无线自组网MAC协议及路由算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线自组网是由一组带有无线收发装置的移动节点组成的,无需基础设施支持的动态可重构的多跳自组织网络,具有分布式、自组织、自配置、自管理等特征。能够在不能或不便利用现有网络基础设施的情况下提供一种通信支撑平台,从而拓宽了移动通信网络的应用场合。可广泛应用于国防战备、抢险救灾、应对突发事件等无法得到有线网络支持或只是临时需要通信的环境,是下一代网络的重要组成部分。本文主要研究了以下几方面内容:可自适应切换工作方式的自组网MAC协议;自组网MAC协议退避算法的改进;基于路径稳定性的按需单径路由;基于路径生存时间和业务流分配的多径路由;基于地理位置信息的路由。
     基于分组单次成功发送/碰撞持续的时间和当前信道冲突概率,给出了以最小化分组传输时间为优化目标的最优RTS门限计算公式。通过估计当前信道数据分组发送的冲突概率实现了最优RTS门限的计算。基于最优RTS门限的计算方法设计出了一个分布式自适应RTS门限调整算法。仿真结果验证了本文的理论分析和RTS门限调整算法的正确性。从成功传送单个比特所需的平均时间代价来看,无论是在802.11b还是802.11g局域网仿真场景中,自适应门限调整方式都明显优于单纯的RTS方式或基本方式,因此本文所介绍的自适应RTS门限调整算法能够有效优化现有无线局域网标准802.11b/g的传输性能。
     提出了一种新的MAC协议退避算法DDCF。提出了算法的理论依据,建立了算法的理论模型,对算法进行了仿真,比较了DDCF与DCF、BDCF和GDCF算法的性能,通过对DDCF算法的理论分析和仿真试验表明,由于DDCF算法使竞争节点获得的竞争窗口的稳态值接近理想稳态值,从而提高了系统的性能。
     在考虑单链路t-时间维持概率的基础上,提出了一种基于路径t-时间维持概率的路由协议THP-AORP,THP-AORP协议选择具有最大t-时间维持概率的路径,减小了链路断裂的概率。仿真结果表明THP-AORP路由协议的性能优于传统AODV路由协议和DSR路由协议。
     提出了一个基于路径生存时间和流量分配的多径路由算法LFD-MR。与传统的多径路由算法MSR相比,所提出的LFD-MR多径路由算法由于使用了生存时间更长的路径和多径流量分配,从而可以减小分组的平均端到端时延,提高网络吞吐量和分组的成功接收率,减小路由开销等。
     提出了一种基于子域滑动的分级位置管理策略SM-DHLM,SM-DHLM位置管理策略通过对网络节点进行分布式分级和子域滑动的方法减少了节点移动到子域之外的概率,并且将位置更新消息尽量限制在较小的低级子域之内,减小了位置管理的开销,提高了网络的规模可扩展能力。
     最后对全文进行了总结,回顾了前面所述的研究工作,并根据目前的情况对未来的研究方向作了展望。
Wireless self-organizing network, which consist of a group of mobile nodes equipped with transceivers, is a dynamic reconstructable multi-hop network without the support of fixed infrastructures and has some characteristics such as distributed, self-organizing, self-configuring, self-managing, and so on. Wireless self-organizing network can afford a communication platform if the existing networking infrastructure can't be used. It expands the using of mobile communication networks and can be used widely in tactical communication, emergency search-and-rescue operations, meetings or conventions. Wireless self-organizing network is an important component of the next generation network (NGN). The dissertation mainly does research on the following content: the MAC protocol of wireless self-organizing network that can switch the work manner adaptively, the improvement of back-off algorithm of MAC protocol, the path stability based on-demand single-path routing, the lifetime and flow dispatch based multipath routing, and the geographic location information based routing.
