基于网络演算的自相似网络性能上界模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
网络所承载的通信量是一切网络研究的基础,它不仅能够直接反映网络性能的好坏,而且在某种意义上可以用来表示网络动力学行为特征,一直以来从网络通信量的角度来研究网络性能倍受人们关注。随着信息社会的到来和网络技术的发展,Internet等高速网络已经逐步形成了一个开放的复杂巨系统。随之而来,网络通信量呈现“爆炸式”增长,其固有统计特征发生了改变,这使得基于通信量的网络性能研究也变得越来越重要。自相似性(Self-Similarity)作为高速网络通信量的一种重要统计特征,对网络性能具有影响作用。因此,基于自相似通信量的网络性能建模对高速网络的发展有着深远意义。
     到目前为止,人们已经对基于通信量的网络性能或网络自相似通信量等方面分别进行了深入研究,但这些研究均是针对网络性能或自相似通信量单独进行的,缺乏基于自相似通信量的网络性能方面的研究。此外,目前对自相似通信量的研究也主要集中于分析、建模等方面,缺乏自相似通信量控制方面的深入研究。为了提高自相似网络性能,研究如何有效实施自相似网络的服务质量(Quality of Service, QoS)控制,以避免自相似网络拥塞,将具有重要的研究价值。本论文针对自相似性对网络性能所造成的影响,利用网络演算(Network Calculus)理论的方法综合系统地研究了基于自相似通信量的网络性能模型。本论文的主要工作和创新性成果如下:
     (1)基于网络演算理论提出了适应于自相似通信量控制的分形整形器模型及其性能模型
     在对自相似通信量的控制研究方面,综述了目前国内外在网络自相似通信量研究方面所做的主要研究工作,基于现有研究成果,引入网络演算理论,给出了适应于自相似通信量控制的分形整形器(Fractal Regulator)的一般数学模型,推导了无损和有损两种分形整形器的输出特性与输入流的自相似参数以及整形器的整形曲线(Shaping Curve)之间的关系,分析了分形整形器的队列长度与延迟等性能,讨论了分形整形器的引入对网络端到端延迟、数据丢失总数以及平均丢失率等性能的影响。上述分析工作和得出的结果对自相似通信量控制方案的评价和分形整形器参数的设计具有实际意义,为基于自相似通信量的网络性能研究提供基础。
     (2)利用网络演算理论,提出了基于分形整形器的通用处理器共享(Generalized Processor Sharing, GPS)系统的性能统计上界与确定上界模型
     在对基于自相似通信量的单节点网络性能研究方面,综述了国内外在GPS系统性能方面所做的主要研究工作,基于已有研究成果,引入分形整形器来对传输到GPS系统入口处的自相似通信量进行整形,建立了以自相似通信量作为输入的GPS系统的性能统计上界模型和性能确定上界模型,包括队列长度统计上界和确定上界、延迟统计上界和确定上界、有效带宽确定上界以及延迟抖动确定上界等性能模型。数学分析表明,基于分形整形器的GPS系统的性能统计上界模型和确定上界模型能够反映通信量的自相似性,并把其输出可用带宽公平地分配给各通信流,并隔离不同的通信流。
     (3)基于网络演算理论提出了自相似通信量的端到端延迟上界模型
     在对以自相似通信量作为输入的网络端到端延迟研究方面,利用网络演算理论计算了自相似通信量端到端延迟确定上界问题,推导了利用GPS调度器和分形整形器作为节点模型的自相似通信量端到端延迟理想确定上界及其近似确定上界。数学分析表明,自相似通信量的端到端延迟确定上界随通信量自相似参数的增大而有所减小,这有利于改善通信量自相似程度越高延迟越大所导致的网络性能下降。
     (4)基于网络演算理论提出了一种保证服务性能模型
     在对保证服务(Guaranteed Service)性能模型研究方面,提出了一种通用的保证服务性能模型,在边沿-核心(Edge-Core)网络模型的基础上,基于到达曲线(Arrival Curve)和服务曲线(Service Curve)概念给出了网络节点的二级调度模型,利用网络演算理论推导了该模型的队列长度上界和延迟上界、端到端延迟上界和端到端延迟抖动上界以及有效带宽上界等性能保证。数学分析表明,基于网络演算理论的保证服务性能模型为保证服务网络环境提供QoS的有效控制、调度和管理提供一定的参考作用。
Network teletraffic is the foundation of all network researches, not only it canreflect the quality of network performance directly, but also it can be used forexpressing the behavior characteristic of network dynamics in some degree. For a longtime, people pay more attentions to continuously studying network performance basedon teletraffic. As the development of network technology and the arrival of informationsociety, Internet, as well as all kinds of high speed networks gradually has alreadyformed one open, complex giant system. Following with that, network teletraffic hasexploded, and its inherent characteristic has changed, which causes that the researcheson network performance based on teletrafflc become more and more important. As onekind of main statistical characteristic of high speed network teletraffic, Self-Similarityhas the influence on network performance. Therefore, to make a model of networkperformance based on self-similar teletraffie has the profound significance for thedevelopment of high-speed networks.
