HIF-1α基因沉默对口腔癌CEACAM1和VEGF-C表达及脉管生成影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实验目的:
     1.观察研究HIF-1α在口腔鳞状细胞癌中表达及与CEACAM1、VEGF-C表达的关系,分析CEACAM1对血管和淋巴管生成的影响,初步探讨HIF-1α、CEACAM1、VEGF-C在口腔癌血管和淋巴管生成中的作用及可能的机制。
     2.观察RNAi基因沉默HIF-1α对舌鳞状细胞癌细胞系Tca8113表达HIF-1α的影响,并观察研究HIF-1α基因沉默对CEACAM1和VEGF-C表达的影响,探讨HIF-1α/CEACAM1/VEGF-C的调控关系及在肿瘤脉管生成中的作用机制。
     3.以口腔癌裸鼠移植瘤模型为研究对象,研究HIF-1α基因沉默对肿瘤CEACAM1和VEGF-C表达的影响,验证HIF-1α/CEACAM1/VEGF-C对肿瘤血管和淋巴管生成的作用,以及对肿瘤增殖和进展的影响;探讨HIF-1α/CEACAM1/VEGF-C通路对肿瘤脉管生成及其正常化的影响及作用机制。
     研究方法:
     1.以人口腔鳞状细胞癌为研究对象,检测人口腔鳞状细胞癌中HIF-1α、CEACAM1和VEGF-C表达
     收集2005-2007年山东大学齐鲁医院和山东大学口腔医院口腔癌手术标本91例,其中包括舌鳞状细胞癌标本30例。患者临床资料包括年龄、性别、肿瘤大小、肿瘤临床分期、肿瘤分化程度。应用免疫组化方法检测HIF-1α和CEACAM1在91例口腔鳞状细胞癌中的表达及定位,并对免疫组化结果进行分析,评价蛋白的表达与临床资料之间的关系。检测30例舌鳞状细胞癌中VEGF-C表达,并与HIF-1α和CEACAM1在舌癌中的表达进行对比,统计分析HIF-1α与CEACAM1和VEGF-C在舌癌中表达的相关性,并进一步分析在HIF-1α高表达情况下,CEACAM1表达与肿瘤脉管生成的关系。
     2.以人口腔癌为研究对象,检测人口腔癌中MVD和LVD以及脉管内皮细胞表型转化情况
     采用免疫组化方法,分别应用血管标记CD31和淋巴管标记LYVE-1检测口腔癌中血管和淋巴管生成情况,统计血管密度和淋巴管密度。免疫组化双标记和免疫荧光双标记检测新生脉管表型转化情况,并分析其与CEACAM1表达的关系。
     3、以人舌鳞状细胞癌细胞系Tca8113细胞为研究对象,检测RNAi慢病毒干扰载体对Tca8113细胞HIF-1α基因的干扰效率
     Tca8113细胞在37℃、5%CO2孵箱中培养,取生长状态良好的细胞以4×104/孔接种于6孔培养板中,每孔加入2m1DMEM培养基。48小时后,细胞融合率可达到30-50%。将细胞分为空白对照组、阴性载体对照组和干扰组,分别加入ENi.S.、NC-GFP-Lentivirus和HIF-1 a-RNAi-Lentivirus(复感染指数MOI为75),37℃、5%CO2孵箱中继续常规培养。每天倒置荧光显微镜观察细胞生长,通过观察慢病毒上报告基因GFP的表达情况,评估感染效率。RNA干扰后第五天,通过观察GFP评估细胞感染率约为70-80%,收集细胞,提取细胞总RNA,应用Real time RT-PCR方法检测不同实验组中HIF-1α基因水平表达,Realtime RT-PCR数值分析采用标准曲线分析法。RNA干扰后第五天,收集细胞,提取细胞总蛋白,应用Western-blot方法检测不同实验组中HIF-1α的蛋白表达水平。
     4.以Tca8113细胞为研究对象,检测HIF-1α沉默对CEACAM1、VEGF-C基因和蛋白水平表达的影响
     Tca8113细胞培养并感染慢病毒颗粒,RNA干扰后第五天,通过观察GFP评估细胞感染率约为70-80%,收集细胞,提取细胞总RNA,应用real time RT-PCR方法检测不同实验组中HIF-1α、CEACAM1和VEGF-C基因水平的表达,real time RT-PCR数值分析采用标准曲线分析法。RNA干扰后第五天,收集细胞,提取细胞总蛋白,应用Western-blot方法检测不同实验组中HIF-1α的蛋白表达,再次验证蛋白表达水平干扰效率。同时收集细胞,采用流式细胞术检测CEACAM1的表达。RNA干扰后第五天收集Tca8113细胞培养液上清,采用ELISA方法对分泌至细胞外的VEGF-C蛋白进行检测。分析三个不同实验组中Tca8113细胞HIF-1α、CEACAM1和VEGF-C在基因和蛋白水平表达情况,探讨HIF-1α基因沉默后对CEACAM1和VEGF-C表达的影响。
     5.建立HIF-1α基因沉默的口腔癌裸鼠移植瘤模型并观察脉管生成及肿瘤进展
     观察口腔癌裸鼠移植瘤的增殖进展和荷瘤鼠生存情况,检测移植瘤增殖活性及CEACAM1和VEGF-C表达情况,观察肿瘤脉管生成情况及其形态结构和内皮细胞表型转化情况,分析HIF-1α基因沉默与CEACAM1和VEGF-C表达及脉管生成的关系。
     建立口腔癌裸鼠移植瘤模型:37℃、5%CO2孵箱中培养Tca8113细胞,将生长状态良好的细胞以4×104/孔接种于6孔培养板中,每孔加入2m1DMEM培养基。48小时后,细胞融合率可达到30-50%。将细胞分为空白对照组、阴性对照组和干扰组,分别加入ENi.S.、NC-GFP慢病毒颗粒和HIF-1 a-RNAi慢病毒载体(复感染指数MOI为75),37℃、5%CO2孵箱中继续常规培养。在细胞生长状态良好时配制细胞悬液,细胞浓度为2×106个/ml,备用。5周龄的BALB/C nu/nu雌性裸鼠30只,(中国医学科学院实验动物研究所),分为空白对照组、阴性对照组和干扰组,每组10只,注射0.1ml空白对照组、阴性对照组和干扰组Tca8113细胞悬液(细胞数量为2×105个)于裸鼠背部皮下。接种肿瘤细胞后,将裸鼠置于SPF饲养条件下饲养,每天观察裸鼠背部的成瘤情况并在成瘤后定期对肿瘤大小进行测量。
     四周后每组裸鼠中的5只分别乙醚吸入麻醉后进行荧光实时活体成像,然后脱颈处死,收集肿瘤标本。将收集的裸鼠肿瘤标本进行常规处理制备成蜡块,应用免疫组化方法检测三组裸鼠肿瘤标本中CEACAM1、VEGF-C、Ki67、LYVE-1(抗鼠)和CD31(抗鼠)的表达,并计数评估MVD和LVD,观察其形态结构变化,免疫双标记法检测新生脉管内皮细胞表型变化,研究HIF-1α基因沉默后对裸鼠移植瘤血管和淋巴管生成及其形态学改变和正常化的影响。
     6.观察口腔癌裸鼠移植瘤模型生存情况
     三组裸鼠每组剩余5只继续在SPF饲养条件下饲养,观察研究荷瘤鼠生存情况,并进行生存分析。
     结果:
     1.HIF-1α在口腔鳞状细胞癌中高表达,并与CEACAM1和VEGF-C表达呈正相关