     Based on the time duration of single successful packet transmission, the time duration of single failing packet transmission and the current collision probability of channel, the formulas of the optimal RTS threshold are given out, which aim to minimize the time overhead of packet transmission. The optimal RTS threshold is calculated by estimate the current collision probability P_c of channel. An adaptive RTS threshold adjustment algorithm is presented based on the calculating method of the optimal RTS threshold. Simulations validated the correctness of the adaptive RTS threshold adjustment algorithm. From the aspects of the time overhead of MAC frames and the transmission efficiency of 802.11 DCF, the performance of adaptive RTS threshold adjustment algorithm is better than that of the RTS access mode and the basic access mode, and it adapts to saturation state and non-saturation state. So the adaptive RTS threshold adjustment algorithm presented can effectively optimize the performance of IEEE 802.11 DCF.
     A DCF algorithm based on dynamic threshold, named DDCF (Dynamic threshold based DCF), has been presented. The theoretic basis of algorithm was given out and the theoretic model was established. The algorithm was simulated and the performance of DDCF, DCF, BDCF, and GDCF are compared. By theoretic analysis and simulations, it shows that because DDCF make the static value of contention window of nodes near the ideal value, so it promoted the overall system performance. DDCF can be realized base on DCF by suitable selected threshold serial G(i) without big modification. Compared with GDCF, DCF has the adaptive adjust ability according to the number of contention nodes.
     An on-demand routing protocol, named THP-AORP (Time-t Path Holding Probability Based Ad-hoc On-demand Routing Protocol), based on the analysis of the time-t holding probability of single link (P_(m,n)(d(m,n),t)), has been presented based on the time-t holding probability of a whole path (Ψ_(S,D)(t)). New protocol chooses the path that has the maximal time-t holding probability (Ψ_(S,D)(t)) as the best routing. Simulations show that, compared with AODV and DSR, new protocol saved the overhead of protocol, and reduced the end-to-end delay of packet.
     A multipath routing algorithm, named LFD-MR (Lifetime and Flow Dispatch based Multipath Routing), is presented. Compared with traditional MSR, being used long lifetime path and congested degree based multipath flow dispatch method, LFD-MR can decrease the average end-to-end delay of packet, promote the network throughput, increase the successful packet rate, and decrease the routing overhead.
     A novel location management scheme named SM-DHLM (Sub-zone Moving Distributed Hierarchical Location Management Scheme) has been proposed, Through distributed hierarchy and sub-zone moving, SM-DHLM decreases the probability of the nodes crossing the boundary of sub-zones, limits the location update messages into smaller sub-zones, decreases the overhead of location management, promotes the scalability of networks. Compared with the fixed Hierarchical Location Management Scheme, SM-DHLM has similar query success rate, has similar successful packet rate, has lower protocol overhead, and has lower average end-to-end delay.
     Finally, chapter 7 summarizes the dissertation, reviews the above research work and presents the future research directions.
引文
[1] http://www.ieee8O2.org/11/
    [2] http://www.etsi.org/bran/
    [3] http://www.bluetooth.org/
    [4] http://www.homerf.org/
    [5] Pappaport T S, Annamalai A, Buehrer R M, and Tranter W H. Wireless Communications: Past Events and A Future Perspective. IEEE Communications Magzine, pp. 148-161, May 2002
    [6] Evans, B G, Baughan, K. Visions of 4G. Electronics & Communication Engineering Journal Volume 12, Issue 6, Dee. 2000 Page(s):293-303
    [7] Varshney U, Vetter R. Mobile commerce: Frameworks, applications, and networkings support. ACM/Kluwer Journal of Mobile Network Applications, pp.185-193, June 2002
    [8] Ramanathan R, Redi J. A Brief Overview of Ad Hoc Networks: Challenges and Directions. IEEE Communication Magzine, vol.40, pp.20-22, 2002
    [9] Jubin J, Tornow J D. The DARPA packet radio network protocols. Proceeding of the IEEE, 1987, 75(1): 21-32
    [10] Leiner B M, Nielson D L, Tobagi F A. Issues in Packet Radio Network Design. Proceedings IEEE, 1987, 75(1): 21-32
    [11] ANSI/IEEE Std 802.11[S]. 1999 Edition.
