无线蜂窝通信网的容量与资源管理算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以无线蜂窝通信网为代表的移动通信系统是无线通信技术发展史上的一个里程碑。为了达到支持人们用任何形式互相交流任何信息资源的目标,蜂窝移动通信系统尚有许多关键的技术问题有待解决,其中为多业务的QoS(Quality of Service,服务质量)提供保障是最值得关注的问题之一。而为多业务提供QoS保障的关键是找到一种有效的无线资源管理策略。无线蜂窝通信网中由于无线资源的匮乏、底层恶劣的无线信号传播环境和信号衰落、用户的移动性、频繁的越区切换以及各种业务不同的业务特性,使得无线蜂窝通信网中多业务的QoS保障成为难以解决的问题。随着移动应用越来越普及,人们要求无线蜂窝网能够提供的服务也越来越多样化。下一代无线网络将能够承载多业务——话音、视频、图形图像和数据等,这些不同种类的业务具有不同的QoS要求和无线资源需求,这就要求多业务无线资源管理算法不仅能满足各种不同多业务应用的QoS要求,而且能充分利用无线蜂窝网中相对稀缺的无线资源(系统容量、带宽和功率等)。本文拟从系统设计的角度,针对多业务无线蜂窝通信系统的系统容量,以及多业务带宽分配方案和多业务呼叫接纳控制算法等几个重要的无线资源管理算法进行研究。
     本文第二章研究了在多业务无线蜂窝通信网中移动性对与系统容量有关的各种系统性能参数的显著影响。由于无线蜂窝通信网复杂的自然特性,移动性和系统容量之间不存在简单的线性关系。就现阶段研究来看,还没有针对无线蜂窝网在移动性和系统容量方面结论性的研究结论。针对无论是从移动终端(UE)还是基站(Node B)来说,接收到的信号都是源自不同发送源的合成信号,不容易得到其分布特性的解析公式,本文提出了用计算机仿真的方法来研究移动性对系统容量的显著影响。本文第二章建立了底层的无线传播模型、移动性模型,还综合考虑了保护信道(GC)机制和呼叫越区切换判据等因素,弥补了目前文献中一些假设条件过于简单或太理想化的不足,使之更符合无线蜂窝通信系统的实际情况。本文研究了移动性的变化对新呼叫阻塞概率(P_b)、切换呼叫中断概率(P_d)、呼叫强制中断概率(P_t)和系统整体的带宽利用率(BUR)等与系统容量有关的各种系统性能参数具体的显著影响。由于同时研究了移动性和保护信道(GC)机制,第二章的结论还适用于在无线蜂窝网中充分利用用户的移动性特性来调整系统提供QoS保障所涉及到的配置参数,以及动态地调整系统切换呼叫请求的保留门限,以提高系统的性能、容量和无线资源的使用效率。
     本文第三章提出了无线蜂窝通信网中的多业务带宽分配方案(BAS)。下一代无线蜂窝网中微微小区的系统设计导致更为频繁的越区切换,而各种业务不同的特性使得在越区切换过程中保障多业务必需的QoS更为困难。本文第三章提出了适合于自适应多媒体业务的多业务带宽分配方案(BAS)。虽然以可控的、受约束的方式降格(Degrade)系统中的自适应多媒体业务的QoS已经被证明是改良系统整体性能的一个有效方法,但是对被降格的呼叫进行补偿的机制很少在文献中被考虑。本文提出的多业务带宽分配方案(BAS)的特点之一是方案中兼顾了降格算法和补偿机制。针对文献中研究的一些QoS参数不能够完全反映出多业务带宽分配方案性能的各个方面,本文定义了四个新的与自适应带宽分配方案有关的QoS参数。本文还从理论上推导出BAS算法的理论上限性能,并且给出了数值计算结果。从获得的新呼叫阻塞概率(P_b)、切换呼叫中断概率(P_d)和系统整体的带宽利用率(BUR)等重要的系统性能参数来看,本文的BAS算法在理论上比文献中已有的一些经典算法有更好的性能,不仅能够满足各种不同应用的QoS要求,而且能充分利用无线蜂窝网中相对稀缺的无线资源。本文还使用计算机仿真的方法来分析与多业务自适应带宽分配方案有关的QoS参数的性能和对系统的影响,有利于深入理解影响自适应多媒体业务性能的各种参数,提高无线蜂窝网中无线资源的利用率。
     本文第四章提出了新的无线蜂窝通信网的多业务呼叫接纳控制算法(CAC)。当小区容量和无线资源的使用已处于饱和状态时,如果继续允许接纳新的用户进入到系统中来,将使已有用户的QoS无法得到必要的保障。对于多业务应用而言,接纳一个新到达的多业务呼叫对已有呼叫的QoS的影响更为明显。针对同时支持传统业务和自适应多媒体业务的多业务无线蜂窝通信网,本文第四章分别提出了对应的呼叫接纳控制算法,包括自适应多媒体业务基本层的CAC算法(CAC_B),自适应多媒体业务增强层的CAC算法(CAC_E),和非实时数据业务的CAC算法(CAC_D)。这些呼叫接纳控制算法之间可以配合运行,弥补了文献中呼叫接纳控制算法只能单独作用的不足。为了验证本文提出的多业务呼叫接纳控制算法的性能,本文针对支持自适应多媒体业务的无线蜂窝网的不同运行情形,进行了计算机仿真。本文的计算机仿真结果有利于无线蜂窝系统同时利用自适应多媒体业务特性和用户移动性特性来进行系统设计与规划,调整提供QoS保障所涉及的系统性能参数,提高无线资源的使用效率,平衡系统中的负载和确保在用户之间合理的公平性。
     本文采用计算机仿真的方法来验证以上所提出的各种算法理论分析的正确性以及各项性能指标。本文所有的无线资源管理算法和无线蜂窝网性能分析的仿真是在一个无线蜂窝网仿真平台上完成的。本文第五章对这些仿真工作进行了简要总结,介绍了这个无线蜂窝网仿真平台主要结构,并且给出了主要的流程图和仿真研究时所用的部分代码。
     本文第六章对全文的工作进行了简要的总结,提出了对未来进一步研究的建议。
Wireless mobile communication system, represented by wireless cellular networks, is a milestone in the history of wireless communication technology. In order to support people to mutually communicate in any form of information resources, there are various issues have to be carefully examined in Wireless Cellular Networks, such as providing QoS guarantee for multi-service. One of the key elements in providing QoS guarantee for multi-service is an effective Resource Management Strategy. The lack of available radio resources, the scarcity and extreme fluctuation of available link bandwidth, the user mobility and frequent handoffs, and various characteristics of different services in the wireless cellular networks makes providing QoS guarantee for multi-service a very tough task. As the widely deploying of mobile applications, the demand for providing multi-service in wireless cellular networks becomes more imperative. The next generation of networks is expected to eventually carry multimedia traffic-voice, video, images, or data, or combinations of them. Since different traffic has diversified QoS and radio resource requirements, multi-service Resource Management Strategy not only has to ensure that the network meets the QoS requirements of different applications, but at the same time has to fully utilize the scarce wireless resources (system capacity, bandwidth, or power) available in the wireless cellular networks. This dissertation studies the capacity performance of the multi-service wireless cellular networks and other key radio resource management algorithms-bandwidth allocation scheme and call admission control algorithm.
