异构无线系统中的无线资源管理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着无线通信的快速发展,出现了多种不同无线网络并存的局面。为实现未来无线通信发展的最终目标,容纳急剧增加的移动通信用户,提供高质量的多媒体业务服务,不同类型相互重叠覆盖的各种无线通信网络就必然要融合到一起协同工作,形成一个统一的异构无线系统。无线资源管理技术是异构无线系统中的关键技术和研究热点,它涉及到的研究内容很广泛,包含了呼叫接入控制、切换控制、小区层选、负载控制、功率控制、分组调度、容量分析等领域。本文重点研究了层间呼叫双向溢出接入控制、切换和负载控制等内容。
     首先对异构分层无线系统中的各种呼叫溢出技术作了统一的理论分析,并在建立的实际移动模型基础上对双向溢出呼叫接入控制方法进行了改进,兼顾了呼叫移动速度和小区覆盖面积。研究表明,快速和慢速呼叫双向溢出方法能够获得最大的信道利用率、最低的新呼叫阻塞率和切换呼叫掉线率。
     在充分利用层间呼叫溢出技术的基础上,提出一种基于保护信道、队列缓冲和信道侵占的切换策略。相对于只采用保护信道的方案和同时采用保护信道与队列缓冲方案,提出的切换策略能显著降低快速和慢速实时切换业务的掉线率,同时快速和慢速非实时业务切换性能也能得到保证。
     为降低热点地区的新呼叫阻塞概率和切换呼叫掉线率,并提高整个异构系统的利用率,本文对负载控制进行了深入研究,提出了几种流量均衡算法。
     针对同层异构无线系统提出一种基于业务选择的流量均衡技术,采用半集中半分布式的非周期性流量控制机制。为了保证服务质量,流量均衡策略是只选择非实时性业务转移,设置的转移切换信号强度门限可以避免“乒乓”切换。仿真结果表明,新呼叫阻塞率和切换呼叫掉线率显著降低,系统利用率也得到了提高。
     针对异构分层无线网络提出了3种基于逗留时间的流量均衡算法,建立了小区逗留时间计算模型。第一种是基于逗留时间的流量均衡算法,该算法的主要特点是一个流量均衡周期只选择一个呼叫,其新呼叫阻塞率和切换呼叫掉线率比随机选择流量均衡策略低。第二种是基于逗留时间的动态流量均衡算法,一个流量均衡周期内转移的呼叫数量将根据小区呼叫到达率和重叠覆盖小区的流量状态来确定,该算法的性能比第一种算法更好。第三种是基于逗留时间和业务的动态流量均衡算法,为了尽可能保证业务的QoS,该算法在第二种算法的基础上增加了业务类型,流量均衡过程中转移的呼叫只能为非实时业务,实时业务切换频率得以降低。
     为进一步提高热点小区系统的信道利用率,结合信道借用和流量转移技术提出了一种混合动态流量均衡算法。信道借用用于与热点小区同类型的同构网络中,基于信道借用函数来选择信道借出小区。流量转移则采用基于逗留时间的动态流量均衡技术。每个流量均衡周期借用的信道数和转移的流量由热点小区的剩余可用信道数和新呼叫到达率来动态确定。研究表明,该混合流量均衡算法不仅能大大降低热点小区的新呼叫阻塞概率和切换呼叫掉线率,而且整个异构系统的信道利用率比基于逗留时间动态流量均衡算法高。
     最后对全文进行总结,并指出今后需要进一步研究的工作。
With the rapid development of wireless communications, the various wireless networks will coexist. In order to relize the final goal of future wireless communications, accommodate mobile users increased enormously and offer multimedia traffic services with high quality, different wireless networks overlaid each other must be integrated to cooperate and form an uniform heterogeneous system. The radio resource management is a key technology and a research hotspot in the heterogeneous system. It includes many sub-areas such as call access control, handoff control, layer selection, load control, power control, packet schedule, capacity analysis and so on. The call access control (CAC) of bidirectional call-overflow, handoff, load control and others are emphatically studied in this thesis.
     Firstly, various call-overflow schmems in the heterogeneous hierarchical wireless system are analysed with uniform theory. On the basis of real mobile model builded, the control method of bidirectional call-overflow is improved, the speed of call and size of cell are considered simultaneously. Simulation results show that the improved call-overflow scheme can gain maximum channel utilization, the lowest blocking probability of new calls and dropping probability of handoff calls.