    [12] Macker J P, Corson M S. Mobile ad hoe networking and the IETF[J]. ACM Mobile Computing and Communications Review, July 1998, 2(1):9-14
    [13] IETF. Mobile ad hoc networks charter[EB/OL]. http://ww.ietf.org/html, charters/manet-charter.html, 2002-09-16
    [14] 史美林,英春.自组网路由协议综述[J].通信学报,2001,22(11):93-103
    [15] 赵志峰,郑少仁.Ad Hoc 网络体系结构研究.电信科学,2001,17(1):9-13
    [16] 王海涛,郑少仁.Ad Hoc 传感网络的体系结构及其相关问题.解放军理工大学学报,2003,4(1):1-6
    [17]Haas Z J, Tabrizi S. On some challenges and design choices in ad-hoc. IEEE MILCOM'98. 18-21 Oct, 1998 Page(s): 187-192
    [18]Savino S P. WAP: wireless application protocol-wireless wave of the future Management of Engineering and Technology[A], 2001. PICMET'01[C], Portland International Conference on Volume 1, 29 July-2 Aug 2001: 178-179
    [19]Chakrabarti S, Mishra A. QoS issues in ad hoc wireless networks [J]. Communications Magazine, IEEE Volume 39, Issue 2, Feb 2001: 142-148
    [20]Bharghavan V, Demaers A, Shenker S. MACAW: a media access protocol for wireless LAN [A]. ACM SIGCOMM [C], 1994: 212-225
    [21]Prakash R. Unidirectional links prove costly in wireless ad-hoc networks [A]. DIMACS Workshop on Mobile Networks and Computers [C]. Seattle, Aug 1999: 15-22
    [22]ByungJ K, Nah O S, Miller L E. On the scalability of ad hoc networks [J]. Communications Letters, IEEE Volume 8, Issue 8, Aug 2004: 503-505.
    [23]Macker J, Corson S. Mobile Ad Hoc networks (MANET).1997. http://www.ietf.org/html/ charters/manet-charter.html
    [24]王海涛, 未来个人通信的关键技术-移动 Ad Hoc 网络 . http://www.edu. cn/20030826/3089 845 .shtml
    [25] IEEE Standard Department "Wireless LAN medium access control (MAC) and physical layer (PHY) specifications". IEEE standard 802.11-1997. 1997
    [26] David B. Johnson, David A. Maltz, Yih-Chun Hu. The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR). IETF Internet Draft, draft-ietf-manet-dsr-*.txt
    [27]Perkins C, Belding-Royer E, Das S. Ad Hoc On-Demand Distance Vector (AODV) Routing. IETF RFC 3651, July 2003
    [28]Karn P. MACA - a new channel access protocol for packet radio. In 9th Computer Networking Conference ARRL/CRRL Amateur Radio. 1990. 134-140
    [29]Bharghavan V, Demers A, Shenker S, et al., MACAW: a media access protocol for wireless LAN's. ACM SIGCOMM Computer Communication Review, 1994.24(4):212-225
    [30]Talucci F, Gerla M. MACA-BI (MACA by invitaton): A receiver oriented access protocol for wireless nultihop networks. IEEE Proceeding of PIMRC'97, Helsinki(Finland), 1997
    [31]Tzamaloukas A, Garcia-Luna-Aceves J J. A receiver-Initiated Collision -Avoidance Protocol for multi-channel networks. Proc. IEEE INFOCOM 2001, Anchorage, Alaska, April 22-26, 2001
    [32]Tzamaloukas A, Garcia-Luna-Aceves J J. Receiver-Initiated Channel hopping for Ad-Hoc Networks. Proc. IEEE 2nd IEEE Wireless Communication and Networking Conference (WCNC), Chicago, Sep. 2000
    [33] Garcia-Luna-Aceves J J, Fullmer C. Floor Acquisition Multiple Access (FAMA) in Single-Channel Wireless Networks. ACM Mobile Networks and Application Journal, Special Issue on Ad-Hoc Networks, 1999, 4: 157-174
    [34]Bharghavan V. Performance analysis of a Medium Access Protocol for Wireless Packet Networks. IEEE Performance and Dependability Symposium 98, Raleigh, NC, August 1998