     HIF-1α在肿瘤中高表达(口腔癌阳性率95%,舌癌阳性率100%),细胞核和细胞浆着色;CEACAM1在肿瘤中表达增高(口腔癌中阳性率为83.5%,舌癌阳性率80%),胞膜和胞浆着色;VEGF-C在肿瘤中表达增高(舌癌阳性率为90%),胞膜胞浆着色。HIF-1α表达与CEACAM1和VEGF-C呈正相关(r=1.26, P<0.05; r=1.45, P<0.05)
     2. CEACAM1表达模式与口腔癌分化密切相关,并与肿瘤脉管生成和内皮细胞表型转化相关
     CEACAM1在口腔高分化鳞状细胞癌中呈胞膜阳性表达,在中分化和低分口腔癌中呈胞浆阳性表达(P<0.01)。在60例CEACAM1阳性的中分化和低分化癌中,有50例显示胞浆呈中到高表达,染色范围从33%到80%,与此形成鲜明对比的是在20例高分化癌中,16例显示胞膜阳性表达。在CEACAM1阳性病例中,CEACAM1阳性的脉管数量较阴性病例中显著增高(P<0.001);同时,CEACAM1阳性病例比CEACAM1阴性病例MVD和LVD都显著增加(P<0.05);CEACAM1和LYVE-1免疫荧光双标记显示双标记阳性脉管数量在CEACAM1阳性病例中数量增加(P<0.001);LYVE-1和CD31免疫组化双标记阳性脉管在CEACAM1胞浆阳性表达病例中升高(P<0.001)。
     3.RNAi慢病毒干扰载体有效抑制HIF-1α基因水平和蛋白水平表达
     Real time RT-PCR和western blot检测Tca8113细胞系中HIF-1α干扰效率:RNA干扰基因沉默HIF-1α后,Tca8113细胞基因水平和蛋白水平HIF-1α表达均明显降低(P<0.05),基因水平表达下降80%,蛋白水平表达降低50%。
     4.基因沉默HIF-1α后CEACAM1基因水平和蛋白水平表达下调
     Real time RT-PCR和FCM(流式细胞术)分别检测各组Tca8113细胞CEACAM1表达,干扰组较对照组CEACAM1在基因水平和蛋白水平表达均降低。FCM结果显示CEACAM1蛋白在空白对照组、阴性对照组和干扰组表达率分别为10.30%、12.73%和5.49%(P<0.05)。
     5.基因沉默HIF-1α后VEGF-C基因水平和蛋白水平表达下调
     Real time RT-PCR和ELISA检测各组Tca8113细胞VEGF-C基因水平和蛋白水平表达,ELISA结果显示干扰组VEGF-C较对照组表达明显降低与空白对照组(P=0.029)和阴性对照组(P=0.032)比较具有显著差异性,表明HIF-1α基因沉默显著下调VEGF-C表达。
     6.HIF-1α基因沉默组口腔癌裸鼠移植瘤模型中CEACAM1和VEGF-C表达显著下调,脉管生成明显减弱,形态结构有明显的正常化趋势
     免疫组化方法检测裸鼠移植瘤模型中CEACAM1、VEGF-C表达及脉管生成情况:干扰组较空白对照组和阴性对照组CEACAM1表达明显降低(P<0.05),MVD和LVD明显降低(P<0.05),并且形态趋于正常化,管壁完整,内皮细胞连续,管腔规则,直径变小。干扰组与对照组相比,管腔直径差异性显著(P<0.001)。LYVE-1和CD31双标记阳性脉管在干扰组中显著减少(P<0.05)。结果表明肿瘤HIF-1α基因沉默后,脉管生成受到抑制,并且新生脉管结构形态趋于正常。
     7.HIF-1α基因沉默降低口腔癌裸鼠移植瘤增殖活性,降低肿瘤生长速度,延长荷瘤裸鼠生存期
     RNA干扰组及阴性载体对照组和空白对照组裸鼠移植瘤生长曲线显示,干扰组移植瘤生长速度明显减慢(P<0.05),可能与HIF-1α沉默导致受HIF-1α调控的细胞增殖相关基因活性降低,使得肿瘤细胞增殖降低。干扰组移植瘤Ki-67表达明显降低(P<0.005),说明HIF-1α沉默导致细胞增殖活性减弱。
     裸鼠生存曲线分析显示:干扰组裸鼠生存时间较空白对照和阴性对照明显延长(P<0.05)。
     结论:
     1.HIF-1α在人口腔鳞状细胞癌中高表达,并且与CEACAM1和VEGF-C表达呈正相关。CEACAM1表达与肿瘤分化程度关系密切,并与肿瘤脉管生成相关。CEACAM1阳性病例中,血管和淋巴管生成显著增高,内皮细胞表型转化也更活跃,这表明在HIF-1α高表达口腔癌中,HIF-1α可能通过调控CEACAM1和VEGF-C的表达,促进肿瘤血管和淋巴管生成,并对肿瘤血管内皮细胞和淋巴管内皮细胞表型转化具有重要作用。
     2.体外实验显示HIF-1α基因沉默显著抑制HIF-1α基因水平和蛋白水平表达,同时随着HIF-1α表达降低,CEACAM1和VEGF-C在基因水平和蛋白水平表达均下调。这表明在人口腔癌中HIF-1α可以调控CEACAM1和VEGF-C表达,HIF-1α/CEACAM1/VEGF-C可能在口腔癌脉管生成中具有重要作用。
     3.体内实验显示,HIF-1α基因沉默组口腔癌裸鼠移植瘤模型HIF-1α表达明显降低,肿瘤血管和淋巴管生成被显著抑制,并且脉管结构形态明显趋于正常,血管内皮细胞和淋巴管内皮细胞表型转化也更趋稳定,同时,干扰组移植瘤CEACAM1和VEGF-C表达都明显下调,表明RNA干扰基因沉默HIF-1α后,通过下调CEACAM1和VEGF-C表达抑制肿瘤血管和淋巴管生成,并介导内皮细胞的表型转化,使肿瘤脉管系统形态结构趋于正常。HIF-1α基因沉默还显著降低裸鼠移植瘤增殖活性和生长速度,延长荷瘤裸鼠生存期,这表明HIF-1α基因沉默导致受HIF-1α调控的细胞增殖相关基因活性降低,使得处于静止期的肿瘤细胞比例增高,肿瘤增殖活性降低,延迟了肿瘤的异质性进展过程,有利于荷瘤鼠生存期延长。此外,干扰组移植瘤新生脉管系统形态结构趋于正常也会使其功能在一定程度上趋于正常,趋于正常化的脉管系统形成的微环境抑制了肿瘤细胞在乏氧环境下的异质性克隆筛选,也会延缓肿瘤的异质化进程,也有利于荷瘤鼠生存期的延长。
     4.HIF-1α沉默通过下调口腔癌CEACAM1和VEGF-C的表达抑制口腔癌血管和淋巴管生成,促进新生血管和淋巴管结构功能的正常化,并能有效抑制肿瘤增殖活性和生长速度,延长荷瘤鼠生存期,因此,HIF-1α/CEACAM1/VEGF-C可能成为口腔癌治疗中的有效联合靶点。6国家自然科学基金资助项日(30572056)
Objective:
     1.To investigate the expression and relationsip of HIF-1α, CEACAM1 and VEGF-C in oral squamous cell carcinoma(OSCC). To analyze CEACAM1 expression and its impact on angiogenesis and lymphangiogenesis. Then to discuss and probe into the roles of HIF-la, CEACAM1 and VEGF-C in the angiogenesis and lymphangiogenesis in oral carcinoma.
     2. To study the effects of gene silencing of HIF-1αby RNAi on HIF-1αexpression in tongue squamous cell carcinoma cell line-Tca8113. To investigate the impact of HIF-la gene silencing on CEACAM1 and VEGF-C in Tca8113 cell line. Then to discuss and probe into the possible mechanism of HIF-la and CEACAM1 in angiogenesis and lymphangiogenesis.
     3. To study angiogenesis and lymphangiogenesis in tumor xenograft of oral carcinoma in nude mice and probe into the impact of HIF-1αgene silencing on angiogenesis and lymphangiogenesis. To explore the mechanism of HIF-la regulating CEACAM1 and VEGF-C expression and its impact and on angiogenesis and lymphangiogenesis
     Methods:
     1. Evaluation of HIF-1α, CEACAM1 and VEGF-C expression in oral squamous carcinoma
     Ninety one cases of oral squanous cell carcinoma were collected from Qilu hospital and Stomatology Hospital of Shandong University, including 30 cases of squamous cell carcinoma in tongue.The clinical data included age, sex, size of tumor, stage and histological classification. Immunohistochemistry was performed to observe the expression and localization of HIF-la, CEACAM1 and VDGF-C in oral squanous cell carcinoma. The results were evaluated and the relationship between the results and clinical data was analyzed.
     2.Evaluation of MVD, LVD and the transforming of endothelial cell in oral carcinoma
     The microvessels and lymphatic vessels labelled with CD31 and LYVE-1 respectively were counted with light microscopy, and MVD and LVD were evaluated. Double-labelling immunofluorescence and immunohistochemistry were used to observe the phenotypes of endothelial cell, and the relationship with CEACAMl expression was analyzed.
     3. Examining the interference rate of HIF-1αsilenced by RNAi lentivirus expression vector
     Tca8113 cells were incubated in 37℃,5%CO2air then 4×104 cells were seeded into 6-well flat-bottom plates with 2ml DMEM medium. Following 48 hours of cultrue, the cells were classified into three groups:control, negative vector control and interference group, and the Eni.S., NC-GPF-lentivirus and HIF-la-RNAi-lentivirus (MOI:75), then the cells were cultured in 37℃and 5%CO2 air. The cell growth and infection were observed by fluorescence microscopy, and the efficiency of infection or transfection was evaluated by GFP and estimated as 70-80%. After 5 days, the cells were collected, and the total RNA was extracted, then the RNA was used for generation of cDNA, and the real time quantitive RT-PCR was performed. After 6 days, the cells were collected and the total protein was extracted, and then the Western blot was performed to examine the HIF-la protein expression.
