车载协同通信系统中功率分配算法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
协同通信是一种虚拟多天线技术,是空间分集概念的升华。这种技术利用通信网中其它用户的天线作为中继,实现“虚拟天线”的空间传输分集,从而提高系统性能。随着汽车配置电子化水平的不断提高,装备有无线通信工具的车辆可以提供安全警报服务、交通拥塞的探测及应用到一些商业领域。在实际的车载运动环境中,每个车辆都可以看成一个移动终端,每个车辆在和基站进行通信的同时,也帮助其他车辆发送信息,形成了车载协同通信系统。
     功率分配方案对系统性能有重要影响,它的目的是为了减少用户设备能量的消耗和其他用户的干扰,所以如何进行功率分配是车载协同通信系统的研究重点。本论文着重对车载协同通信系统中,在放大转发模式下的功率分配算法进行了研究。首先,从理论上数学推导了功率分配算法公式,提出了一种针对车载系统的改进的功率分配方案,最后通过大量仿真,证明了数学推导的正确性,并且得到一些重要结论。本论文的主要工作如下:
     1.对车载协同通信系统的基本原理深入研究,分别对协同系统的转发原则,协同伙伴的选择原则,接收端的合并原则进行对比分析,并且做出总结。建立单中继系统的数学模型,用来辅助功率分配算法的推导。
     2.本文首先推导了在放大转发协同通用模型中,在中继信道模型中的瞬时信道状态信息下,接收端分别采用最大比合并方式,等增益合并方式,加强信噪比合并方式时的单中继系统信道容量或接收端的信噪比,并在发射机与中继器的功率之和为定值的限制之下,在信道容量或信噪比最大化的准则下给出了相应的最佳功率分配方案。在此基础上,提出一种针对车载通信的改进最佳功率分配方案,即基于业务优先级划分的控制策略:给两路分集信号设定不同的优先级,根据实际情况进行优先级取值,在接收端加以叠加,以适应不同的车载环境。
     3.在曼哈顿移动模型和高斯—马尔可夫移动模型的基础上,提出了一种新的车载通信移动模型。这种模型加入了对实际移动情形和移动方式的考虑。并且针对此模型,对车载协同通信系统的物理层进行仿真。验证了第三章中最佳功率分配方案推导的正确性。
Cooperative communication technology is a virtual antenna technology, which is the distillation of the concept of multiple-input multiple-output (MIMO) technology. This technology uses antennas of other users as relays in wireless networks to achieve space diversity and full diversity gain. As the technology of the vehicles continues to improve, vehicles equipped with wireless communication devices are poised to deliver vital services in the form of safety alerts, traffic congestion probing and on-road commercial applications. In vehicular communication system, a car is viewed as a mobile node which can not only communicate with base station but also help other nodes to communicate. This is the vehicular cooperative communication system.
     Power distribution is an important element in vehicular cooperative communication system, which directly affects the quality of the whole system performance. Its purpose is to reduce the energy loss and interference of the users. This paper focuses on the power allocation algorithms in amplify-and-forward cooperative communication system. Firstly, a mathematical derivation of the power allocation algorithms in vehicular communication is described theoretically. Then a large number of simulations prove the correctness of the mathematical derivation, reaching some important conclusions as well. The main contributions of this paper are as follows:
     1. Research on the basic principles of cooperative communication in vehicle communication system and analyzes the key techniques such as forwarding principle, partner selection principle, and receiver combing principle. A mathematical model of single relay system is also constructed for the derivation of power allocation algorithms.
     2. First, it derives formulas of channel capacity and received signal-to-ratio (SNR) in single relay system based on instantaneous channel state information when the receiver adopts Maximum Ratio Combining, Equal Gain Combining, Fixed Ratio Combining and Enhanced SNR Combining respectively. With a limit power sum of transmitter and repeater, it presents optimal power allocation schemes based on maximum channel capacity principle and maximum SNR principle respectively. On the basis of theoretical research and mathematical derivation, a improved power allocation algorithm about vehicular communication system is given:set different priorities to two signals which are superimposed at the receiving part in order to adapt to different vehicle environments.
     3. On the basis of Manhattan mobility model and Gauss-Markov mobility model, vehicular mobility model is proposed which is capable of describing car movement in environment where city block places exist. On the basis of theoretical research and vehicular mobility, a lot of simulations have been done, and simulation results prove the correctness of the mathematical derivation of optimal power algorithm scheme.