     So far, network performance based on teletraffic or self-similar teletraffic has beenresearched separately, aiming at the network performance or the self-similar networklonely, lacking in studying network performance based on self-similar teletraffic. Inaddition, more researchers pay attentions to analyzing and modeling the self-similarteletraffic of high-speed networks, lacking for thorough research in the aspect ofself-similar network control. In order to improve the performance of self-similarnetwork, it is important to study how to implement the control of Quality of Service(QoS) of self-similar network, so that it can avoid self-similar network congestion.Considering the influence of self-similarity on network performance, the model ofnetwork performance is studied synthetically and systemically based on self-similarteletraffic using network calculus in this paper. The main work and contributions arepresented in the following aspects:
     (1)To adapt to control self-similar teletraffic, the mathematical model of thefractal regulator (or fractal shaper) and the performance model of it with networkcalculus are proposed.
     On the researches of controlling self-similar teletrattic control, an overview of thecurrent major works on this field are presented, and then, on the basis of these currentresearch results, using network calculus theory, a general mathematical model of the fractal regulator for controlling self-similar teletraffic is proposed. The relationshipsbetween the output properties of the lossless fractal regulator and the loss fractalregulator and the self-similar parameter of the input traffic and the shaper curve and theshapers are derived. The performance of two kinds of the fractal regulator is analyzed,such as, queue length and delay. At last, the influences of the introduction of the fractalregulator on the end-to-end delay, the packets lost totals and the average lost rate arediscussed. These works and results of the analyses have practical significance for theevaluation of the control strategy of self-similar teletraffic and the configuration of theparameter of the fractal regulator parameter, as well as, provide the foundation for theresearch of the network performance based on self-similar teletraffic.
     (2) Using network calculus, the statistical and deterministic models of the upperbounds on the performance of General Processor Sharing (GPS), based on the fractalregulator with self-similar teletraffic input, are proposed.
     On the researches of the performance of the network single-node with self-similarteletraffic input, an overview of the current main works on the GPS system is presented.Based on the research results, the self-similar teletraffic on the ingress of the GPSsystem is reshaped and regulated by the fractal regulator, and the models of thestatistical and deterministic upper bounds on the performance of the GPS system withthe self-similar teletraffic input are proposed. These models include the statistical anddeterministic upper bounds on queue length, on delay, and the deterministic upperbounds on effective bandwidth and on delay jitter of the GPS system. Numericalexamples and results are presented to demonstrate that, the models of the statistical anddeterministic upper bounds on the performance of the GPS system based on the fractalregulators can reflect the self-similar characteristic of the self-similar teletraffic; theGPS system based on the fractal regulators fairly assigned its available outputbandwidth for each flow, and isolates from different flows.
     (3) Using network calculus, the deterministic upper bounds on end-to-end delay ofthe network system with self-similar teletraffic input are derived.
     On the researches of bounds on end-to-end delay of the network with theself-similar teletraffic input, the upper bounds on end-to-end delay in guaranteed servicewith network calculus are studied. The deterministic upper bounds on the ideaend-to-end delay as well as the approximate end-to-end delay, which used the GPSdispatcher and the fractal regulators as the node model, are derived. Numerical examples and results indicate that, the deterministic upper bounds on end-to-end delaythe system with self-similar teletraffic input increase along with the self-similarparameter reducing. This is advantageous to the improvement of the performance drop,which is owed to that the higher degree of the self-similarity of network teletraffic, thelonger delay.
     (4)Using network calculus, a performance model in guaranteed service isproposed.
     On the researches of performance models in guaranteed service, a generalperformance model in guaranteed service is proposed. On the basis of edge-corenetwork model, and using the arrival curve and the service curve, a two level schedulingmodel of the network node is proposed, and the upper bounds on queue length, delay,end-to-end delay, end-to-end delay jitter, and effective bandwidth of the performancemodel are derived. Numerical examples and results demonstrate that, the performancemodel in guaranteed service with network calculus provides a reference for the activecontrol, the scheduling strategy and the management of the guaranteed service networksproviding for QoS.