    [35]Deng J, Haas Z J. Dual busy tone multiple access (DBTMA): a new medium access control for packet radio networks. IEEE 1998 International Conference on Universal Personal Communications, 1998. ICUPC'98. 1998. Vol. 2: 973-977
    [36] Haas Z J, Deng J. Dual Busy Tone Multiple Access (DBTMA)-a Multiple Access Control Scheme for Ad Hoc Networks. IEEE Transactions on Communications, 2002.50(6):975-985
    [37]Tang Z, Garcia-Luna-Aceves JJ. Hop-Resercation Multiple Access (HRMA) for Ad-Hoc Networks. IEEE INFOCOM, 1999
    [38] So J, Vaidya N. A Multi-channel Mac Protocol for Ad Hoc Wireless Networks. Dept. of Electrical and Computer Engineering, University of Illinois, USA, Technical Report, January 2003
    [39]IEEE Std 802.11-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, Aug. 1999
    [40] IEEE Std 802.11b-1999, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification:Higher-Speed Physical Layer Extension in the 2.4 GHz Band, Sep. 1999
    [41] IEEE Std 802.11a-2000, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, Amendment 1: High-speed Physical Layer in the 5 GHz band, 2000
    [42] IEEE Std 802.11g-2003, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification, Amendment 4: Further Higher Data Rate Extension in the 2.4 GHz Band, Jun. 2003
    [43]Kwon Y, Fang Y, and Latchman H. A novel MAC protocol with fast collision resolution for wireless LANs. in IEEE INFOCOM 2003. Twenty-Second Annual Joint Conferences of the IEEE Computer and Communications Societies. 2003. Vol.2:853-862
    [44]Binachi G. Performance Analysis of the IEEE 802. 11 Distributed Coordination Function [J]. IEEE Journal on Selected Areas in Comm. , 2000, 18(3): 535-547
    [45]Tay Y C, Chua K C. A Capacity Analysis for the IEEE 802. 11 MAC Protocol [J]. Wireless Networks, 2001, 17: 159-171
    [46] Wu H T, Cheng S D, Peng Y, Long K P, Ma J. IEEE 802.11 distributed coordination function (DCF): analysis and enhancement. Communications, 2002. ICC 2002. IEEE International Conference on, Volume: 1, 28 April-2 May 2002 Pages: 605- 609
    [47]BHARGHAVAN V, DEMERSA, SHENKER S, et al. MACAW: a media access p rotocol for wireless LANs. In Proceedings of ACM SIGCOMM 1994 [C]. London, U K, Sep tember 1994. 212-225
    [48]AAD I, N IQ, BARAKAT C, et al. Enhancing IEEE 802.11 MAC in congested environments. In Proceedings of ASWN'04. Boston, MA, USA, August 2004
    [49] WU H T, CHENG S D, PENG Y, et al. IEEE 802. 11 distributed coordination function (DCF) analysis and enhancement [A]. In Proceedings of ICC'02 [C]. New York, USA, April 2002. 605-609
    [50] SONG N, KWAK B, SONG J, et al. Enhancement of IEEE 802.11 distributed coordination function with exponential increase exponential decrease backoff algorithm [A]. In Proceedings of IEEE VTC'2003 [C]. Orlando, Florida, USA, October 2003. 2775-2778
    [51] PANG Q X, LIEW S C, LEE JYB, et al. Performance evaluation of an adap tive backoff scheme forWLAN [J]. Wireless Communications andMobile Computing. December 2004, 4 (8) : 867-879
    [52] Deng J, VARSHNEY P K, HASS Z J. A new backoff algorithm for the IEEE 802. 11 distributed coordination function [A]. In Proceedings of CNDS'04 [C]. SanDiego, California, USA, January 2004