     4. Assessing and evaluating the impact of HIF-la silencing on expression of CEACAMl and VEGF-C
     Tca8113 cells were cultured and infected by Lentivirus, after 5 days, the efficiency of infection or transfection was evaluated by observing GFP and estimated as 70-80%, then the cells were collected and the and the total RNA was extracted, which was used for generation of cDNA, and the real time quantitive RT-PCR was performed to evaluate the expression of CEACAM1 and VEGF-C at gene level. After
     6 days, the cells were collected and the total protein was extracted, and then the Western blot was performed to examine the expression of CEACAM1 and VEGF-C at protein level after HIF-1αsilencing.
     5. Estimating the growth and proliferative activity of xenograft tumor of oral carcinoma, examing the expression of CEACAM1,VEGF-C in carcinoma cells and the phenotype transforming of endothelial cells
     Construction of xenograft tumor in nude mice:Tca8113 cells were incubated in 37℃、5%CO2 air then 4×104 cells were seeded into 6-well flat-bottom plates with 2ml DMEM medium. Following 48 hours of cultrue, the cells were classified into three groups:control, negative vector control and experimental group, and the Eni.S., NC-GPF-lentivirus and HIF-1α-RNAi-lentivirus(MOI:75), then the cells were cultured in 37℃and 5%CO2 air. The cell growth and infection were observed by fluorescence microscopy, and the efficiency of infection or transfection was evaluated by GFP and estimated as 70-80%. Then the cell were collected and the cell density was 2×106个/ml. Thirty BALB/C nu/nu nude mice were five weeks old, which were classified into three groups:control, negative vector control and experimental group, evry group involved 10 mice. After anesthetized by ethyl, the three groups of nude mice were injected with corresponding Tca8113 cell (2×105 cells) respectively in the subcutaneous tissue of the back. After subcutaneous injection, the three groups of mice were raised in SPF condition.The tumorigenicity was observed every day, and the size was measured.
     Three weeks after subcutaneous injection, the 5 mice of every groups were anesthetized by ethyl, which were placed in the real time fluorescence imaging equipment to reveal the xenograft tumor size by GFP. Then the mice were sacrificed, the xenograft tumors were collected and were paraffin-embedded, then 4μm routine slide were made.Immunohistochemistry was performed to detect the expression of CEACAM1, VEGF-C, CD31 and LYVE-1, and the MVD and LVD were calculated based on CD31 and LYVE-1 staining. The histological difference and phenotype transforming of microvessels were also estimated and analyzed. The impact of HIF-1 silencing on angiogenesis, lymphangiogenesis and histological normalization of microvessels in xenograft tumor was studied.
     6. Survival analysis of tumor-bearing mice
     The remaining 5 mice of every group were raised in SPF condition continuously, and their lifetimes were recorded and analyzed.
     Results:
     1.Overexpression of HIF-la is positively correlated with CEACAM1 and VEGF-C expression
     HIF-1αwas overexpressed in oral squamous cell carcinoma(95%,100%in tongue squamous cell carcinoma), the cytoplasm and nuclear were stained. CEACAM1 expression was upregulated in oral carcinoma(83.5%), and in tongue carcinoma(80%), cytoplasm and membrane were stained. VEGF-C expression was also upregulated in tongue carcinoma(90%),cytoplasm and membrane were stained. In addition, HIF-la expression was positively correlated with CEACAM1 and VEGF-C expression in tongue carcinoma(r=1.26, P<0.05; r=1.45, P<0.05 respectively).
     2.The expression patterns of CEACAM1 showed significantly different in well, intermediately and poorly diffrentiated carcinoma, and CEACAM1 expression impacted on angiogenesis and lymphangiogenesis in oral carcinoma
     CEACAM1 mainly showed membranous staining in well differentiated carcinoma, and cytoplasmic staining in intermediately and poorly differentiated carcinoma(P0.01):Out of 60 CEACAM1-positive cases of intermediately and poorly differentiated, fifty cases showed intermediate to high expression, and the staining range of positive carcinoma cells was 33%to 80%, in contrast, sixteen CEACAM1-positive cases of 20 well differentiated carcinoma showed membranous staining. In the CEACAMI-positive and CEACAMI-negative cases, the number of CEACAM1-positive vessels showed significant difference(P<0.001), as well as the MVD and LVD(p<0.05), Double-labelling immunofluorescence of CEACAM1 and LYVE-1 showed that coexpression-positive vessels was significant difference in CEAC AMI-positive and negative cases(P<0.001, and double-labelling immunohistochemistry of LYVE-1 and CD31 showed similar result(P<0.001).
     3.Lentivirus expression vector of RNAi inhibited the expression of HIF-la at gene and protein level efficiently
     Real time quantitive RT-PCR and Western blot showed that HIF-la expression was blocked by RNAi efficiently in Tca8113 cells. 4. HIF-la silencing down regulated CEACAM1 expression at gene and protein
     Real time quantitive RT-PCR and FCM showed that the expression of CEACAM1 was downregulated at gene and protein level in experimental group.
     5. HIF-la silencing downregulated VEGF-C expression at gene and protein
     Real time quantitive RT-PCR and ELISA showed that the expression of VEGF-C was downregulated at gene and protein level in the experimental group.
     6. HIF-la silencing dowmregulated the expression of CEACAM1 and VEGF-C in xenograft tumor, angiogenesis and lymphangiogenesis were declined, the histological structure had a tendence to be normalized
     In the experimental group, the xenograft tumors showed CEACAM1 and VEGF-C expression downregulated(P<0.05), the amount of CEACAM1-positive vessels decreased(P<0.05). MVD and LVD showed a decrease(P<0.05), and the histological structure tended to be normalized:regular lumen with lessening diametere continuous endothelial cells and basal membrane. The vessels with coexpression of LYVE and CD31 significantly decreased(P<0.05).
     7. HIF-la gene silencing declined the proliferative activity of xenograft tumors and slowed the growth speed and prolonged the lifetime of tumor-bearing mice
     The growth curve analysis showed that the growth of xenograft tumor in experimental group was slower than control groups, and the immunostaining of Ki-67 revealed the proliferative activity was decreased.