引文
[1] 中国互联网络信息中心.中国互联网络发展状况统计报告[EB/OL],http://www.cnnic.net.cn/images/2006/download/2006011701.pdf, 2006.1
    [2] William Stallings.高速网络与互联网——性能与服务质量(第二版)(齐望东等译)[M].北京:电子工业出版社,2003
    [3] 戴汝为,操龙兵.Internet——一个开放的复杂巨系统[J].中国科学(E辑),2003,33(4):289~296
    [4] 韩良秀.基于流量的网络性能研究:[博士学位论文].上海:复旦大学,2002
    [5] Karagiannis T, Molle M, Faloutsos M. Long-Range Dependence: Ten Years of Interact Traffic Modeling[J]. IEEE Internet Computing, 2004, 8(5):57~64
    [6] Yu J, Petropulu A A, Sethu H. Rate-Limited EAFRP—A New Improved Model for High-Speed Network Traffic[J]. IEEE Transactions on Signal Processing, 2005, 53(2):505~522
    [7] Zhang J S, Konstantopoulos T. Multiple-Access Interference Processes Are Self-Similar in Multimedia CDMA Cellular Networks[J]. IEEE Transactions on Information Theory, 2005, 51 (3): 1024~1038
    [8] Daniel P. Heyman, David Lucantoni. Modeling Multiple IP Traffic Streams with Rate Limits[J]. IEEE/ACM Transactions on Networking, 2003, 11 (6):948~958
    [9] Xia C H, Liu Z, Squillante M S, et al. Web traffic modeling at finer time scales and performance implications[J]. Performance Evaluation, 2005, 61 (2): 181~201
    [10] Shen M D. Study on scaling behavior of heterogeneous traffic in modern networks[A]. In: Proceedings of the International Conference on Networking, Systems, Mobile Communications and Learning Technologies (ICNICONSMC L'06)[C], 2006, 35~42
    [11] Lopez-Guerrero M, Orozco-Barbosa L, Makrakis D. Probabilistic envelope processes for a-stable self-similar traffic models and their application to resource provisioning[J]. Performance Evaluation, 2005, 61 (2):257-279
    [12] Figueiredo D R, Liu B, Feldmann A, et al. On TCP and self-similar traffic[J]. Performance Evaluation, 2005, 61(2):129~141
    [13] Khayari R E A, Sadre R, Haverkort B R, et al. The pseudo-self-similar traffic model: application and validation[J]. Performance Evaluation, 2004, 56(1):3~22
    [14] Chakraborty D, Ashir A, Suganuma T, et al. Self-similar and fractal nature of internet traffic[J]. International Journal of Network Management, 2004, 14:119~ 129
    [15] Field T, Harder U, Harrison P. Network traffic behaviour in switched Ethernet systems[J]. Performance Evaluation, 2004, 58(2): 243-260
    [16] Ramirez-Velarde R V, Rodriguez-Dagnino R M. A gamma fractal noise source model for variable bit rate video servers[J]. Computer Communications, 2004, 27(18): 1786-1798
    [17] Balamash A, Krunz M. Modeling web requests: a multifractal approach[J]. Computer Networks, 2003,43(2): 211-226
    [18]Erramilli A, Roughan M, Veitch D, et al. Self-Similar Traffic and Network Dynamics[A]. In: Proceedings of the IEEE[C]. New York: IEEE, 2002, 90(5):800~ 819
    [19] Liang Q L. Ad Hoc Wireless Network Traffic - Self-Similarity and Forecasting[J]. IEEE Communications Letters, 2002,6(7):297~299
    [20] Karasaridis A, Hatzinakos D. Network Heavy Traffic Modeling using α -Stable Self-Similar Processes[J]. IEEE Transactions on Communications, 2001, 49(7): 1203-1214
    [21] Tudjarov A, Temkov D, Janevski T, et al. Empirical modeling of Internet traffic at middle-level Burstiness[A]. In: Proceedings of the 12th IEEE Mediterranean Electrotechnical Conference (MELECON'04)[C]. Dubrovnik, Croatia: IEEE, 2004,2:535-538
    [22] Leland W, Taqqu M S, Willinger W, et al. On the Self-Similar Nature of EthernetTraffic (Extended Version)[J]. IEEE/ACM Transactions on Networking, 1994, 2(1): 1-15
    [23] Liu S G, Wang P J, Qu L J. Modeling and simulation of self-similar data traffic[A]. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics[C], Guangzhou: IEEE, 2005,7:3921-3925
    [24] Paxson V, Floyd S. Wide Area Traffic: The Failure of Poisson Modeling[J]. IEEE/ACM Transactions on Networking, 1995, 3(3):226~244
    [25] Beran J, Sherman R, Taqqu M S, et al. Long-Range Dependence in Variable-Bit-Rate Video Traffic[J]. IEEE Transactions on Communication, 1995, 43(2):1566~1579
    [26] Field A J, Harder U, Harrison P G. Measurement and modelling of self-similar traffic in computer networks[J]. IEE Proceedings Communications, 2004, 151 (4):355~363
    [27] Jie Y, Petropulu A R. Is high-speed wireless network traffic self-similar?[A]. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP '04)[C], 2004, 2:425~428
    [28] Crovella M E, Bestavros A. Self-Similarity in World-Wide Web Traffic: Evidence and Possible Causes[J]. IEEE/ACM Transactions on Networking, 1997, 5(6):835~846