     On the basis of making the best of call-overflow scheme, a handoff strategy based on guard channel, queuing and channel preemption is proposed. Simulation results show that compared with the scheme of only guard channel adopted and the scheme of both guard channel and queuing used, the proposed handoff scheme can dramatically decrease the dropping probabilities of fast and slow real-time traffic, and guarantee the performance of fast and slow nonreal-time handoff traffic.
     In order to decrease the call blocking probability (CBP) and call dropping probability (CDP), heighten the utilization of overall heterogeneous system, the load control is researched and several load balancing algorithms are proposed.
     A load balancing scheme based on traffic selection is proposed for the heterogeneous wireless system composed of same layer wireless networks, in which non-periodical load control mechanism of half-centralization and half-distribution is employed. For the sake of QoS guaranteed, only nonreal-time traffic are selected to transfer. A handoff signal strength threshold for transfer is set to avoid ping-pong handoff. Simulation results show that the CBP and CDP are greatly decreased, system utilization is also enhanced.
     For the heterogeneous hierarchical syetem, three load balancing algorithms based on sojourn time are proposed. A model is used to calculate the cell sojourn time. The first algorithm is called load balancing algorithm based on sojourn time, only one call can be selected to transfer from overloaded cell to under-loaded cell overlaid per load balancing period. This algorithm has lower CBP and CDP than those of random selection algorithm.
     The second is a dynamic load balancing algorithm, in which the number of transferred calls in a load balancing period is calculated according to call arrival rate and the workload states of overlaid cells with the hot spot cell. The second algorithm outperforms the first algorithm. The third algorithm is based on the second algorithm and considers the type of call service. Only nonreal-time traffic calls can be transferred in the third load balancing algorithm, so the handoff frequency of real-time traffic in the third algorithm is lower than those of other two load balancing algorithms.
     In order to further increase the channel utilization of hotspot cell system, a hybrid dynamic load balancing algorithm is proposed based on the combination of channel borrowing scheme and load transfer scheme. The hotspot cells can borrow channels from homogeneous cells with light workload in the compact pattern. At the same time, some ongoing calls can be transferred from hotspot cells into the overlapping heterogeneous cells with light workload according to certain conditions. The total number of channels borrowed and ongoing calls transferred per load balancing period is computed by the remainder available channels and new calls arrival rates of hotspot cell. Simulation results show that the proposed hybird dynamic load balancing algorithm can decrease CBP, CDP of hot-spot cell system and overall heterogeneous system, and the system utilization of overall heterogeneous system is increased accordingly.
     Finally, it concludes the dissertation briefly, and the future research work is indicated.
引文
[1] H. Zhu, M. Li, I. Chlamtac et al.. A survey of quality of service in IEEE 802.11 networks. IEEE Wireless Communications, 2004, 11(4):6-14.
    [2] M. Hagenauer. Quality of service in future European wireless LANs. in Proc. 49th IEEE VTC, 1999, 2:1722-1726.
    [3] 郑有强. IEEE802.16 技术标准新进展. 现代电信科技, 2004,9:4-6
    [4] 李晓辉,刘晓军,刘乃安. 未来移动通信新标准 IEEE802.20. 中兴通讯技术, 2004,4: 42-43
    [5] W. Mohr, W. Konhauser. Access network evolution beyond third generation mobile communications. IEEE Communications Magazine, 2000, 38(12):122-133.
    [6] M. Inoue, K. Mahmud, H. Murakami, M, Hasegawa. Novel out-of-band signaling for seamless interworking between heterogeneous networks. IEEE Wireless Communications, 2004, 11(2):56-63.
    [7] I. S. Misra, C. Pani. An MPLS/HMIPv6 based mobility management framework for GPRS/WLAN integration architechture. in Proc. IFIP WOCN, 2006:1-5.
    [8] H. Aghvami, N. Sattari, O. Holland, P. Pangalos. Group handover among heterogeneous wireless networks. in Proc. IEEE MELECON, 2006, 607-612
    [9] I. Chihlin, L. J. Greenstein and R. D. Gitlin. A microcell/macrocell cellular architecture for low- and high-mobility wireless user. IEEE J. Select. Areas Commun., 1993, 11(6):885-891.