     The survival analysis showed that the lifetime of tumor-bearing mice in the experimental group were prolonged significantly.
     Conclusion:
     1.HIF-1αwas overexpression in oral squamous cell carcinoma and positively correlated with CEACAM1 and VEGF-C expression. CEACAM1 expression patterns showed significant difference in well, intermediately and poorly differentiated carcinoma. Angiogenesis and lymphangiogenesis increased in CEACAM1-positive cases, which revealed that overexpression of HIF-1αmight regulated CEACAM1 and VEGF-C expression to promote the angiogenesisn and lymphangiogenesis, and which played a important role in transforming of endothelial cell from vascular phenotype to lymphatic phenotype.
     2.HIF-1αgene silencing downregulated HIF-1αexpression at gene and protein level, with the decrease of HIF-1αexpression, CEACAM1 and VEGF-C expression was declined at gene and protein level. In the experimental group, xenograft tumors with HIF-1αgene silencing showed declined angiogenesis and lymphangiogenesis, and the newborn microvessels tended to be normalized in histological structure, the transforming of endothelial cells from vascular phenotype to lymphatic phenotype tended to be stable and normalized. These all implicatedthat, HIF-la gene silencing inhibited angiogenesin and lymphangiogenesis via downregulating CEACAM1 and VEGF-C expression, and even promote the normalization of vessel system. In addition, HIF-la gene silencing decreased the proliferative activity and growth of the xenograft tumor, but prolonged the survival lifetime of the tumor-bearing mice. These indicated that HIF-la silencing decreased the ratio of silent stage cells to generated stage cells, which resulted in the declining of cell proliferation. The newborn vessel system tended to be normalized in histological structure, which led to the normalization of function. All these inhibited the heterogeneity and cloning selection, this maybe prolong the tumor progression.
     3.HIF-1αgene silencing inhibited angiogenesis and lymphangiogenesis via downregulating the CEACAM1 and VEGF-C expression in tumor, and led to the normalization of newborn vessels in histologically and functionally, these implicated that HFI-la, CEACAM1 and VEGF-C might be therapy targets in oral carcinoma.
引文
1. Parkin DM,Pisani P,Ferlay J.Estimates of the worldwide incidence of eighteen major cancers in 1985. Int J Cancer 1993,54:594-606.
    2. Parkin DM,Pisani P,Ferlay J:Global cancer statistics. CA Cancer J Clin,1999,49: 33-36.
    3. Huang GW,Yang LY.The molecular mechanism of malignant conversion induced by hypoxia. Shi jie Huaren Xiaohua Zazhi,2001,9:1300-1304.
    4. Carmeliet P,Jain RK.Angiogenesis in cancer and other diseases. Nature,2000,407: 249-257.
    5. Cheng-Chi Chang,Ming-Tsai Lin,Been-Ren Lin,et al. Effect of connective tissue growth factor on hypoxia-inducible factor 1 adegradation and tumor angiogenesis. J the Nat Cancer Institute 2006,98(14):984-995.
    6. Maura Calcani,Annamaria Rapisarda,Badarch Uranchimeg,et al.Hypoxic induction of an HIF-1 a-dependent bFGF autocrine loop drives angiogenesis in human endothelial cells. Blood,2006,107(7):2705-2712.
    7. Jing Fang,Qiong Zhou,Ling-Zhi Liu,et al.Apigenin inhibits tumor angiogenesis through decreasing HIF-laand VEGF expression. Carcinogenesis,2007,28 (4): 858-864.
    8. Farzin Forooghian,Bikul Das.Anti-Angiogenic effects of ribonucleic acid interference targeting vascular endothelial growth factor and hypoxia-inducible factor-1α. Am J Ophthalmol.2007,144(5):761-8.
    9. Yusuke Mizukami,Yutaka Kohgo, Daniel C. Chung. Hypoxia inducible factor-1-independent pathways in tumor angiogenesis. Clin Cancer Res 2007; 13(19): 5670-5674.
    10. Lee JW, Bae SH, Jeong JW, et al. Hypoxia-inducible factor 1 (HIF-1)a:its protein stability and biological functions. Exp. Mol. Med,2004,36(1):1-12.
    11. Stoeltzing O, McCarty MF, Wey JS, Fan F, Liu W, Belcheva A, Bucana CD, Semenza GL, Ellis LM. Role of Hypoxia-Inducible Factor 1α in Gastric Cancer Cell Growth, Angiogenesis, and Vessel Maturation; J Nat Cancer Inst 2004; 96:946-956.
    12. Timothy P. Padera, Ananth Kadambi, Emmanuelle di Tomaso,et al. Lymphatic Metastasis in the Absence of Functional Intratumor Lymphatics. Science 2002; 296: 1883-1886.
    13. Nerbil Kilic, Leticia Oliveira-Ferrer, Samira Neshat-Vahid,et al. Lymphatic reprogramming of microvascular endothelial cells by CEA-related cell adhesion molecule-1 via interaction with VEGFR-3 and Proxl. Blood.2007; 110:4223-4233.
    14. Kuespert K, Pils S, Hauck CR. CEACAMs:their role in physiology and pathophysiology. Curr Opin Cell Biol.2006 Oct;18(5):565-71. Gray-Owen SD, Blumberg RS. CEACAM1:contact-dependent control of immunity. Nat Rev Immunol. 2006; 6(6):433-46.
    15. Nerbil Kilic, Leticia Oliveira-Ferrer, Jan-Henner Wurmbach, et al.Pro-angiogenic Signaling by the Endothelial Presenceof CEACAM1. J Bio Chem.2005; 280(3): 2361-2369.
    16. Chen WJ, Chen HW, Yu SL, Huang CH, Wang TD, Chen JJ, Chien CT, Chen HY, Yang PC, Lee YT. Gene expression profiles in hypoxic preconditioning using Cdna microarray analysis:altered expression of an angiogenic factor, carcinoembryonic antigen-related cell adhesion molecule 1. Shock 2005,24:124-131.
    17. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995; 146:1029-1039.