     Chapter 2 of this dissertation reveals that the mobility influences on the capacity-related parameters in wireless cellular networks are conspicuous. Due to the complex nature, there does not seem to exist a simple linear relationship between mobility and capacity. To the best of the author's knowledge, there has been so conclusive study on mobility and capacity for wireless cellular networks. As the statistics of the signals received by the mobile users from different base stations is hard to gain, whether to the user equipment (UE) or the basestation (Node B), computer simulation is used to study the mobility influences on capacity in wireless cellular network. The propagation model, the mobility model and traffic model are established in chapter 2, with concerns of guarded channel (GC) mechanism, handoff criterions and a simple power control algorithm, and some simplified or idealized assumptions adopted in current literatures are improved to better sketch the characterizations of practical system. The conclusion derived in this chapter could be utilized for dynamically adjusting the configuration parameters providing QoS guarantee and the reservation threshold of GC mechanism for handoff connections in wireless cellular network, which could improve the system performance, system capacity and the utilization of radio resource.
     Chapter 3 of this dissertation studies the multi-service Bandwidth Allocation Scheme algorithm (BAS). The system designing of next generation wireless cellular networks employing pico-cell will make handoff occurring much more frequently, which makes it more difficult to provide QoS guarantee for multi-service during handoff period, with concerning various characteristics of different services in the wireless cellular networks. The multi-service Bandwidth Allocation Scheme algorithm (BAS) for adaptive multimedia services is proposed in this chapter. In order to fully utilize the system resources, degrading the QoS of existing multimedia traffic in a controlled manner has been shown as an effective way to improve the overall system performance. However, compensation mechanisms are seldom considered in the literatures. One of the characteristic of the proposed multi-service BAS for adaptive multimedia services is the employment of the degradation policy and compensation mechanism. The performance analytical upper bounds of the proposed algorithm are also deduced in this section, with the numerical simulation results. In order to fully study the performance of multi-service BAS, four new QoS parameters related to multi-service BAS are defined. The numerical simulation results of the system performance parameters considered in this section-New Call Blocking Probability (P_b) and Handoff Call Dropping Probability (P_d) and system overall Bandwidth Utilization Rate (BUR)-show that the proposed algorithm outperforms other algorithms in the literature, in that it could not only fulfills the QoS requirement of different applications, but also efficiently utilizes the scarce radio resources in the system. Furthermore, this chapter also conducts computer simulation to demonstrate the performances of the new QoS parameters related to multi-service BAS and their impacts on the system performance, which will help us to better understand the nature of the performance of adaptive multimedia service, and improve the utilization of radio resources in wireless cellular networks.
     Chapter 4 of this dissertation studies the multi-service Call Admission Control algorithm (CAC). Admitting more users than the capacity into system will make the already admitted users suffer a loss of QoS, especially for the newly coming multi-service call, when the cell capacity and radio resources are depleted. Chapter 4 presents corresponding Call Admission Control (CAC) algorithms for different multi-service, including CAC algorithm for the basic layer (CAC_B), CAC algorithm for the enhancement layers (CAC_E), and CAC algorithm for non real-time data services (CAC_D). In order to valid the proposed multi-service CAC algorithms, computer simulations are carried out due to different scenario of the deployment phases of wireless cellular networks supporting adaptive multimedia service. The simulation results will benefit the system designing and planning of wireless cellular networks based on the characteristic of adaptive multimedia service and user mobility, as well as help dynamically adjusting the configuration parameters providing QoS guarantee, improving the utilization of radio resources, balancing the load of the system and ensuring the rational fairness among all users.