引文
[1]A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity-Part Ⅰ: System description [J], IEEE Trans. Commun., vol.51, pp.1927—1938, Nov.2003
    [2]A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity-Part Ⅱ: Implementation aspects and performance analysis [J], IEEE Trans. Commun, vol.51, pp.1939-1948, Nov.2003
    [3]佘莎。放大转发协同系统的功率分配:[硕士学位论文],北京邮电大学,2008
    [4]殷勤业,张莹,丁乐等。协作分集:一种新的空域分集技术[J],西安交通大学学报,2005,39(6):551—557
    [5]罗涛,郝建军,乐光新。多用户协同通信与感知技术[J],中兴通讯技术,2008,11(6):58—62
    [6]John G. Proakis, Digital Communications, McGraw-Hill,4th edition (international),2001
    [7]T Camp, Bolen, V Davies. A Survey of Mobility Models for Ad Hoc Network research,Wireless Communication Mobile Computing(WCMC):Special issue on Mobile Ad Hoc Networking:Research[J], Trends and Applications,2002:680—694
    [8]M Zonoozi, P Dassanayake.User mobility modeling and characterization of mobility pattern[J],IEEE Journal Oil Selected Areas in Communications, VOL 15, NO 7,1997:100—110
    [9]Gang Lu, Demetrios Belis, Gordon Manson. Study on Environment Mobility Models for Mobile Ad Hoc Network:Hotspot Mobility Model and Route Mobility Model[C],2005 International Conference on Wireless Networks, Communications and Mobile Computing,2005:212—216
    [10]The Internet Engineering Task Force Secretariat, Mobile Ad Hoc Networks (MANET), http:www.ietf.org/html.charters/manetcharter.html,2005.
    [11]G-L Ling Noubir,R Rajaraman.Mobility Model for Ad Hoe Network Simulation[C], In:Proceedings of IEEE INFOCOM'04, Hong Kong, China,2004: 10—56
    [12]G Resta, P Santi. An Analysis of the Node Spatial Distribution of the Random Waypoint Mobility Model for Ad Hoc Networks[C], In:Proceedings of the 2nd ACM International Workshop on Principles of Mobile Computing (POMC), Toulouse, France,2002:105—120
    [13]A P Jardosh,E M Belding-Royer,K C Almerothetal. Towards Realistic Mobility Models for Mobile Ad Hoc Networks[C], In:Proceedings of ACM MOBICOM, San Diego,CA,2003:245—267
    [14]C. E. Perkins, E. M. Royer.Ad-Hoc on-Demand Distance Vector Routing[C], In: Proceedings of the 2nd IEEE Workshop on Mobile Computing Systems and Applications (WMCSA), New Orleans, LA, USA,1999:203—220
    [15]刘冰。无线移动通信中的协作分集技术[J],电视技术,2006(2):61—64
    [16]沈翰。协同分集中的中继选择方法[J],信息技术,2007(11):84—86
    [17]J N Laneman, D N C Tse, G W Wornell. Cooperative diversity in wireless networks:Efficient protocols and outage behavior [J], IEEE Trans on Information Theory,2004,50 (12):3062-3080
    [18]J N Laneman, G W Wornell. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks [J], IEEE Trans. Inform. Theory, 2003,49(10):2415-2425
    [19]R U Nabar, H Bolcskei, F W Kneubuhler. Fading relay channels:performance limits and space-time signal design [J], IEEE J SAC,2004,22 (6):1099-1109
    [20]M Janani, A Hedayat. Coded cooperation in wireless communications: space-time transmission and iterative decoding [J], IEEE Trans on Signal Processing, 2004,52 (2):362-371
    [21]Z Sahinoglu, P Orlik. Regenerator verus simple-relay with optimum transmit power control for error propagation [J],IEEE Communication Letters, June 2003, 7(9):416—418
    [22]J Broch. A Performance Comparison of Multi-hop Wireless ad hoc Network Routing Protocols[C], In:Proceedings of the Fourth Annual ACM/IEEE International Conference on Mobile Computing and Networking (mobicom98), ACM,1998,85-97
    [23]C Bettstetter. Stochastic Properties of the Random Waypoint Mobility Model, In ACM/Kluwer Wireless Networks, Special Issue on Modeling and Analysis of Mobile Networks, Sep 2004,10(5):7-14.
    [24]M Dohler, A Gkelias, H Aghvami.2-hop distributed MIMO communication system [J]. IEE ELECTRONICS LETTERS, Sep 2003,39(18):1350-1351
    [25]M Dohler, A Gkelias, H Aghvami. A resource allocation strategy for distributed MIMO multi-hop communication systems [J], IEEE Communication Letters, Feb 2004.8(2):99-101
    [26]A Nosratinia, T E Hunter, A Hedayat. Cooperative communication in wireless networks [J], IEEE Communications Magazine,2004,42 (10):74-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700