    18. Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971; 285:1182-1186.
    19. Karpanen T, Egeblad M, Karkkainen MJ, et al. Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 2001; 61:1786-1790.
    20. Skobe M, Hawighorst T, Jackson DG, et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7:192-198.
    21. Heon Barnes, John W. Eveson, Peter Reichart, David Sidransky. WHO:Pathology & Genetics, Head and Neck Tumours:tumours of the oral cavity and oropharynx. IARC Press:Lyon 2005, pp.163-208.
    22. Zagzag D, Lukyanov Y, Lan L, Ali MA, Esencay M, Mendez O, Yee H, Voura EB, Newcomb EW. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma:implications for angiogenesis and glioma cell invasion. Lab Invest. 2006;86(12):1221-1232.
    23. Sienel W, Dango S, Woelfle U, Morresi-Hauf A, Wagener C, Brummer J, Mutschler W, et al. Elevated expression of carcinoembryonic antigen-related cell adhesion molecule 1 promotes progression of non-small cell lung cancer. Clin Cancer Res.2003; 9:2260-2266.
    24. Trojan L, Michel MS, Rensch F, et al. Lymph and blood vessel architecture in benign and malignant prostatic tissue:lack of lymphangiogenesis in prostate carcinoma assessed with novel lymphatic marker lymphatic vessel endothelial hyaluronan receptor (LYVE-1). J Urol.2004; 172(1):103-7.
    25. Jain RK. Normalization of Tumor Vasculature:An Emerging Concept in Antiangiogenetic Therapy; Science.2005; 307(5706):58-62. Review.
    26. Kuespert K, Pils S, Hauck CR. CEACAMs:their role in physiology and pathophysiology. Curr Opin Cell Biol.2006 Oct;18(5):565-571.
    27. Gray-Owen SD, Blumberg RS. CEACAM1:contact-dependent control of immunity. Nat Rev Immunol.2006; 6(6):433-46.
    28. Ergun S, Kilic N, Ziegeler G.,et al. CEA-related cell adhesion molecule 1:a potent angiogenic factor and a major effector of vascular endothelial growth factor. Mol Cell 2000,5:311-320.
    29. Leticia Oliveira-Ferrer,Derya Tilki,Gudrun Ziegeler,et al. Dual role of carcinoembryonic antigen-related cell adhesion molecule 1 in angiogenesis and invasion of human urinary bladder cancer. Cancer Res 2004:8932-8938.
    30. Quynh-Thu Le,Patrick D. Sutphin,Soumya Raychaudhuri,et al.Identification of Osteopontin as a Prognostic Plasma Marker for Head and Neck Squamous Cell Carcinomas. Clin Can Res 2003; 9:59-67.
    31. Bian XW, Yang SX, Chen JH, Ping YF, Zhou XD, Wang QL, Jiang XF, Gong W, Xiao HL, Du LL, Chen ZQ, Zhao W, Shi JQ, Wang JM. Preferential expression of chemokine receptor CXCR4 by highly malignant human gliomas and its association with poor patient survival. Neurosurgery.2007; 61(3):570-578; discussion 578-579.
    32. Brigitte N. Gomperts,Robert M. Strieter. Chemokines in Lung Cancer. Clin Pulm Med2006; 13:356-364.
    33. Joseph Kim, Takuji Mori, Steven L. Chen, et al. Chemokine Receptor CXCR4 Expression in Patients With Melanoma and Colorectal Cancer Liver Metastases and the Association With Disease Outcome. Ann Surg,2006;244:113-120.
    34. Rene Bernards.Cues for migration. NATURE 2003; 425:247-248.
    35. Lopez de Cicco R, Watson JC, Bassi DE, Litwin S, Klein-Szanto AJ.Simultaneous expression of furin and vascular endothelial growth factor in human oral tongue squamous cell carcinoma progression. Clin Cancer Res.2004; 10(13):4480-8.
    36. Sonja Loges,1Henning Clausen,lUta Reichelt, et al. Determination ofMicrovessel Density by Quantitative Real-time PCR in Esophageal Cancer:Correlationwith Histologic Methods,A ngiogenic Growth Factor Expression, and Lymph NodeMetastasis. Clin Cancer Res.2007; 13(1):76-80.
    37. Vladimir Joukov, Katri Pajusola, Arja Kaipainen, Dmitri Chilov, Isto Lahtinen, Eola Kukk, Olli Saksela, Nisse Kalkkinen and Kari Alitalo. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. The EMBO Journal.1996.15(2):290-298.
    38. Marika J Karkkainenl and Tatiana V Petrova. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene.2000, 19:5598-5605.
    39. Maria Wirzenius, Tuomas Tammela, Marko Uutela,Yulong He. at al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. JEM.2007,204(6):1431-1440.
    40. Kukk, E., Lymboussaki, A., Taira, S., Kaipainen, A., Jeltsch, M., Joukov, V.,and Alitalo, K. Development,1996,122:3829-3837.
    41. Jeltsch, M., Kaipainen, A., Joukov, V, Meng, X., Lakso, M., Rauvala, H., Swartz, M. D. F., Jain, R., and Alitalo, K. Science 1997; 276:1423-1425.
    42. PL Poliani, S Mitola, M Ravanini, G Ferrari-Toninelli, et al. CEACAM1/VEGF cross-talk during neuroblastic tumour differentiation. J Pathol 2007; 211:541-549.
    43. Tobias Klatte, David B.Seligson, Stephen B. Riggs, et al. Hypoxia-Inducible Factor 1α in Clear Cell Renal Cell Carcinoma. Clin Cancer Res.2007; 13(24): 7388-7393.
    44. Jeffrey E. Gershenwald and Isaiah J. Fidler. Targeting lymphatic metastasis. Science 2002; 296:1811-1812.
    45. Michael S. Pepper. Lmphangiogenesis and tumor metastasis:myth or reality? Clin Cancer Res 2001; 7:462-468.
    46. Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR /ABL fusion gene by RNA interference(RNAi). Oncogene,2002,21:5716-5724. McCaffrey AP, Meuse L, Pham TT, et al. RNA interference in adult mice. Nature, 2002,418:38-39.