     Chapter 5 of this dissertation summarizes the simulation software. Simulation software is developed to verify and evaluate the proposed algorithms in this dissertation. All of the proposed radio resource management algorithms and the performance analysis are based on a wireless cellular network simulation platform. Chapter 5 presents the main frame of the simulation platform, the main parts of the software flow diagram and some of the selected codes.
     Chapter 6 of this dissertation concludes this dissertation, presents some suggestions for future research on some issues.
引文
[1] 李乐民.通信网络的发展.中国数据通信,2001年1期,3(1):14-15
    [2] 李乐民.无线IP网络.移动通信,2001年11月(总第137期)
    [3] S.Dixit, Y.Guo, Z.Antoniou. Resource management and quality of service in third generation mobile communication systems. IEEE Commun. Magazine, Feb. 2001:125-133
    [4] J.Kalliokulju. Quality of service management functions in 3rd generation mobile telecommunication networks. IEEE Proc. of WCNC'99, 1999
    [5] 宋舰,周朝荣,李乐民.第3代移动通信系统中的无线资源管理.中兴通讯技术,2002No.zl:63-66
    [6] 周朝荣,李乐民.CDMA蜂窝网中的无线资源管理.电子质量,2003No.1:121-123
    [7] Harri Holma, Antti Toskala. WCDMA for UMTS—Radio Access for Third Generation Mobile Communication. John Wiley&Sons, 2000
    [8] Dixit Sudhir, Guo Yile. Resource management and quality of service in third generation wireless networks. IEEE Commun.Mag, 2001
    [9] Heraclio Heredia-Ureta, Felipe A. Cruz-P é rez, Lauro Ortigoza-Guerrero. Capacity optimization in multiservice mobile wireless networks with multiple fractional channel reservation. IEEE Trans. Veh. Technol, Vol. 52, No. 6, Nov. 2003: 1519-1539
    [10] N.D. Tripathi J.H. Reed and H.F, VanLandingham. Radio Resource Management in Cellular Systems. Kluwer Academic Publshers,2001
    [11] 陈兴林,李乐民.2G与3G联合网络管理系统的设计与实现.信息技术,2005 No.12:80-82,104
    [12] 李方伟,李乐民.GSM/UMTS的系统模型.网络结构及GPRS/IP分析,电信科学,2000
    [13] 新浪网.中央电视台,CCTV新闻联播.2006年7月8日.http://tech.sina.com.cn/t/2006-07-08/20331027907.shtml
    [14] Aurelian Bria, Fredrik Gessler, Olav Queseth. 4-Generation wireless infrastructures: scenarios and research challenges. IEEE Personal Communications, December 2001: 25-31
    [15] 3rd Generation Partnership Project, QoS concept and architecture(Release 1999). TS 23.107 V.3.3.0, June 2000
    [16] K.Kim, Y.Han. A call admission control scheme for multi-rate traffic based on total received power. IEICE Trans. Commun., E84-B(3), 2001:457-463
    [17] T.S. Rappaport. Wireless communications: Principles and Practice, 2nd Ed. Prentice-Hall Inc, 2002
    [18] 3rd Generation Partnership Project, Radio resource management strategies. TR 25.922 V5.0.0, 2002.03
    [19] 郭梯云,邬国扬,李建东.移动通信.第三版,西安电子科技大学出版社,2005
    [20] 吴伟陵.移动通信中的关键技术.北京邮电大学出版社,2001
    [21] 唐雪冬,罗家亮,李乐民.UTRAN结构演进的研究.电信科学,2005 Vol.21 No.10:14-18
    [22] M. Grossglauser, D. Tse. Mobility Increases the Capacity of Ad_hoc Wireless Networks. IEEE/ACM Trans. Networking, Vol.10, No.4, Aug 2002
    [23] H.-L. Wu, L.-Z. Li, B.Li, L.Yin, I. Chlamtac and B. Li. On handoff performance for an voice/data integrated cellular system, partⅡ: data buffer case. IEEE PIMRC'2002, Lisbon, Portugal, Sept 2002
    [24] Sajal K. Das, Sanjoy K. Sen, Kalyan Basu, and Haitao Lin. A framework for bandwidth degradation and call admission control schemes for multiclass trafficin next-generation wireless networks. IEEE J. Select. Areas Commun., Vol.21, No.10, pp.1790-1802, Dec2003
    [25] 王宇.多业务CDMA蜂窝通信系统容量性能和无线资源管理算法研究:[博士学位论文].成都:电子科技大学,2002
    [26] 宋舰.无线网络中分组调度算法的研究:[博士学位论文].成都:电子科技大学,2004
    [27] 朱立东.移动多媒体通信系统的无线资源管理策略研究,:[博士学位论文].成都:电子科技大学,2002
    [28] Jorguseski L, et al. Radio resource allocation in third generation mobile communication systems[J]. IEEE Communication Magazine. Feb.2001, Vol.39 No.2, 117-123
    [29] 王捷,李乐民.无线宽带网的越区切换方案.移动通信,1999年23卷6期:24-27
    [30] 王捷,孙海荣,李乐民.移动宽带系统的关键技术与研究现状.电信科学,1998年第14卷第7期,1998
    [31] J.W.Chang, D.K.Sung. Adaptive channel reservation scheme for soft handoff in DS-CDMA cellular systems. IEEE Trans. on V.T., 50(2), 2001:341-353
    [32] D.K.Kim, D.K.Sung. Characterization of soft handoff in CDMA systems. IEEE Trans. On V.T. 48(4), 1999: 1195-1202
    [33] 王宇,李少谦,李乐民.CDMA蜂窝移动通信系统中的联合功率控制.电子学报,2000
    [34] 王宇,李少谦,李乐民.多媒体CDMA系统在功率约束条件下的业务容量分析.电子与信息学报,2002年10期
    [35] 谭立军,李乐民.蜂窝CDMA系统的功率控制.电子科技大学学报,1994年01期
    [36] J.Muckenheim, U.Bernhard. A framework for load control in 3rd generation CDMA networks. IEEE proc. of Globecom'01, 2001
    [37] J. Zander, S-L Kim. Radio Resource Management for Wireless Networks. Artech House, 2001
    [38] H. Xie, S. Tabbane, and D. J. Goodman. Dynamic location area management and performance analysis, in Proceedings 43rd IEEE Vehicular Technology Conference, Secaucus, NJ, May 1993: 536-539.