    [29] Yin S Y, Lin X K. Traffic self-similarity in mobile ad hoc networks[A]. In: Proceedings of Second IFIP International Conference on Wireless and Optical Communications Networks (WOCN'05)[C], 2005, 285~289
    [30] Song S B, Ng J K, Tang B H. Some Results on the Self-Similarity Property in Communication Networks[J]. IEEE Transactions on Communications, 2004, 52(10): 1636~1642
    [31] Veres A, Boda M. The Chaotic Nature of TCP Congestion Control[A]. In: Proceedings of the IEEE INFOCOM 2000[C]. Tel Aviv, Israel: IEEE Computer Society, 2000, 3:1715~1723
    [32] Park K, Willinger W. Self-Similar Network Traffic and Performance Evaluation[M]. New York: John.Wiley & Sons, 2000
    [33] 魏进武,邬江兴,陈庶樵.网络流量的联合多重分形模型及特性分析[J].电子学报,2004,32(9):1459~1463
    [34] 宋美娜,段云峰,宋俊德等.数据业务自相似特性研究[J].通信学报,2004,25(8):150~155
    [35] 沈宇,徐启建,钟静月.自相似业务流建模及其合成性能分析[J].通信学报,2004,25(4):98~105
    [36] 龙图景,孙政顺,李春文等.一种新的网络业务流的多重分形小波模型[J].计算机学报,2004,27(8):1074~1082
    [37] Hong B, Madhyastha T M. The Relevance of Long-Range Dependence in Disk Traffic and Implications for Trace Synthesis[A]. In: Proceedings of the 22nd IEEE/13th NASA Goddard Conference on Mass Storage Systems and Technologies (MSST'05)[C], Monterey, CA, USA: IEEE Computer Society, 2005, 316~326
    [38] 石江涛,王永纲,戴雪龙等.自相似网络业务流量的研究与实现[J].通信学报,2005,26(6):112~117
    [39] 邵立松,窦文华.自相似网络通信量模型研究综述[J].电子与信息学报,2005,27(10):1671~1676
    [40] 黄晓璐,闵应骅,吴起.网络流量的半马尔可夫模型[J].计算机学报,2005,28(10):1595~1600
    [41] 龙图景,李春文,孙政顺等.一种基于瑞利分布的VBR视频流的小波模型[J]. 电子学报,2005,33(4):638~642
    [42] Ramirez Pacheco Julio Cesar, Torres Roman Deni. Local and Cumulative Analysis of Self-similar Traffic Traces[A]. In: Proceedings of the 16th IEEE International Conference on Electronics, Communications and Computers (CONIELECOMP 2006)[C], Cholula, Puebla, MEXICO: IEEE Computer Society, 2006, 27~33
    [43] Norros I. A Storage Model with Self-Similar Input[J]. Queueing Systems, 1994, 16: 387~396
    [44] 吴昱静,孙海荣,李乐民.长期相关过程的自相关对排队性能的影响[J].电子学报,1999,27(6):92~95
    [45] Willinger W, Wilson D, Taqqu M S. On Traffic Measurements that Defy Traffic Models (and vice versa): Self-Similar Traffic Modeling for High-Speed Networks[J]. ConneXions, 1994, 8(11): 14~24
    [46] Erramilli A, Narayan O, Willinger W. Experimental Queuing Analysis with Long-Range Dependent Packet Traffic[J]. IEEE/ACM Transactions on Networking, 1996, 4(2):209~223
    [47] Grossglauser M, Bolot J. On the Relevance of Long-Range Dependence in Network Traffic[J]. IEEE/ACM Transactions on Networking, 1999, 7(5):629~640
    [48] Ryu B, Lowen S. Point Process Approaches for Modeling and Analysis of Self-Similar Traffic, Part Ⅱ-Applications[A]. In: Proceedings of the 5th International Conference on Telecommunications Systems, Modeling, and Analysis[C]. Nashville, TN, 1997
    [49] 王楠,侯紫峰,陈军等.基于分形理论的无线链路性能分析[J].计算机学报,2003,26(9):1078~1085
    [50] Laskin N, Larnbadaris I, Harmantzis F C, et al. Fractional Levy Motion and its Application to Network Traffic Modeling[J]. Computer Networks, 2002, 40(3): 363~375
    [51] Leland W E, Wilson D V. High Time-Resolution Measurement and Analysis of LAN Traffic: Implications for LAN Interconnection[A]. In: Proceedings of the IEEE INFOCOM'91 [C]. Bal Harbour, Florida, USA: IEEE Computer Society, 1991, 1360~1366
    [52] Taqqu M S, Teverovsky V, Willinger W. Is network traffic self-similar or multifractal?[J]. Fractals, 1997, 5:63~73
    [53] Feldmann A, Gilbert A C, Willinger W. Data network as cascades: Investigating the multi-fractal nature of Internet WAN traffic[A]. In: Proceedings of the ACM SIGCOMM'98[C], Boston, Ma: ACM Press, 1998, 42~55
    [54] Zhang J W, Chen H W, Chen C J, Study on Source of Multifractal Nature of Internet Traffic[J], Journal of Software, 2002, 13(3):470~474
    [55] Yin S Y, Lin X K. Adaptive Load Balancing in Mobile Ad hoe Networks[A]. In: Proceedings of IEEE Wireless and Communications and Networking Conference (WCNC 2005)[C], New Orleans, LA USA: IEEE Computer Society, 2005, 1982~1987
    [56] 吴援明,宁正容,梁恩志.网络自相似业务模型进展[J].通信学报,2004,25(3):97~104
    [57] Alexander R, Brownlee N, Ziedins I. Modeling self-similar network traffic[R]. Technicial Report, University of Auckland, Aukland, New Zeland, 1995
    [58] 张连明,陈志刚,刘安丰.一种基于FGN和IDFT的自相似流量生成算法[J]. 通信学报,2004,25(11):16~25
