11039
    10 Kirito K, Nakajima K, Watanabe T, et al. Identification of the human erythropoietin receptor region required for Stat1 and Stat3 activation. Blood,2002,99(1):102-110
    11 Senis YA, Craig AW, Greer PA. Fps/fes and Fer protein-tyrosinekinases play redundant roles in regulating hematopoiesis. Exp Hematol, 2003, 31(8):673-681
    12 Care A, Mattia G, Montesoro E, et al. c-fes expression in ontogenetic development and hematopoietic differentiation. Oncogene1994, 9(3): 739-747
    13 Carlson A, Yates KE, Slamon DJ, et al. Spatial and temporal changes in the subcellular localization of the nuclear protein-tyrosine kinase, c-fes. DNA Cell Biol,2005,24(4):225-234
    14 Manfredini R, Balestri R, Tagliafico E, et al. Antisense inhibition of c-fes proto-oncogene blocks PMA-induced macrophage differentiation in HL-60 and in FDC-P1/MAC-11 cells. Blood,1997,89(1):135-145
    15 Kanda S, Kanetake H, Miyata Y. Downregulation of fes inhibits VEGF-A- induced chemotaxis and capillary-like morphogenesis by cultured endothelial cells. J Cell Mol Med, 2007,11(3):495-501
    16 Fruizer GC,Wu YJ,Hewitt SM,et al.Transcriptional regulation of the human Wilms' tumor gene(WT1).Cell type-specific enhancer and promiscuous promoter.J Biol Chem, 1994, 269(3): 8892- 8900
    17 Zhang XH,Xing GX,Fraizer GC,et al.Transaction of an intronic hematopoietic-specific enhancer of human Wilms’Tumor 1 gene by GATA-1 and c-Myb.J Biol Chem, 1997, 272(46): 29272- 29280
    18 Hewitt SM, Fraizer GC,Fraizer GF,et al.Transcriptional Silencer of the Wilms' Tumor Gene WT1 Contains an Alu Repeat.J Biol Chem,1995,270(30):17908-17912
    19 Hofmann W,Royer HD,Drechsler M,et al.Characterization of the transcri -ptional regulatory region of the human WT1 gene.Oncogene,1993,8(11):3123-3132
    20 Wagner KD,Wagner N,Schley G,et al.The Wilms' tumor suppressor WT1 encodes a transcriptional activator of the class IV POU-domain factor Pou4f2(Brn-3b).Gene, 2003, 305(2): 17-223
    21 Guan LS,Rauchman M,Wang ZY.Induction of Rb-associated protein(Rb -Ap46) by Wilms' tumor suppressor WT1 mediates growth inhibition.J Biol chem,1998;273 (42);27047-27050
    22 Englert C,Maheswaran S,Garvin AJ,et al.Induction of p21 by the Wilms' tumor suppressor gene WT1.Cancer Res,1997;57(4):1429-1434
    23 Menssen HD,Renrl HJ,Rodeck U,et al.Presence of Wilms'tumor gene(wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias.Leukemia,1995,9(6):1060-1067
    24 Miwa H,Beran M,Saunder GF.Expression of the Wilms'tumor gene(WT1) in humanleukemias.Leukemia,1992,6(5):405-409
    25 Inoue K,Sugiyama H,Ogama H,et al.WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia.Blood,1994,84(9):3071-3079
    26 Schmid D,Heinze G,Linnerth B,et al.Prognostic significance of WT1 gene expression at diagnosis in adult de novo acute myeloid leukemia.Leukemia 1997,11(5):639-643
    27 Bergmann L,Maurer U,Weidmann E.Wilms tumor gene expression in acute myeloid leukemias. Leuk Lymphoma,1997,25(5-6):435-443
    28 Bergmann L,Miething C,Maurer U,et al.High levels of Wilms' tumor gene(WT1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood, 1997, 90(3): 1217-1225
    29 Tamaki H,Ogama H,Ohyashiki K , et al.The Wilms’tumor gene WT1 is a good marker for diagnosis of disease progression of MDS. Leukemia, 1999, 13(3):393-399
    30 Loeb DM,Sukumar S.The role of WT1 inoncogenesis:tumor suppressor or oncogene. Int J Hematol,2002,76(2):117-126
    31 Maurer U,Brieger J,Weidmann E,et al. The Wilms’tumor gene is expressed in a subset of CD34+progenitors and down regulated early in the course of differentiation in vitro. Exp Hematol,1997,25(9):945-950
    32 Menssen HD,Renkl HJ,Entezami M,et al. Wilms’tumor gene expression in human CD34+ hematopoietic progenitors during fetal development and early clonogenic growth. Blood, 1997, 89(9): 3486-3487
    33 Baird PN,Simmons PJ. Expression of the Wilms’tumor gene(WT1)in normal hemopoiesis. Exp Hematol,1997,25(4):312-320