    [39] Song J, Li L M, Han J J. A wireless fair scheduling algorithm supporting COS[C]. 2002 International Conference on Communications Circuits and Systems, Chengdu China, June 29-July 1, 2002, Vol.Ⅰ: 428-434.
    [40] 宋舰,李乐民.无线网络中的分组调度算法.通信学报,2003 Vol.24 No.3:42-48.
    [41] 宋舰,李乐民.一种按比例补偿的无线公平调度算法.电子与信息学报,2004 Vol.26 No.5:777-782.
    [42] 宋舰,李乐民.一种支持服务类别的无线公平调度算法.2004 Vol.32 No.1:59-63.
    [43] Yuan Chen, Lemin Li. A wireless packet dropping algorithm considering fairness and channel condition. 2004 International Conference onommunications, Circuits and Systems(ICCCAS'04), 2004, 27-29 June 2004, Vol.1: 369-373
    [44] 聂伯霖,李乐民.一种在无线衰落信道上支持实时业务的分组调度算法电子与信息学报.2006年04期
    [45] 廖丹,李乐民.一种CDMA蜂窝网中业务相关的公平调度算法电子科技大学学报.2005年S1期
    [46] N.Bambos. Toward power-sensitive network architectures in wireless communications: concepts, issues, and design aspects. IEEE Personal Commun., June 1998:50-59
    [47] Jens Zander. Trends in resource management future wireless networks. IEEE WCNC 2000, 2000:159-163
    [48] S.A.Grandhi, R.D.Yates, D.J.Goodman. Resource allocation for cellular radio systems. IEEE Trans. on V.T., 46(3), 1997:581-587
    [49] Y. Fang and I. Chlamtac. Teletraffic analysis and mobility modeling of PCS networks. IEEE Journal on Selected Areas in Communications, Vol.17, No.7, July 1999
    [50] I.F. Akyildiz, Y.-B. Lin, W.-R. Lai, and R.-J. Chen. A new random walk model for PCS networks. IEEE Journal on Selected Areas in Communications, 18, 7, 2000:1254-1260
    [51] B. Liang and Z. J. Haas. Predictive distance-based mobility management for multidimensional PCS networks. IEEE/ACM Transactions on Networking, Vol.11, No.5, Oct. 2003
    [52] 王捷 李乐民.一种适用于移动宽带系统(MBS)的传输容量动态分配算法.通信学报,1999年20卷12期:25-30
    [53] W.Yu, L.Shaoqian, L.Lemin. Interference and capacity analysis for multi-service CDMA cellular systems. Future Telecommunication Conference 2001, Beijing, China, Nov., 2001
    [54] 王字,李少谦,李乐民.多媒体CDMA系统在功率约束条件下的业务容量分析.电子与信息学报,2002 Vol.24 No.10:1372-1377
    [55] 王宇,李少谦,李乐民.多业务蜂窝CDMA系统的干扰与容量分析.电子与信息学报,2002 Vol.24 No.12:1785-1792
    [56] 王宇,李少谦,李乐民.WCDMA系统中的联合干扰抑制技术研究.第七届海峡两岸无线电技术研讨会,合肥,中国,2000年9月
    [57] Ivan Stojmenovic. Handbook of Wireless Networks and Mobile Computing. 2002 John Wiley & Sons, Inc.
    [58] J.S.Lee,L.E.Miller著.CDMA系统工程手册,(许希斌等译).北京人民邮电出版社,2001
    [59] Flavio Muratore. UMTS Mobile Communications for the Future. John Wiley & Sons Ltd, 2001
    [60] J.D. Parsons. The Mobile Radio Proparation Channel, 2nd Edition. John Wiley & Sons Ltd, 2000
    [61] Chin-Tau Lea and Meng Zhang. On the mobility/capacity conversion in wireless networks. IEEE WCNC 2003., Volume:3, 16-20, March 2003:1433-1438
    [62] M. Grossglauser and D. Tse. Mobility increases the capacity of ad_hoc wireless networks. IEEE Infocomm 2001, 2001
    [63] T. Bonald, S.C. Borst, A. Proutiere. How mobility impacts the flow-level performance. Proc. IEEE INFOCOM 2004 Hongkong China, 2004
    [64] S.A. Jafar. Too much mobility limits the capacity of wireless ad hoc networks. IEEE Transactions on Information Theory, vol: 51, Nov. 2005:3954-3965
    [65] Klein S. Gilhousen, Irwin M. Jacobs etc. On the capacity of a cellular CDMA system. IEEE Trans. on Vehicular Technology, May 1991, Vol. 40, No. 2:303-311
    [66] A.J.Viterbi. CDMA Principles of Spread Spectrum Communication. New York, Addison-Wesley Publishing Company, 1995:185-218
    [67] Sampath, N.B.Mandayam, J.M.Holtzman. Erlang capacity of a power controlled integrated voice and data CDMA system. IEEE proc. of VTC'97:1557-1561
    [68] Golaup, A.H.Aghvami. Reverse link Erlang capacity of a W-CDMA system supporting voice and WWW users. IEEE proc. of VTC'2001, 2001: 605-609
    [69] Salmasi A., Gilhousen K. S. On the system design aspects of code division multiple access (CDMA) applied to digital cellular and personal communications networks. Proceedings of IEEE Vehicular Technology Conference. 1991, 5: 57-62.