    [10] M. Murata and E. Nakano. Enhancing the performance of mobile communications system. in Proc. IEEE ICUPC, 1993:732-736.
    [11] K.Ivanov and G. Spring. Mobile speed sensitive handover in a mixed cell environment. in Proc. IEEE VTC, 1995:892-896.
    [12] K.Y. Yeung and S.Nanda. Channel management in microcell/macrocell cellular radio systems. IEEE Trans. Veh. Technol., 1996, 45(4):601- 612.
    [13] Y. U. Chung, D. J. Lee, D. H. Cho. Macrocell/microcell selection schemes based on a new velocity estimation in multitier cellular system. IEEE Trans. Veh. Technol., 2002, 51(5): 893-903.
    [14] W. D. Wang, D. Shang, P. Zhang. The realization of breathing function in HCS CDMA system level simulation. in Proc. 53th IEEE VTC, 2001, 4: 2412-2416.
    [15] R. Berezdivin, R. Breining and R. T. Raytheon. Next-generation wireless communications concepts and technologies. IEEE Communications Magazine, 2002, 40(3): 108-116
    [16] M. Stemm and R. H. Katz. Vertical handoff in wireless overlay networks. Mobile Networks and Applications, 1998, 3:335-350.
    [17] M. Bernaschi, F. Cacace, G. Iannello. Vertical handoff performance in heterogeneous networks. in Proc. IEEE ICPPW, 2004:100-107
    [18] R. Steele, M. Nofal. Teletraffic performance of microcellular personal communication networks. in Proc. IEEE Communications, Speech and Vision, Part-I, 1992, 139(4):448-461
    [19] D. Hong, S. Rappaport. Traffic model and performance analysis for cellular mobile radio telephone systems with prioritized and nonprioritized handoff procedures. IEEE Trans. Veh. Technol., 1986, 35(3): 77-92.
    [20] C. Chao, W. Chen. Connection admission control for mobile multiple-class personal communications networks. IEEE J. Select. Areas Commun., 1997, 15(8):1618-26.
    [21] R. Raad, E. Dutkiewicz, J. Chicharo. Connection Admission Control in Micro-cellular Multi-service Mobile Networks. in Proc. 5th IEEE ISCC, 2000: 600–606.
    [22] M. Bozinovski, P. Popovski, L. Gavrilovska. Novel strategy for call admission controlin mobile cellular network. in Proc. 52th IEEE VTC, 2000, 4:1597-1602.
    [23] J. Y. Lee, S. Bahk. Simple admission control schemes supporting QoS in wireless multimedia networks. Electronics Letters, 2001, 37(11):712-713
    [24] P. Ramanathan, K. M. Sivalingam, et al. Dynamic resource allocation schemes during handoff for mobile multimedia wireless networks. IEEE J. select. Areas Commun., 1999, 17(7):1270-1283
    [25] W. Cui, X. M. Shen. User movement tendency prediction and call admission control for cellular networks. in Proc. IEEE ICC, 2000:670-674.
    [26] D. A. Levine, I. F. Akyildiz, M. Naghshineh. A resource estimation and call admission algorithm for wireless multimedia networks using the shadow cluster concept. IEEE/ACM Trans. Networking, 1997, 5(1):1-12
    [27] V. Phan-Van. Soft decision call admission control versus static fixed channel assignment and interference measurement-based policies for WCDMA cellular PCNs. in Proc. 12th IEEE PIMRC, 2001, 2:27-31.
    [28] D. Niyato, R. Palit, S. Kota, E. Hossain. Call-level and packet-level performance analysis of call admission control and adaptive channel allocation in cellular wireless networks. in Proc. IEEE Globecom, 2005:2627-2631
    [29] W. Jeon, D. Jeong. Call admission control for mobile multimedia communications with traffic asymmetry between uplink and downlink. IEEE Trans. Veh. Technol., 2001, 50(1):59–66.
    [30] N. Bartolini, I. Chlamtac. Improving call admission control procedures by using handoff rate information. Wiley J. Wireless Commun. and Mobile Comp., 2001, 1(3): 257-68.
    [31] P. Q. Gaasvik, M. Cornefjord, V. Svensson. Different methods of giving priority to handoff traffic in a mobile telephone system with directed retry. in Proc. 41th IEEEVTC, 1991: 549~553
    [32] J. Wu. Performance analysis of QoS-based voice/data CDMA systems. ACM Wireless Pers. Commun., 2000, 13(3):223-36.