    47. Elbashir SM, Harborth J, Weber K, et al. Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods,2002,26:199-213.
    48. Ji-Won Lee, Seong-Hui Bae, Joo-Won Jeong, Se-Hee Kim and Kyu-Won Kim. Hypoxia-inducible factor (HIF-1)a:its protein stability and biological functions. Exp. Mol. Med.2004; 36(1),1-12.
    49. Nagarajah NS, Vigneswaran N, Zacharias W. Hypoxia-mediated apoptosis in oral carcinoma cells via two independent pathways; Mol Cancer 2004,3:38.
    50. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    51.Grishok A, Tabara H, Mello CC. Genetic requirements for inheritance of RNAi in C. elegans. Science,2000,287:2494-2497.
    52. Nagy P,Arndt-Jovin DJ, Jovin TM. Small interfering RNAs suppress the expression of endogenous and GFP-fused epidermal growth factor receptor(erbB1)and induce apoptosis in erbB1-overexpressing cells. Exp Cell Res, 2003,285:39-49.
    53. Rubinson DA, Dillon CP,Kwiatkowski AV,et al. A Lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nat Genet.2003,33(3):401-406.
    54. Holm Zaehres, M. William Lensch, Laurence Daheron, et al. High-efficiency RNA interference in human embryonic stem cells. Cells.2005,23:299-305.
    55. Bruce L. Levine, Laurent M. Humeau, Jean Boyer, et al. Gene transfer in humans using a conditionally replicating lentiviral vector. PNAS 2006,103(46): 17372-17377.
    56. Liang Z, Yoon Y, Votaw J, Goodman MM, Williams L, Shim HSilencing of CXCR4 blocks breast cancer metastasis. Cancer Res.2005 Feb 1;65(3):967-71. Zhen HN, Li LW, Zhang W, Fei Z, Shi CH, Yang TT, Bai WT, Zhang X.Short hairpin RNA targeting survivin inhibits growth and angiogenesis of glioma U251 cells. Int J Oncol.2007; 31(5):1111-1117.
    57. Scherr M, Battmer K, Winkler T, Heidenreich O, Ganser A, Eder M.Specific inhibition of bcr-abl gene expression by small interfering RNA. Blood.2003; 101(4): 1566-1569.
    58. Semenza GL. HIF-1:mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 2000; 88:1474-1480.
    59. Semenza GL. HIF-1 and tumor progression:pathophysiology and therapeutics. Trends Mol Med 2002; 8:62-67
    60. Bruick RK, McKnight SL. A conserved family of prolyl-4-hydroxylases that modify HIF. Science 2001; 294:1337-1340.
    61. Wang GL, Semenza GL. General involvement of hypoxiainducible factor 1 in transcriptional response to hypoxia. Proc Natl Acad Sci USA.1993;90:4304-4308.
    62. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL. Dimerization, DNA binding, and transactivation properties of HIF-la. J Biol Chem 1996; 271:17771-17778.
    63. Zelzer E, Levy Y, Kahana C, Shilo BZ, Rubinstein M, Cohen B. Insulin induces transcription of target genes through the hypoxia-inducible factor HIF-1 alpha/ARNT. EMBOJ 1998; 17:5085-94.
    64. Feldser D, Agani F, Iyer NV, Pak B, Ferreira G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1 alpha and insulin-like growth factor 2. Cancer Res 1999; 59:3915-3918.
    65. Hellwig-Burgel T, Rutkowski K, Metzen E, Fandrey J, Jelkmann W. Interleukin- 1beta and tumor necrosis factor-alpha stimulate DNA binding of hypoxia-inducible factor-1. Blood 1999; 94:1561-7.
    66. Haddad JJ, Land SC. A non-hypoxic ROS-sensitive pathway mediates TNF-alpha-dependent regulation of HIF-1 alpha. FEBS Lett 2001; 505:269-274.
    67. Stiehl DP, Jelkmann W, Wenger RH, Hellwig-Brgel T. Normoxic induction of the hypoxia-inducible factor-1 alpha by insulin and interleukin-1 involves the phosphatidylinositol 3-kinase pathway. FEBS Lett 2002; 512:157-162.
    68. Conway EM, Collen D, Carmeliet P. Molecular mechanisms of blood vessel growth. Cardiovasc Res 2001;16(49):507-521.
    69. Josko J, Gwozdz B, Jedrzejowska-Szypulka H, Hendryk S. Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med Sci Monit 2000; 6: 1047-1052.
    70. Nguyen SV, Claycomb WC. Hypoxia regulates the expression of the adrenomedullin and HIF-1 genes in cultured HL-1 cardiomyocytes. Biochem Biophys Res Commun 1999; 265:382-386.
    71. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, Iyer N, LaRusch J, Pak B, Taghavi P, Semenza GL. Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 2003; 63:1138-1143.
    72. Chen EY, Mazure NM, Cooper JA, Giaccia AJ. Hypoxia activates a platelet-derived growth factor receptor/phosphatidylinositol 3-kinase/Akt pathway that results in glycogen synthase kinase-3 inactivation. Cancer Res 2001; 61: 2429-2433.
    73. Zundel W, Schindler C, Haas-Kogan D, Koong A, Kaper F, Chen E, Gottschalk AR, Ryan HE, Johnson RS, Jefferson AB, Stokoe D, Giaccia AJ. Loss of PTEN facilitates HIF-1-mediated gene expression. Genes Dev 2000; 14:391-396.
    74. Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. The expression and distribution of the hypoxia-inducible factors HIF-lalpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157:411-421.
    75. Volm M, Koomagi R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Res 2000;20:1527-1533.
    76. Beasley NJ, Leek R, Alam M, Turley H, Cox GJ, Gatter K, Millard P, Fuggle S, Harris AL. Hypoxia-inducible factors HIF-1 alpha and HIF-2alpha in head and neck cancer:relationship to tumor biology and treatment outcome in surgically resected patients. Cancer Res 2002; 62:2493-2497.