    [70] Tekinay S., Jabbari B. Handover and channel assignment in mobile cellular networks. IEEE Communications Magazine. 1991, 11, 29(11): 42-46.
    [71] Chic S. T. S., Wardburton R.J. Handover criteria for city microcellular radio systems. Proceedings of IEEE Vehicular Technology Conference. 1990, 5.: 276-281.
    [72] Senarath Cz N., Everitt D. Comparison of alternative handoff strategies for microcellular mobile communications networks. Proceedings of IEEE Vehicular Technology Conference. 1994, 6: 1465-1469.
    [73] Liodakis Cz, Stavroulakis P. A novel approach in handoff initiation for microcellular systems. Proceedings of IEEE Vehicular Technology Conference. 1994, 6:1820-1823.
    [74] Austin M. D., Stuber Cx L. Direction biased handoff algorithms for urban microcells. Proceedings of IEEE Vehicular Technology Conference. 1994, 6:101-105.
    [75] Jedrzychi C and Leung V C M. Probability distribution of channel holding time in cellular telephony systems [C]. IEEE VTC'96:247-251
    [76] Fang Yuguang. Hyper—Erlang distribution model and its application in wireless mobile networks[J]. Wireless Networks, Mar 2001, Vol.7:211-219
    [77] 许都,李乐民.自相似业务流的快速生成方法及其性能研究.通信学报,1998年19卷8期:89-95
    [78] 许都,李乐民.用于自相似业务的一种CAC.电子科技大学学报,2000年29卷4期:445-449
    [79] 许都,李乐民.自相似业务流的快速生成方法及其性能研究.通信学报,1998年第19卷第8期,1998
    [80] 孙海荣,李乐民.具有自相似特性的业务及其对ATM网络性能的影响.电路与系统学报,1997
    [81] 许都,李乐民.ATM网络中自相似业务下复接器性能的研究.电子科学学刊 21:002002,1999:158-167
    [82] 许都,李乐民.长相关业务流经成形器后的输出特性研究.电路与系统学报 3:001001,1998:66-70
    [83] 吴昱静,孙海荣,李乐民.长期相关过程的自相关对排队性能的影响.电子学报,1999年第27卷第6期,1999
    [84] 许都.自相似业务流特性及其对ATM网络性能影响的研究:[博士学位论文].成都:电子科技大学,1998
    [85] 许都,李乐民.网络中业务流的自相似性与线性AR1模型.电子学报,1999年4月
    [86] M. F. Neuts. Matrix-Geometric solutions in stochastic models-an algorithmic approach,. The Johns Hopkins University Press, 1981
    [87] M. Cheng and L.-F. Chang. Wireless dynamic channel assignment performance under packet data traffic. IEEE Journal on Selected Areas in Communications, Vol.17, No.7, July 1999
    [88] G-L. Li, J-H. Cui, F-M. Li and B. Li. Transient Loss Performance of a Class of Finite Buffer Queuing Systems. ACM Sigmetrics'98/Performance'98, Madison, WI., USA, June 1998:111-120,.