    [59] Hosking J. Fractional differencing[J]. Biometrika, 1981, 68(1): 165~176
    [60] Womell G W. Wavelet-based representations for the 1/f family of fractal process[A]. In: Proceedings of the IEEE[C], 1993, 81(10):1428~1450
    [61] 葛晓虎.基于alpha稳定过程理论的自相似网络业务流建模及其应用:[博士学位论文].武汉:华中科技大学,2003
    [62] Min G, Ould-Khaoua M. A Performance Model for Wormhole-Switched Interconnection Networks under Self-Similar Traffic[J]. IEEE Transactions on Computers, 2004, 33(5):601~613
    [63] 洪飞,吴志美.基于小波的多重分形业务排队分析.计算机研究与发展[J],2004,41(6):930~933
    [64] 周满珍,权冀川,郭艳等.基于成批排队的自相似业务性能分析[J]系统仿真学报,2004,16(2):306~309
    [65] 张帝,葛振斌,张民等.自相似业务下光分组交换边缘节点排队方案性能分析[J].高技术通讯,2004,(12):6~10
    [66] Kantarci B, Oktug S, Atmaca T. Analyzing the Effects of Burst Assembly in Optical Burst Switching under Self-similar Traffic[A]. In: Proceedings of the Advanced Industrial Conference on Telecommunications/Service Assurance with Partial and Intermittent Resources Conference/E-Learning on Telecommunications Workshop (AICT/SAPIR/ELETE'05)[C], Lisbon, Portugal: IEEE, 2005, 109~114
    [67] Nakashima T. Delay Propagation Properties with Self-similarity[A]. In: Proceedings of the 11th International Conference on Parallel and Distributed Systems (ICPADS'05)[C], Fukuoka, Japan: IEEE, 2005, 1:509~515
    [68] Tuan T, Park K. Multiple time scale congestion control for self-similar network traffic[J]. Performance Evaluation, 1999, 36(1):359~386
    [69] Park K., Tuan T. Performance Evaluation of Multiple Time Scale TCP under Self-Similar Traffic Conditions[J]. ACM Transactions on Modeling and Computer Simulation, 2000, 10(2): 152~177
    [70] 王宇,赵千川,郑大钟.基于自相似业务的网络TCP拥塞控制算法[J].通信学报,2001,22(5):31~38
    [71] 刘郁恒,胡严,张光昭.自相似网络环境中TCP-Friendly协议的研究[J].计算机学报,2004,27(1):32~51
    [72] 戚伟世,蔡安妮,孙景鳌.自相似业务下视频服务器的接纳控制[J].通信学报,2004,25(10):148~154
    [73] Suresh S, Gol O. Congestion Management of Self Similar IP Traffic-Application of RED Scheme[A]. In: Proceedings of 2nd IFIP/IEEE International Conference on Wireless and Optical Communication Networks (WOCN-2005)[C], Dubai, UAE: IEEE,2005,372~376
    [74] 刘安丰,陈志刚,张连明等.基于自相似网络流的多维QoS路由策略研究[J]. 计算机工程,2005,31(19):18~20
    [75] 陈怡秋,陈晓光.基于UDP的无线自相似环境下MPEG-4码率自适应控制[J]. 通信学报,2005,26(5):17~23
    [76] Elbiaze H, Cherkaoui O. Exploiting Self-Similar Traffic Analysis in network resource control: the IP over WDM networks case[A]. In: Proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services (ICAS-ICNS'05)[C], Papeete, Tahiti, French Polynesia: IEEE, 2005, 65
    [77] 吴琦,熊光泽.非平稳自相似业务下自适应动态功耗管理[J].软件学报,2005,16(8):1499~1505
    [78] 徐玉滨,宋立嫒,沙学军.基于自相似业务模型的实时调度算法研究[J],电子与信息学报,2006,28(1):158~162
    [79] Cruz R L. A calculus for network delay, part I and II[J]. IEEE Transactions on Information Theory, 1991, 37(1): 114~141
    [80] Cruz R L. Quality of service guarantees in virtual circuit switched networks[J]. IEEE Journal on Selected Areas in Communications, 1995, 13(6): 1048~1056
    [81] Le boundec J Y, Thiran P. Network Calculus[M]. London, Britain: Springer Verlag, 2004
    [82] Florin C, Almut B, Jorg L. Scaling Properties of Statistical End-to-End Bounds in the Network Calculus[J]. IEEE Transactions on Information Theory, 2006, 52(6): 2300~2312
    [83] Andras G, Jozsef B. A Stochastic Extension of Network Calculus for Workload Loss Examinations[J]. IEEE Communications Letters, 2006, 10(5):399~401
    [84] Kelly F. Notes on Effective Bandwidths, Stochastic Networks: Theory and Applications[J]. Royal Statistical Society Lecture Notes Series, 1996, (4): 141~168
    [85] Chang C. S. Performance Guarantees in Communication Networks[M], New York: Springer Verlag, 2000
    [86] Boorstyn R R, Burchard A, Liebeherr J, et al. Statistical service assurances for traffic scheduling algorithms[J]. IEEE Journal on Selected Areas in Communications Special Issue on Internet QoS, 2000, 18(12):2651~2664
    [87] Patek S. D., Liebeherr J., Burchard A. A calculus for end-to-end statistical service guarantees[R]. Technical Report CS-2001-19, University of Virginia, Department of Computer Science, August 2001
    [88] Fidler M. Elements of Probabilistic Network Calculus Applying Moment Generating Functions[R], Preprint Series of the Institute Mittag-Leffier, The Royal Swedish Academy of Sciences, Report No. 12 2004/2005 fall, 2005