    77. Lando D, Gorman JJ, Whitelaw ML, Peet DJ. Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem 2003; 270:781-790.
    78. Unruh A, Ressel A, Mohamed HG, Johnson RS, Nadrowitz R, Richter E, Katschinski DM, Wenger RH. The hypoxiainducible factor-1 alpha is a negative factor for tumor therapy. Oncogene 2003; 22:3213-3220.
    79. Sun X, Kanwar JR, Leung E, Lehnert K, Wang D, Krissansen GW. Gene transfer of antisense hypoxia inducible factor-1 alpha enhances the therapeutic efficacy of cancer immunotherapy. Gene Ther 2001;8:638-645.
    80. Jiang JH, Wang ZR, Jiang L, Bao Y, Cheng YX. Mechanism of anti-tumor effect of HIF-1 alpha silencing on cervical cancer in nude mice. Zhonghua Zhong Liu Za Zhi. 2009 Nov; 31(11):820-825.
    81. Wu Q, Yang SH, Ye SN, Wang RY. Therapeutic effects of RNA interference targeting HIF-1 alpha gene on human osteosarcoma. Zhonghua Yi Xue Za Zhi.2005; 85(6):409-413.
    82. Hao J, Song X, Song B, Liu Y, Wei L, Wang X, Yu J. Effects of lentivirus-mediated HIF-1 alpha knockdown on hypoxia-related cisplatin resistance and their dependence on p53 status in fibrosarcoma cells. Cancer Gene Ther.2008; 15(7):449-55.
    83. Wu XA, Sun Y, Fan QX, Wang LX, Wang RL, Zhang L. Impact of RNA interference targeting hypoxia-inducible factor-1 alpha on chemosensitivity in esophageal squamous cell carcinoma cells under hypoxia. Zhonghua Yi Xue Za Zhi. 2007; 87(37):2640-4.
    84. Chen L, Feng P, Li S, Long D, Cheng J, Lu Y, Zhou D. Effect of hypoxia-inducible factor-1 alpha silencing on the sensitivity of human brain glioma cells to doxorubicin and etoposide. Neurochem Res.2009; 34(5):984-90.
    85. Bryant CS, Munkarah AR, Kumar S, Batchu RB, Shah JP, Berman J, Morris RT, Jiang ZL, Saed GM. Reduction of hypoxia-induced angiogenesis in ovarian cancer cells by inhibition of HIF-1 alpha gene expression. Arch Gynecol Obstet.2010 Feb 7. [Epub ahead of print].
    86. Jensen RL, Ragel BT, Whang K, Gillespie D. Inhibition of hypoxia inducible factor-1 alpha (HIF-1 alpha) decreases vascular endothelial growth factor (VEGF) secretion and tumor growth in malignant gliomas. J Neurooncol.2006; 78(3): 233-247.
    87. Xu K, Ding Q, Fang Z, Zheng J, Gao P, Lu Y, Zhang Y. Silencing of HIF-1 alpha suppresses tumorigenicity of renal cell carcinoma through induction of apoptosis. Cancer Gene Ther.2010; 17(3):212-222.
    88. Xia XB, Xiong SQ, Xu HZ, Jiang J, Li Y. Suppression of retinal neovascularization by shRNA targeting HIF-1 alpha. Curr Eye Res.2008 Oct;33(10):892-902.
    89. Jiang J, Xia XB, Xu HZ, Xiong Y, Song WT, Xiong SQ, Li Y.Inhibition of retinal neovascularization by gene transfer of small interfering RNA targeting HIF-1 alpha and VEGF. J Cell Physiol.2009; 218(1):66-74.
    90. Song Y, Wang W, Qu X, Sun S.Effects of hypoxia inducible factor-1 alpha (HIF-lalpha) on the growth& adhesion in tongue squamous cell carcinoma cells. Indian J Med Res.2009; 129 (2):154-63.
    91. Vladimir Joukov, Katri Pajusola, Arja Kaipainen, Dmitri Chilov, Isto Lahtinen, Eola Kukk, Olli Saksela, Nisse Kalkkinen and Kari Alitalo. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. The EMBO Journal 1996; 15(2):290-298.
    92. Sonja Loges,1Henning Clausen,1 Uta Reichelt, et al. Determination of Microvessel Density by Quantitative Real-time PCR in Esophageal Cancer:Correlationwith Histologic Methods,A ngiogenic Growth Factor Expression, and Lymph Node Metastasis. Clin Cancer Res.2007; 13(1):76-80.
    93. Marika J Karkkainenl and Tatiana V Petrova. Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene,2000; 19:5598-5605.
    94. Schmaltz, C, P. H. Hardenbergh, A. Wells, and D. E. Fisher. Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol. Cell. Biol.1998; 18: 2845-2854.
    95. Shimizu, S., Y. Eguchi, H. Kosaka, W. Kamiike, H. Matsuda, and Y. Tsujimoto. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature,1995; 374: 811-813.
    96. Gardner, L. B., Q. Li, M. S. Park, W. M. Flanagan, G. L. Semenza, and C. V. Dang. Hypoxia inhibits G1/S transition through regulation of p27 expression. J. Biol. Chem 2001,276:7919-7926.
    97. Nobuhito Goda, Heather E. Ryan, Bahram Khadivi, Wayne McNulty, Robert C. Rickert, and Randall S. Johnson. Hypoxia-Inducible Factor 1α Is Essential for Cell Cycle Arrest during Hypoxia. Mol Cell Biol.2003; 23(1):359-369.
    98. Hanahan, D., and Weinberg, R.A. The hallmarks of cancer. Cell 2000,100:57-70. 99. David L. Gillespie, Kum Whang, Brian T. Ragel, Jeannette R. Flynn, David A. Kelly, and Randy L. Jensen. Silencing of Hypoxia Inducible Factor-laby RNA Interference Attenuates Human Glioma Cell Growth In vivo. Clin Cancer Res 2007, 13(8):2441-2448.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700