    34 Menssen HD,Siehl JM,Thiel E. Wilms tumor gene(WT1)expression as a panleukemic marker. Int J Hematol,2002,76(2):103-109
    35 Brieger J,Wiedemann E,Fenchel K,et al. The expression of the Wilms’tumor gene in acute myelocytic leukemias as a possible marker for leukemic blast cells. Leukemia,1994,8(12):2138-2143
    36 Osada S,Yamamoto H,Nishihara T,et al.DNA binding specity of the CCAAT/enhancer-binding protein transcription factor family[J]. BiolChem,1997,271(12):3891-3896
    37 Hendricks-Taylor LR,Bachinski LL,SIciliano NJ,et al. The CCAAT/enha -ncer binding protein(C/EBPa)gene(CEBPA)maps to human chromosome 19q13.1 and related nuclear NF-IL6(C/EBPβ)gene(CEBPB)maps to human chromosome 20 q13.1. Genomics,1992,14(1):12-17
    38 Johansen LM,Iwama A,Lodie TA,et al. c-Myc is a critical target for c/EBP alpha in graunlopoiesis. Mol Cell Biol,2001,21:3789-3806
    39 Oelgeschlager M,Nuchprayoon I,Luscher B,et al. C/EBP, c-Myb,and PU.1 cooperate to regulate the neutrophil elastase promoter.MolCell Biol, 1996, 16(9):4717-4725
    40 Smith LT,Hohaus S,Gonzalez DA,et al. PU.1(Spi-1)and C/EBPa regulate the granulocyte colony-stimulating factor receptoe promoter in myeloid cells. Blood,1996, 88(4):1234-1247
    41 Reddy VA,Iwama A,Lotzova G,et al. Granulocyte inducer c/EBP alpha inactivates the myeloid master regulator PU.1:possible role in lineage commitment decisions. Blood,2002,100(2):483-490
    42 Zhang DE,Zhang P,Wang ND,et al. Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice[J]. Proc Natl Acad Sci USA,1997,94(2):569-574
    43 Pabst T,Mueller BU,Zhang P,et al. Dominant-negative mutations of CEBPA,encoding CCAAT/enhancer binding protein-a(C/EBPa),in acute myeloid leukemia. Nat Genet 2001,27(3):263-270
    44 Wang H,Iakova P,Wilde M,et al. C/EBPa arrests cell proliferation through direct inhibition of cdk2 and cdk4. Molecular Cell ,2001,8(4):817-828
    45 Ido Paz-Priel,Dong Hong Cai,Dehua Wang, et al. CCAAT/enhancer binding protein-a(C/EBPa) and C/EBPa myeloid oncoproteins induce bcl-2 via interaction of their basic regions with nuclear factorκβp50. Mol Cancer Res,2005,3(10):585-596
    46 Calkhoven CF. Translational control of C/EBP alpha and C/EBP beta isoform expression [J]. Genes Dev ,2000,14(1):1920-1932
    47 Guerzoni C,Bardini M,Mariani SA,er al. Inducible activation of CEBPB, a gene negatively regulated by BCR/ABL,inhibits proliferation and promotes defferentiation of BCR/ABL-espressing cells [J]. Blood , 2006, 107(10):9-4080
    48 Verbeek W,Wachter M,Lekstrom-Himes J,et al. C/EBP epsilon/mice: increased rate of myeloid proliferation and apoptosis(J). Leukemia, 2001, 15(1):103-111
    49 Gehring W, Affolter M, Burglin T. Annu RevBiochem,1994,63(7):487-5 62
    50 Bill JJ,van Oostveen JW, Marya K,et al.Blood,1996,87(5):1737-1745
    51 Bromleigh VC, FReedman LP. Genes Dev,2000,14(20):2581
    52 Thomp son A, Quinn MF, Grimwade D, et al. Global down-regulation of HOX gene expression in PML-RARα+ acute promyelocytic leukemia identified by small-array real-time PCR. Blood, 2003; 101(4) : 1558 - 1565
    53 Crooks GM, Fuller J, Petersen D, et al. Constitutive HOXA5 expression inhibits erythropoiesis and increases myelopoiesis from human hematopoietic progenitors. Blood, 1999; 94(2): 519-528
    54 Brun AC, Bjornsson JM, Magnusson M,et al. HOXB4-deficient mice undergo normal hematopoietic development but exhibit a mild proliferation defect in hematopoietic stem cells. Blood, 2004, 103(11): 4126-4133
    55 VijapurkarU, Fischbach N, ShenW, et al. Protein kinase C-mediated phosphorylation of the leukemia-associated HOXA9 protein impairs its DNA binding ability and induces myeloid diferentiation. Mol Cell Biol, 2004; 24(9): 3827 - 3837
    56陈军红. HOX基因与小儿白血病的关系研究进展.中国小儿血液与肿瘤杂志, 2007; 12(3): 142-144
    57 Beslu N, Krosl J,Laurin M, et al. Molecular interactions involved in HOXB4-induced activation of HSC self-renewal. Blood, 2004, 104(B): 2307-231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700