    [89] Fidler M, Recker S. A Dual Approach to Network Calculus Applying the Legendre Transform[A]. In: Proceedings of the 3rd International Workshop on QoS in Multiservice IP Networks[C], Catania Italy, 2005, 33~48
    [90] Le Boudec J Y. Application of network calculus to guaranteed service networks[J]. IEEE/ACM Transactions on Information Theory, 1998, 44(3): 1087~1097
    [91] Cruz R L, Chang C S, Le Boudec J Y, et al. A min, + system theory for constrained traffic regulation and dynamic service guarantees[J]. IEEE/ACM Transactions on Networking, 2002, 10(6):805~817
    [92] Cruz R L, Taneja M. An analysis of traffic clipping[A]. In: Proceedings of the 1998 Conference on Information Sciences and Systems[C], Princeton, New Jersey, March 1998
    [93] Vojnovic M, Le Boudec J Y. Stochastic analysis of some expedited forwarding networks[A]. In: Proceedings of INFOCOM 2002[C], New York, USA: IEEE, 2002, 1004~1013
    [94] Le Boudec J Y, Hebuteme G. Comment on a deterministic approach to the end-to-end analysis of packet flows in connection oriented network[J]. IEEE/ACM Transactions on Networking, 2000, 8(1): 121~124
    [95] Rexford J, Towsley D. Smoothing variable-bit-rate video in an internetwork[J]. IEEE/ACM Transactions on Networking, 1999, 7(2):202~215
    [96] 张信明,陈国良,顾钧.基于网络演算计算保证服务端到端延迟上界[J].软件学报,2001,12(6):889~893
    [97] Thiran P, Le Boudec J Y, Worm F. Network calculus applied to optimal multimedia smoothing[A]. In: Proceedings of INFOCOM'01[C], Anchorage, Alaska, USA: IEEE, 2001, 3:1474~1483
    [98] 张信明,陈国良,顾钧.基于网络演算的流量整形模型[J].软件学报,2002,13(12):2225~2230
    [99] 高岭,李增智,王峥等.缓冲区有限流量整形器性能参数的最小加代数表示[J]. 西安交通大学学报,2005,39(10):1068~1071
    [100] 张信明.聚集业务流特性与QoS性能界限的研究[J].计算机科学,2004,31(12):31~33
    [101] Ciucu F, Burchard A, Liebeherr J. Scaling Properties of Statistical End-to-End Bounds in the Network Calculus[J]. IEEE Transactions on Information Theory, 2006, 52(6):2300~2312
    [102] 张奇智,张彬,张卫东.基于网络演算计算交换式工业以太网中的最大延迟[J]. 控制与决策,2005,20(1):117~120
    [103] 王子君,许维胜,王中杰等.控制网络的确定性延迟演算理论研究[J].电子学报,2006,34(2):380~384
    [104] Agrawal R, Cruz R L, Okino C, et al. Performance bounds for flow control protocols[J]. IEEE/ACM Transactions on Networking, 1999, 7(3):310~323
    [105] Chang C S. On deterministic traffic regulation and service guarantees: a systematic approach by filtering[J]. IEEE Transaction on Information Theory, 1998, 44(3): 1097~1110
    [106] Kurose J. On computing per-session performance bounds in high-speed multi-hop computer networks[J]. ACM SIGMETRICS Performance Evaluation Review, 1992, 20(1):128~139
    [107] Starobinski D, Sidi M. Stochastically bounded burstiness for communication networks[J]. IEEE Transaction on Information Theory, 2000, 46(1):206~212
    [108] Ng J, Song S. ATM Delay Analysis and Efficient Connection Admission Control on Real-time Traffic[J]. IEICE Transaction on Communications, 1999, E82-B(6):851~858
    [109] Sivaraman V, Chiussi F M. Providing end-to-end statistical delay guarantees with earliest deadline first scheduling and per-hop traffic shaping[A]. In: Proceedings of IEEE INFOCOM'00[C], Tel Aviv, Israel, 2000, 631~640
    [110] Elwalid A, Mitra D. Design of generalized processor sharing schedulers which statistically multiplex heterogeneous QoS classes[A]. In: Proceedings of IEEE INFOCOM'99[C], New York, 1999,1220-1230
    [111] Li C, Knightly E W. Coordinated network scheduling: A framework for end-to-end services[J]. IEEE/ACM Transactions on Networking, 2002,10(6):776~789
    [112] Starobinski D, Karpovsky M, Zakrevski L A. Application of Network Calculus to General Topologies Using Turn-Prohibition[J]. IEEE/ACM Transactions on Networking, 2003,11(3):411~421
    [113] Fidler M, Recker S. Conjugate network calculus: A dual approach applying the Legendre transforms[J]. Computer Network, 2006, 50(8): 1026-1039
    [114] Jiang Y M. Delay bound and packet scale rate guarantee for some expedited forwarding networks[J]. Computer Network, 2006, 50(1):15~28
    [115] Lenzini L, Martorini L, Mingozzi E, et al. Exploiting Network Calculus for Delay-Based Admission Control in a Sink-Tree Network[A]. In: Proceedings of the 2005 Workshop on Techniques, Methodologies and Tools for Performance Evaluation of Complex Systems (FIRB-Perf 2005)[C], IEEE, 2005,126-135
    [116] Fedia F, Pacaccioa A, Losquadrob G. Integrated Traffic Management for TCP over on-board processing satellite networks[J]. Control Engineering Practice, 2003,11(10):1183-1194.