    [89] 张毅,李乐民.用层叠模型分析和估计网络业务量[J].电子与信息学报,2004 Vol.26 No.9:1420-1425
    [90] Y Zhang, L Li, B Li. Parameter estimation of cascades model for network traffic. 2000 International Conference on Communication, Circuits and Systems (ICCCAS'04), Vol.2
    [91] Y Zhang, L Li, B Li. Network traffic modeling using fully-stable cascades. 2005 International Conference on Communication, Circuits and Systems (ICCCAS'05), Vol.2:726-730
    [92] 陈远,李乐民.缓存管理算法及其在无线网络中的应用研究.电子科技大学学报,2004 Vol.33 No.6:755-758
    [93] 陈远,李乐民.一种兼顾信道条件和公平性的无线分组丢弃算法.通信学报,2005 Vol.26 No.6:11-17
    [94] 陈远,李乐民.无线网络中实时业务的随机超时早检测缓存管理算法.电子与信息学报,2006 Vol.28 No.5:769-773
    [95] 陈远,李乐民.一种支持区分服务的模糊公平分组丢弃算法.电子与信息学报,2006,06
    [96] L. Kleinrock. Queueing systems. Vol.1: Theory. NewYork: Wiley, 1975
    [97] Cooper R. B. Introduction to Queueing Theory. Second Edition. New York: Elsevier North Holland, 1981
    [98] Xie H., Kuek S. Priority handoff analysis. Proceedings of IEEE Vehicular Technology Conference. 1993, 5:855-858
    [99] Hong, D., and Rappaport S.S. Traffic model and performance analysis for cellular mobile radiotelephone systems with prioritized and non-prioritized hand-off procedures. IEEE Trans. On Vehicular Technology. 1986, 2, 35(1): 77-92
    [100] R. Ramjee, R. Nagarajan and D. Towsley. On optimal call admission control in cellular networks. IEEE Infocom'96, San Francisco, March 1996
    [101] AHMED M H. Call admission control in wireless networks: a comprehensive survey[J]. IEEE Communications Surveys & Tutorials, 2005, 7(1):50-69
    [102] FANG Y G, ZHANG Y. Call admission control schemes and performance analysis in wireless mobile networks[J]. IEEE Transaction on Vehicular Technology, 2002, 51(2): 371-382
    [103] C.-J. Chang, T.-T. Su and Y.-Y. Chiang. Analysis of a cutoff priority cellular radio system with finite queueing and reneging/dropping. IEEE/ACM Transactions on Networking, Vol.2, No. 2, April 1994
    [104] I.M.Kim, B.C.Shin, D.J.Lee. SIR-based call admission control by intercell interference prediction for DS-CDMA cellular systems. IEEE Commun. Letters. 4(1), 2000:29-31
    [105] Jamie S. Evans, David Everitt. Effective bandwidth-based admission control for multiservice CDMA cellular networks. IEEE Transactions on Vehicular Technology, January 1999, Vol.48, No.1
    [106] Bracha M. Epstein and Mischa Schwartz. Predictive QoS-based admission control for multiclass traffic in cellular wireless networks. IEEE Journal on Selected Areas in Communications, March 2000, Vol.18, No.3:523-534
    [107] Dongmei Zhao, Xuemin Shen, Jon W. Mark. Call admission control for heterogeneous services in wireless networks. IEEE VTC'2000,2000
    [108] NAGHSHINEH M, ACAMPORA A S. QoS provisioning in micro-cellular networks supporting multimedia traffic[A]. IEEE INFOCOM 1995[C]. Boston, 1995: 1075-1084
    [109] NAGHSHINEH M. Design and control of Micro-cellular networks with QoS provisioning for real-time traffic[A]. IEEE ICUPC 1994[C].1994: 376-381
    [110] LIN H, TZENG S. Double-threshold admission control in cluster-based micro/picocellular wireless networks[A]. IEEE VTC Spring 2000[C]. Tokyo, 2000: 1440-1444
    [111] SUTIVONG A, PEHA J M. Performance comparisons of call admission control algorithms in cellular systems[A]. IEEE GLOBECOM 1997[C]. Phoenix, 1997: 1645-1649.
    [112] Nikos Dimitriou, Georgios Sfikas, Rahim Tafazolli. Call admission policies for UMTS. VTC-2000: 1420-1424
    [113] D.kim, Efficient interactive call admission control in power-controled mobile sytems, IEEE Trans, on V.T., 49(3), 20 00:1017-1028
    [114] N Dimitriou, R Tafazolli. Resource management issues for UMTS. 3G Mobile Communication Technologies, IEE2000, 2000: 401-405
    [115] MA Y F, HU X L, ZHANG Y Y. Intelligent call admission control using fuzzy logic in wireless networks[A]. 2005 American Control Conference[C]. Portland, USA, 2005: 3981-3985.
    [116] F. Santucci, W. Huang, P. Tranquilli, V. K. Bhargava. Admission Control in Wireless Systems with Heterogeneous Traffic and Overlaid Cell Structure. IEEE VTC2000, 2000: 1106-1113
    [117] S. Sen, J. Jawanda, K. Basu, and S. Das. Quality-of-service degradation strategies in multimedia wireless network. IEEE Vehicular Techonology Conference, Vol.3, May 1998: 1884-1888
    [118] V Bharghavan , K Lee , S Lu. The TIMELY adaptive resource management architecture. IEEE Personal CommunicationMagazine , 1998 , 5 (4) : 20-31
    [119] A K Talukdar , B R Badrinath , A Acharya. Rate adaptation schemes in networks with mobile hosts. The 4th Annual ACM/IEEE Int'l Conf on Mobile Computing and Networking, Dallas .Texas, USA , 1998
    [120] T. Kwon, Y. Choi, and S. K. Das. Bandwidth adaptation algorithms for adaptive multimedia services in mobile cellular networks. Wireless Personal Commun., vol. 22, no. 3, 2002:337-357
    [121] Yang Xiao, C L Philip Chen. Improving degradation and fairness for mobile adaptive multimedia wireless networks. The 10th Int'l Conf on Computer Communications and Networks, Phoenix, Ari2zona, USA, 2001
    [122] M.R. Sherif, I.W. Habib, M. N. Nagshineh, and P. K. Kermani. Adaptive allocation of resources and call admission control for wireless ATM using generic algorithm. IEEE Journal of Selected Areas in Communications, Vol.18, no.2, Feb. 2000:268-282
    [123] T Kwon, Y Choi, C Bisdikian. QoS provisioning in wireless/mobile multimedia networks using an adaptive framework. Wireless Networks, 2003, 9(1): 51~59
    [124] K Lee. Adaptive network support for mobile multimedia. ACMMobiCom'95, Berkeley, CA, 1995
    [125] T Kwon, I Park, Y Choi, S Das. Bandwidth adaption algorithms with multi-objectives for adaptive multimedia services in wireless/mobile networks. Proceedings of the 2nd ACM international workshop on Wireless mobile multimedia Seattle, Washington, United States:51-59
    [126] T Kwon, J Choi, Y Choi, et al. Near optimal bandwidth adaptation algorithm for adaptive multimedia services in wireless/mobile networks. Vehicular Technology Conference'99, Amsterdam, Netherlands, 1999
    [127] Wu D. P., Thomas Hou. Y W, and Zhang Y Q. Scalable video coding and transport over broad-band wireless networks. Proceedings of IEEE. 2001, 1, 89(1): 6-20
    [128] 蔡安妮,孙景鳌.多媒体通信技术基础.北京:电子工业出版社,2000年
    [129] Video Coding for Low Bitrate Communication. ITU-T Recommendation H.263+. 1998
    [130] R. Guerin. Queuing-blocking systems with two arrival streams and guarded channels. IEEE Transactions on Communications. Vol.36, No.2, February 1988.