    [53] WANG C G, LI B, LI L M. A new collision resolution mechanism to enhance the performance of IEEE 802. 11 DCF [J]. IEEE Transactions on Vehicular Technology. July 2004, 53 (4) : 1235-1246
    [54]NAIT-ABDESSELAM F, KOUBAA H. Enhanced routing2aware adaptive MAC with traffic differentiation and smoothed contention window in wirelessAd2Hoc networks [A]. In Proceedings of ICDCSW04 [C]. Tokyo, Japan, March 2004. 690-695
    [55]Bianchi G, Tinnirello I. Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network [A]. In Proceedings of IEEE INFOCOM'03 [C]. San Francisco, CA, April 2003, 2: 844-852
    [56]Cali F, Contim, Gregor I E. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit [J]. IEEE /ACM Transactions on Networking. December 2000, 8 (6): 785-799
    [57] Qiao D, Shin K G. Achieving efficient channel utilization and weighted fairness for data communications in IEEE 802. 11 WLAN under the DCF [A]. In Proceedings of IEEE IWQoS'02 [C]. Miami Beach, USA, May 2002. 227-236
    
    [58] 彭泳, 程时端. 一种自适应无线局域网协议 [J]. 软件学报, 2004, 15(4):604-615
    [59] Wang Y, Bensaou B. Achieving fairness in IEEE 802. 11 DFWMAC with variable packet lengths [A]. In Proceedings of GLOBECOM'01 [C]. San Antonio, Texas, USA, November 2001. 3588-3593
    
    [60]Hedrick C. Routing Information Protocol[S]. RFC 1058, June 1988
    [61]Moy J. OSPF Version 2[S]. RFC 2328, April 1998
    [62]Perkins C E, Royer E M. Ad-Hoc On-Demand Distance Vector Routing [A]. Proc IEEE WMCS99[C], New Orleans, LA, Feb 1999: 90-100
    [63]Perkins C, Belding-Royer E, Das S. Ad hoc On-Demand Distance Vector (AODV) Routing[S]. RFC 3561, July 2003
    [64]Jacquet P, Muhlethaler P, Clausen T, Laouiti A, Qayyum A, Viennot L. Optimized link state routing protocol for ad hoc networks[A]. Multi Topic Conference, 2001 IEEE, INMIC 2001[C], Technology for the 21st Century. Proceedings. IEEE International, 28-30 Dec 2001: 62-68
    [65] Clausen T, Jacquet P. Optimized Link State Routing Protocol (OLSR) [S]. RFC 3626, October 2003
    [66]Bellur B, Ogier R G. A reliable, efficient topology broadcast protocol for dynamic networks [A]. INFOCOM'99[C], Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies, Proceedings, IEEE Volume 1, 21-25 March 1999: 178-186
    [67] Ogier R, Templin F, Lewis M. Topology Dissemination Based on Reverse-Path Forwarding (TBRPF) [S]. RFC 3684, Feb 2004
    [68] Johnson D B, Maltz D A. Dynamic Source Routing in Ad Hoc Wireless Networks [J]. Mobile Computing, T Imielinski, H Korth, Eds, Ch 5, Kluwer, 1996: 153-81
    [69] Johnson D B, Maltz D A, Hu Y C. The Dynamic Source Routing Protocol for Mobile Ad Hoc Networks (DSR) [Z]. draft-ietf- manet-dsr-10.txt, Internet Draft, IETF MANET Working Group, July 2004
    [70]Chakeres I, Belding-Royer E, Perkins C. Dynamic MANET On-demand (DYMO) Routing [Z]. draft-ietf-manet-dymo-02.txt, Internet Draft, IETF MANET Working Group, June 2005
    [71] Charles E Perkins, Pravin Bhagwat. Highly dynamic Destination- Sequenced Distance-Vector routing (DSDV) for mobile computers [A]. ACM SIGCOMM'94[C], London, Sep 1994: 234-244