    [117] Zhang Q Z, Cai Y Z, Gu D Y, et al. Determine the Maximum Closed-Loop Control Delay in Switched Industrial Ethernet Using Network Calculus [A]. In: Proceedings of the 2006 American Control Conference [C], Minneapolis, Minnesota, USA: IEEE, 2006,4870-4875
    [118] Lenzini L, Mingozzi E, Stea G. Delay bounds for FIFO aggregates: a case study [J]. Computer Communications, 2005,28(3):287~299
    [119] Fidler M, Schmitt J B. On the way to a distributed systems calculus: an end-to-end network calculus with data scaling[J]. ACM SIGMETRICS Performance Evaluation Review, 2006, 34(1):287~298
    [120] Le Boudec J Y, Verscheure O. Optimal Smoothing for Guaranteed Service[J]. IEEE/ACM Transactions on Networking, 2000, 8(6):689~696
    [121] Hwangnam K, Hou J C. Network calculus based simulation for TCP congestion control: theorems, implementation and evaluation[A]. In: Proceedings of INFOCOM'04[C], 2004,4:2844-2855
    [122] Ciucu F, Mark B L, Simon R. On multiplexing gain for networks with deterministic delay guarantees [A]. In: Proceedings of the IEEE Global Telecommunications Conference (GLOBECOM'03)[C], 2003, 5:2977-2981
    [123] Mao S W, Panwar S S, Hou Y T. On minimizing end-to-end delay with optimal traffic partitioning[J]. IEEE Transactions on Vehicular Technology, 2006, 55(2): 681-690
    [124] Hwangnam Kim. Integrating network-calculus-based simulation with packet-level simulation for TCP-operated networks[J]. Computer Networks, 2006, 50(12): 1995-2012
    [125] Jiang Y M. Relationship between guaranteed rate server and latency rate server[J]. Computer Networks, 2003,43(3):307~315
    [126] Sorte D D, Reali G. Resource allocation rules for providing performance guarantees to traffic aggregates in a DiffServ environment[J]. Computer Communications, 2002,25(9):846~862
    [127] Duan Q, Daigle J N. Resource allocation for quality of service provision in multistage buffered crossbar switches[J]. Computer Networks, 2004,46(2): 147-168
    [128]Rizzo G, Le Boudec J Y. "Pay bursts only once" does not hold for non-FIFO guaranteed rate nodes[J]. Performance Evaluation, 2005, 62(1):366~381
    [129] Hongxia Yin, Feng Xia, Zhi Wang,Youxian Sun. Performance Evaluation of Hard Real-Time Data in the Switched Ethernet by Network Calculus[A]. In: Proceedings of the Fifth World Congress on Intelligent Control and Automation[C], Hangzhou, China, 2004, 2:1451-1455
    [130] Le Boudec J Y, Charny A. Packet Scale Rate Guarantee for Non-FIFO Nodes[J]. IEEE/ACM Transactions on Networking, 2003,11(5):810~820
    [131] Fidler M, Sander V, Klimala W. Traffic shaping in aggregate-based networks: implementation and analysis[J]. Computer Communications, 2005,28(3):274~286
    [132] Cholvi V, Echague J, Le Boudec J Y. Worst case burstiness increase due to FIFO multiplexing[J]. Performance Evaluation, 2002,49(1 ):491-506
    [133] Chen M, Zhang J, Murthi M N, et al. TCP congestion avoidance: a network calculus interpretation and performance improvements [A]. In: Proceedings of the INFOCOM'05[C], 2005,2:914-925
    [134] Lenzini L, Martorini L, Mingozzi E, et al. Tight end-to-end per-flow delay bounds in FIFO multiplexing sink-tree networks[J]. Performance Evaluation, 2006, 63(9): 956~987
    [135] Shenker S, Partridge C, Guerin R. Specication of guaranteed quality of service [EB/OL]. RFC2212, 1997
    [136] Braden R, Clark D, Shenker S. Integrated Services in the Internet Architecture: An Overview [EB/OL]. RFC 1633, 1994
    [137] Blake S, Black D, Carlson M, et al. An architecture for differentiated services [EB/OL]. RFC2475, 1998
    [138] Firoiu V, Le Boudec J Y, Towsley D, et al. Theories and Models for Internet Quality of Service[A]. In: Proceedings of the IEEE[C], 2002, 90(9): 1565~1591
    [139] 高文字,陈松乔,王建新.网络微积分学研究[J].微电子学与计算机.2004,21(11):76~80
    [140] Baccelli F, Cohen G, Olsder G J, et al. Synchronization and Linearity. An Algebra for Discrete Event Systems[M]. John Wiley and Sons, 1992