    [131] Y.-B. Lin and A. Noerpel and D. A. Harasty. The sub-rating channel assignment strategy for PCS hand-offs. IEEE Transactions on Vehicular Technology, Vol. VT-45, No.1, February 1996
    [132] J.-L. Xu, D. Lee and B. Li. On the bandwidth allocation for data dissemination in cellular mobile networks. ACM/Kluwer Journal of Wireless Networks, Vol:9, Issue 2, March, 2003:103-116
    [133] Fei Hu, Neeraj K. Sharma. An reservation-pool approach to multi-class call admission control with guaranteed mobile-QoS in wireless ATM networks, http:// www.clarkson.edu/-huf/icc.pdf
    [134] D. A. Levine, I. F. Akyildiz and M. Naghshineh. A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept. IEEE/ACM Transactions on Networking, Vol. 5, No. 1, February 1997
    [135] ALJADHAI A, ZNATI T F. A framework for call admission control and QoS support in wireless environment[A]. IEEE INFOCOM 1999[C]. New York, 1999: 1019-1026.
    [136] HOU J K, PAPAVASSILIOU S. Influence-based channel reservation scheme for mobile cellular networks[A]. 6th IEEE Symposium on Computers and Communications[C]. Tunisia, 2001:218-223.
    [137] LIM S H, CAO G H, DAS C R. A differential bandwidth reservation policy for multimedia wireless networks[A]. International Conference on Parallel Processing Workshops[C]. 2001: 447-452.
    [138] C. Oliveira, J. B. Kim and T. Suda. An adaptive bandwidth reservation scheme for high-speed multimedia wireless networks. IEEE Journal on Selected Areas in Communications, Vol. 16, No. 6, August 1998
    [139] SHIOKAWA S, ISHIZAKA M. Call admission scheme based on estimation of call dropping probability in wireless networks[A]. IEEE PIMRC 2002[C]. Lisboa, 2002: 2185-2188
    [140] Lizhong Li; Bin Li; Bo Li; Xi-Ren Cao. Performance analysis of bandwidth allocations for multi-services mobile wireless cellular networks, IEEE Wireless Communications and Networking, 2003. WCNC 2003., Volume: 2 , March 2003: 16-20
    [141] J. Misic, S. T. Chanson and F. S. Lai. Admission control for wireless multimedia networks with hard call level quality of service bounds, Computer Networks and ISDN Systems, Vol. 31, No. 1-2, January 1999
    [142] M. Naghshineh and M. Schwartz. Distributed call admission control in mobile/wireless networks, IEEE Journal on Selected Areas in Communications, Vol. 14, No. 4, May 1996
    [143] MALLA A, KADI M E, OLARIU S. A fair resource allocation protocol for multimedia wireless networks [J]. IEEE Transactions on parallel and distributed systems, 2003, 14(1): 63-71.
    [144] KADI M E, OLARIU S, WAHAB H A. A rate-based borrowing scheme for QoS provisioning in multimedia wireless networks[J]. IEEE Transactions on parallel and distributed systems, 2002, 13(2): 156-166.
    [145] M. Choy, B. Li and X. Liu. A Distributed and adaptive hybrid channel allocation strategy for PCS networks, (Chapter 7) edited by K. Leung, B. Vojcic, IEEE Multiaccess, Mobility and Teletraffic for Wireless Communications: Vol.3(ISBN 0-7923-8353-2), October 1998.
    [146] S. Wu, K. Y. M. Wong and B. Li. A dynamic call admission policy with precision QoS guarantee using stochastic control for mobile wireless networks, IEEE/ACM Transactions on Networking, Vol.10, No.2, April 2002
    [147] S. Jiang, B. Li, X. Luo and H. K. Tsang. A modified distributed call admission control scheme and its performance, ACM/Kluwer Journal of Wireless Networks, Vol.7, No.2, March/April 2001:127-138
    [148] CHEUNG M, MARK J W. Resource allocation for handling two QoS classes at a generic radio cell[A]. IEEE GLOBECOM 2001, San Antonio, Texas, 2001:2617-2621
    [149] LEONG C W, ZHUANG W H. Novel system modeling in call admission control for wireless personal communications. IEEE GLOBECOM 2000, San Francisco, 2000:177-181.