    [72]Murthy S, Garcia-Luna-Aceves J J. An Efficient Routing Protocol for Wireless Networks [J]. ACM Mobile Communication Networks, Oct 1996: 90-100
    [73] Mario G, Xiaoyan Hong, Li Ma, Guangyu Pei. Landmark Routing Protocol (LANMAR) for Large Scale Ad Hoc Networks [Z]. draft-ietf-manet-lanmar-05.txt, Internet Draft, IETF MANET Working Group, November 2002
    [74]Royer E M, Toh C-K. A Review of Current Routing Protocols for Ad-Hoc Mobile Wireless Networks [J]. IEEE Personal Communications, Apr 1999: 46-55
    [75]Park V D, Corson M S. A highly adaptive distributed routing algorithm for mobile wireless networks [A]. Proceedings of IEEE INFOCOM'97[C], Apr 1997: 1405-1413
    [76] Gupta P, Kumar P. A system and traffic dependent adaptive routing algorithm for ad hoc networks [A]. The 36th Conference on Decision and Control[C], San Diego, California, Dec 1997: 2375-2380
    [77] Chiang K H, Shenoy N. A random walk mobility model for location management in wireless networks. 2001 12th IEEE International Symposium on Indoor and Mobile Radio Communications. Volume 2, 30 Sept.-3 Oct. 2001 Page(s):E-43-E-48 vol.2
    [78]Bettstetter C, Wagner C. The Spatial Node Distribution of the Random Waypoint Mobility Model [A]. Proc 1st German Workshop on Mobile Ad-Hoc Networks (WMAN'02) [C]. 2002
    [79]Royer E M, Melliar-Smith P M, Moser L E. An analysis of the optimum node density for ad hoc mobile networks. In Proceedings of the IEEE International Conference on Communications, June 2001
    [80] McDonald A B, Znati T F. A mobility-based framework for adaptive clustering in wireless ad hoc networks. IEEE Journal on Selected Areas in Communications, 1999, 17(8): 1466-1487
    
    [81] 张贤达, 保铮. 通信信号处理, 国防工业出版社. 2002.3: 40-43
    [82] Marc R Pearlman, Zygmunt J Haas, Peter Sholander., et al. Alternate Pat h Routing in Mobile Ad Hoc Networks [A]. Proc of IEEE INFOCOM 2002[C]. 2000
    [83]Lee S J, Gerla M. AODV-BR: Backup Routing in Ad Hoc Network [A]. IEEE WCNC 2000[C]. 2000. 1311-1316
    [84] Tracy C, Jeff B, Vanessa D. Redundancy-Based MultiPath Routing in Ad Hoc Networks [A]. IEEE ICCCN'99[C]. 1999
    [85]Raju J, Garcia-Luna-aceves J J. A New Approach to On-Demand Loop-Free Multipath Routing [A]. Proc of the Int'l Conf on Computer Communications and Networks (IC3N) [C]. 1999. 522-527
    [86]Lee S J, Gerla M. Split Multi-Path Routing with Maximally Disjoint Paths in Ad Hoc Networks [A]. ICC'01[C]. 2001
    [87] Marina M K, Das S R. On-Demand Multipath Distance Vector Routing in Ad Hoc Networks [A]. Proc of the Int'l Conf for Network Protocols (ICNP) [C]. 2001. 14-23
    [88]Wang L, et al. Multipath Source Routing in Wireless Ad Hoc Networks [A]. Canadian Conf Elec Comp Eng. Vol 1[C] 2000. 479-83
    [89]Papadimit ratos P, Haas Z J, Sirer E G. Path Set Selection in Mobile Ad Hoc Networks [A]. ACM Mobihoc'02[C]. 2002
    [90]Nasipuri A, Castaneda R, Das S R. Performance of Multipath Routing for On-demand Protocols in Mobile Ad Hoc Networks [J]. ACM/Kluwer Mobile Networks and Applications (MONET), 2001, 6(4): 339-349
    [91] Alvin Valera, Winston K G Seah, SV Rao. Cooperative Packet Caching and Shortest Multipath Routing in Mobile Ad hoc Networks [A]. IEEE INFOCOM 2003[C]. 2003