    [141] Turner J S. New directions in communications (or which way to the information age?) [J]. IEEE Communications Magazine, 1986, 24(10):8~15
    [142] Fonseca N L S, Mayor G S, Neto C A V. On the equivalent bandwidth of self-similar sources[J]. ACM Transactions on Modeling and Computer Simulation, 2000, 10(2): 104~124
    [143] Procissi G, Garg A, Gerla M, et al. Token Bucket Characterization of Long-Range Dependent Traffic[J]. Computer Communication, 2002, 25(11): 1009~1017
    [144] 简贵胄,葛宁,冯重熙.漏桶算法对输出业务流自相似特性的影响[J].电子与信息学报,2004,26(4):654~658
    [145] Parekh A K, Gallager R (3. A generalized processor sharing approach to flow control in integrated services networks: the single node case[J]. IEEE/ACM Transactions on Networking, 1993, 1(3):344~357
    [146] Oottamakorn C, Mao S, Panwar S S. On generalized processor sharing with regulated multimedia traffic[A]. In: Proceedings of the 2005 International Conference on Communications (ICC'05)[C], Seoul, Korea, 2005
    [147] Zhang Z L, Towsley D, Kurose J. Statistical analysis of the generalized processor sharing scheduling discipline[J]. IEEE Journal on Selected Areas in Communications, 1995,13(6): 1071-1080
    [148] Yu Z, Thng L J, Jiang Y. Generalized Processor Sharing with Long-Range Dependent Traffic Input[A]. In: Proceedings of the Ninth International Symposium in Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS '01)[C], Washington, 2001,224-232
    [149] Borst S, Boxma O, Jelenkovic P. Asymptotic Behavior of Generalized Processor Sharing with Long-Tailed Traffic Sources[A]. In: Proceedings of INFOCOM'00[C], Tel Aviv, Israel. 2000,912-921
    [150]Presti F L, Zhang Z, Towsley D. Bounds, approximations and applications for a two-queue gps system[A]. In: Proceedings of INFOCOM'96[C], San Francisco, CA, 1996,1310-1317
    [151] Mannersalo P, Norros I. GPS schedulers and gaussian traffic[A]. In: Proceedings of INFOCOM'02[C], New York, 2002,1660-1667
    [152] Flavio M P, Nelson L S F, Dalton S A. On the performance of generalized processor sharing servers under long-range dependent traffic[R]. Technical Report, the Institution of Computer Science, State University of Campinas, Oct. 2001
    [153] Cisco Systems. QC: Cisco IOS Release 12.0 quality of service solutions configuration guide. Cisco IOS Documentation[EB/OL], http://www.cisco.com/en/US/roducts/sw/iosswrel/psl828/products_configuration_guide_book09186a0080087c70.html
    [154] Fidler M, Sander V. A parameter based admission control for differentiated services networks[J]. Computer Networks, 2004,44(4):463~479
    [155] Zhu C H, Pei C X, Li J D. Functional Networks Based Internet End-to-End Delay Dynamics[A]. In: Proceedings of the 18th International Conference on Advanced Information Networking and Application (AINA'04)[C], Fukuoka, Japan: IEEE Computer Society, 2004, 2:540-544
    [156]Goyal P, Lam S S, Vin H M. Determining End-to-End Delay Bounds in Heterogeneous Networks[J]. Multimedia System, 1997, 5(3):157~163
    [157] Lelarge M, Liu Z, Xia C H. Asymptotic Tail Distribution of End-to-End Delay in Networks of Queues with Self-Similar Cross Traffic[A]. In: Proceedings of IEEE INFOCOM'04[C], Hong Kong, 2004,4: 2352-2363
    [158] Sariowan H, Cruz R L, Polyzos G C. SCED: A generalized scheduling policy for guaranteed quality-of-service[J]. IEEE/ACM Transactions on Networking, 1999, 7(5):669~684
    [159] Lombardo A, Morabito G, Schembra G. Statistical traffic modeling and guaranteed service disciplines: a performance evaluation paradigm[J]. Computer Networks, 2001,36(5/6):579~595
    [160] Cruz R L. SCED+: Efficient management of quality of service guarantees [A]. In: Akyildiz I, ed. Proceedings of the IEEE INFOCOM'98[C]. New York: IEEE Communications Society, 1998,2:625-634

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700