    [150] S. M. Jiang, Danny, H. K. Tsang and B. Li. Subscriber-assisted handoff support in multimedia PCS. ACM Mobile Computing and Communication Review, Vol.1, No.3, Sept.1997
    [151] B. Li, C. Lin and S. Chanson, Analysis of a hybrid cutoff priority scheme for multiple classes of traffic in multimedia wireless networks. ACM/Baltzer Journal of Wireless Networks, Vol.4, No.4, August 1998:279-290
    [152] X. Luo, B. Li, I. Thng, Y.-B. Lin and I. Chlamtac. A measurement-based pre-assignment scheme with connection-level QoS support for multiservice mobile networks, IEEE Transactions on Wireless Communications, Vol.1, No.2, Math 2002
    [153] 王捷,李乐民.一种适用于移动宽带系统的传输容量动态分配算法.通信学报,1999年12月
    [154] 李立忠,李乐民.话音/数据综合的多时隙预约多址协议及其性能分析.电子学报,2001年1月
    [155] Yu Wang, Shaoqian Li, Lemin Li. An adaptive call admission control scheme for multiservices in WCDMA systems, SPIE Asia Pacific Control and Wireless Conference, Nov. 2001, Beijing, China
    [156] B. Epstein and M. Schwartz. Reservation strategies for multimedia traffic in a wireless environment. IEEE VTC'95
    [157] J. Chen and M. Schwartz. Reservation strategies for multimedia traffic in a wireless environment: performance summary. IEEE PIMRC'95
    [158] Y.-R. Haung, Y.-B. Lin and J. M. Ho. Performance analysis for voice/data integration on a finite mobile systems. IEEE Transactions on Vehicular Technology, Vol.49, No.2, February 2000
    [159] Haskell Barry Cx, Puri Atul and Netravail Aran N. Digital Video: An Introduction to MPEG-2. New York: International Thomson Publishing, 1997
    [160] H.G. Perros, K.M. Elsayed. Call admission contrl schemes: a review. IEEE Communications Magazine, Nov. 1996
    [161] 廖丹,李乐民.一种蜂窝CDMA系统中的双门限呼叫接纳控制算法.电子科技大学学报,2004 Vol.33 No.6:759-762
    [162] 王宇,李少谦,李乐民.CDMA系统中一种基于SIR测量的呼叫接纳控制算法.中国青年通信会议,南京,中国,2001年10月
    [163] 王宇,李少谦,李乐民.蜂窝CDMA系统中的呼叫接纳控制.第八届海峡两岸无线电技术研讨会,成都,中国,2001年9月
    [164] W5. W.Yu, L.Shaoqian, L.Lemin. An adaptive call admission control scheme for multi-services in WCDMA systems. Asian Pacific Optical and Wireless Conference 2001(APOC'01), Beijing, China, Nov.,2001
    [165] Huan Chen, Sunil Kumar and C.-C. Jay Kuo. Dynamic call admission control scheme for QoS priority handoff in multimedia cellular systems. WCNC2002. IEEE, Vol:1, Mar. 17-21, 2002:114-118
    [166] Dongwoo Kim. On upper bounds of SIR-based call admission threshold in power-controlled DS-CDMA mobile systems. IEEE Communications Letters, Vol:6 Issue:1, Jan. 2002:13-15
    [167] Fredrik Gunnarsson, Erik Geijer-Lundin, Gunnar Bark, Niclas Wiberg. Uplink admission control in WCDMA based on relative load estimates. ICC 2002, Volume:5:3091-3095
    [168] Frank Yong Li and Norvald Stol. A priority-oriented Call Admission Control paradigm with QoS Re-negotiation for Multimedia Services in UMTS. VTC 2001 Spring, IEEE VTS 53~(rd), vol.3, 2001: 2021-2025
    [169] C.-T. Chou and K. G. Shin. Analysis of combined adaptive bandwidth allocation and admission control in wireless networks. IEEE Infocom'2002, New York, June 23-27, 2002
    [170] Yue Ma, Han J J, Trivedi K S. Call admission control for reduced dropped calls in code division multiple access (CDMA) cellular systems. IEEE Infocom'2000, Vol.3: 1481-1490
    [171] Xun Yi, Chee Kheong Siew, Chik How Tan, and Yiming Ye. A secure conference scheme for mobile communications. IEEE Transactions on Wireless Communications, Vol. 2, No. 6, Nov. 2003
    [172] J.Liu, B.Li, Y.T.Hou and I. Chlamtac. On optimal layering and bandwidth allocation for multisession video broadcasting. IEEE Transactions on Wireless Communications, Vol. 3, No. 2, March 2004
    [173] Sajal K. Das, Sanjoy K. Sen, Kalyan Basu, and Haitao Lin. A framework for bandwidth degradation and call admission control schemes for multiclass trafficin next-generation wireless networks. IEEE Journal on Selected Areas in Communications, Vol. 21, No. 10, Dec 2003: 1790-1802
    [174] Savo G. Glisic. Advanced Wireless Networks 4G Technologies. John Wiley & Sons Ltd, 2006
    [175] Dervis Z. Deniz and Nagla O. Mohamed. Performance of CAC strategies for multimedia traffic in wireless networks. IEEE Journal on Selected Areas in Communications, Vol. 21, No. 10, Dec 2003: 1557-1565
    [176] T. Kwon, Y. Choi, C. Bisdikian, and M. Naghshineh. QoS provisioning in wireless/mobile multimedia networks using an adaptive framework. Wireless Networks, vol. 9, Jan. 2003: 51-59
    [177] Y. Jay Guo. Advances in Mobile Radio Access Networks. Jun. 2005, Artech House Publishers

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700