    [92]Feeney L M, Nilsson M. Investigating the energy consumption of a wireless network interface in an ad hoc networking environment. INFOCOM 2001. Twentieth Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE Volume 3, 22-26 April 2001 page(s):1548 - 1557 vol.3
    [93]USCG Navigation Center GPS page, January 2000. http://www.navcen. uscg.mil/gps/ default.html
    [94]Capkun S, Hamdi M, Hubaux J, Gps-free Positioning in Mobile Ad Hoc Networks. Proc. Hawaii Int'l. Conf. System Sciences, Jan. 2001
    [95]Tian He. John A Stankovic. Chenyang Lu et al. SPEED: A Stateless Protocol for Real-Time Communication in Sensor Networks. Internet Draft. http://www.cse.wustl.edu/~lu/papers/ icdcs03_speed.pdf, 2002
    [96] Robert Moms, John Jannotti, Frans Kaashoek et al. CarNet: a Scalable Ad Hoc Wireless Network System. Internet Draft. http://www.pdos.lcs. mit.edu/papers/grid:sigops-euro9/ paper.pdf
    [97] Li J, Jannotti J, Karger D R, and Morris R. A Scalable Location Service for Geographic Ad Hoc Routing. In Proceedings of the Sixth Annual International Conference on Mobile Computing and Networking (MOBICOM '00), pages 120-130, 2000
    [98] Cheng C T, Lemberg H L, Philip S J, E. vandenBerg, Zhang T. SLALoM: a scalable location management scheme for large mobile ad-hoc networks. Wireless Communications and Networking Conference, 2002. WCNC2002. 2002 IEEE , Volume: 2 , 17-21 March 2002 Pages:574-578 vol.2
    [99] Woo S, Singh S. Scalable Routing Protocol for Ad Hoc Networks, Wireless Networks, vol. 7. pp. 513-529, January 2001
    [100] Sumesh J. Philip, Chunming Qiao. Hierarchical grid location management for large wireless Ad hoc networks. ACM SIGMOBILE Mobile Computing and Communications Review (July 2003) Volume: 7 Issue: 3
    [101] Yuan Xue, Baochun Li, Klara Nahrstedt. A Scalable Location Management Scheme in Mobile Ad Hoc Networks. In The 26th Annual IEEE Conference on Local Computer Networks
    [102] Ko Y, Vaidya N. Location-Aided Routing (LAR) in Mobile Ad Hoc Networks. In Proceedings of Fourth Annual ACM/IEEE International Conference on Mobile Computing (MOBICOM '98), pages 66-75, 1998
    [103] Basagni S, Chalamtac I, Syrotiuk V R, Woodward B A. A Distance Routing Effect Algorithm for Mobility (DREAM). In Proceedings of the Fourth Annual International Conference on Mobile Computing and Networking (MOBICOM '98). Pages 76-84, 1998
    [104] Karp B, Kung H. GPSR: Greedy Perimeter Stateless Routing for Wireless Networks. In Proceedings of the Sixth Annual International Conference on Mobile Computing and Networking (MOBICOM'00), pages 243-254, 2000
    [105] Joa-Ng M, I-Tai Lu. A peer-to-peer zone-based two-level link state routing for mobile ad hoc networks [J]. Selected Areas in Communications, IEEE Journal on Volume 17, Issue 8, Aug 1999: 1415-1425
    [106] Navas J C, Imielinski T. Geographic Addressing and Routing [A]. Proc 3rd ACM/IEEE Int'l, Conf Mobile Comp Net[C], Budapest, Hungary, Sept 1997: 26-30
    [107] Camp T, Bo leng J, Wilcox L. Location information services in mobile ad hoc networks. Proceedings of the IEEE International Conference on Communications (ICC) [C]. Volume 5, 28 April-2 May 2002 Page(s):3318-3324

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700