    [33] C. Oliveira, J. Kim, T. Suda. An adaptive bandwidth reservation scheme for high-speed multimedia wireless networks. IEEE J. Select. Areas Commun., 1998, 16(6):858-874.
    [34] L. O. Guerrero, H. Aghvami. A prioritized handoff dynamic channel allocation strategy for PCS. IEEE Trans. Veh. Technol., 1999, 48(4):1203-1215.
    [35] A. Armstrong, A. Hac. A new resource allocation scheme for QoS provisioning in microcellular networks. in Proc. IEEE ICC, 1998, 3:1685-1689
    [36] S. Nelakuditi, R. R. Harinath, S. Rayadurgam, et al.. Revenue-based call admission control for wireless cellular networks. in Proc. IEEE ICPWC, 1999: 486-490.
    [37] S.H. Cho, S. J. Yang, S. Heu, et al.. QoS-oriented bandwidth management scheme for stable multimedia services on the IMT-2000 networks. in Proc. IEEE ICITCC, 2000:289-294.
    [38] M. El-kadi, S. Olariu, and H. Abdel-Wahab. A rate-based borrowing scheme for QoS provisioning in multimedia wireless networks. IEEE Trans. Parallel and Distributed Systems, 2002, 13(2):156– 66.
    [39] M. H. Ahmed. Call admission control in wireless networks: a comprehensive survey. IEEE Communitions Surveys & Tutorials, 2005, 7(1):49-68.
    [40] D. Niyato, E. Hossain. Call admission control for QoS provisioning in 4G wireless networks: issues and approaches. IEEE Network, 2005, 19(5):5-11.
    [41] W. T. Chen, J. C. Liu, H. K. Huang. An adaptive scheme for vertical handoff in wireless overlay networks. in Proc. 10th IEEE ICPADS, 2004: 541-548.
    [42] M. Ylianttila, M. Pande, J. Makela and P. Mahonen. Optimization scheme for mobileusers performing vertical handoffs between IEEE 802.11 and GPRS/EDGE networks. in Proc. IEEE GLOBECOM, 2001, 6:3439-3443.
    [43] J. Mcnair, F. Zhu. Vertical handoffs in fourth-generation multinetwork environments. IEEE Wireless Communications, 2004, 11(3):8-15.
    [44] H. J. Wang, R. H. Katz, J. Giese. Policy-enabled handoffs across heterogeneous wireless network. in Proc. 2th IEEE WMCSA, 1999:51-60.
    [45] Z. Fang, J. McNair. Optimizations for vertical handoffs decision algorithms. in Proc. IEEE WCNC, 2004, 2:867-872.
    [46] Q. Guo, J. Zhu, X. H. Xu. An adaptive multi-criteria vertical handoff decision algorithm for radio heterogeneous network. in Proc. IEEE ICC, 2005, 4:2769-2773.
    [47] W. T. Chen, Y. Y. Shu. Active application oriented vertical handoff in next-generation wireless networks. in Proc. IEEE WCNC, 2005, 3:1383-1388.
    [48] L. Wei, C. Hang, D. P. Agrawal. Performance analysis of handoff schemes with preemptive and nonpreemptive channel borrowing in integrated wireless cellular networks. IEEE Trans. On Wireless Communications, 2005, 4(3):1222-1233.
    [49] W. Song, H. Jiang, W. H. Zhuang, X. Shen. Resource management for QoS support in cellular/WLAN interworking. IEEE Network, 2005, 19(5): 12-18.
    [50] M. Al-Akaidi, O. Alani. Efficient call admission control procedure for integrated services in hierarchical cell. in Proc. 5th IEEE 3G Mobile Communication Technologies, 2004: 649-653.
    [51] A. H. Zahran, L. Ben. Performance evaluation framework for vertical handoff algorithms in heterogeneous networks. in Proc. IEEE ICC, 2005, 1:173-178.
    [52] W. S. Soh, H. S. Kim. Qos provisioning in cellular networks based on mobility prediction techniques. IEEE Communications Magazine, 2003, 41(1):86-92
    [53] D. S. Lee, C. C. Chen. QOS of data traffic with voice handoffs in a PCS network. inProc. IEEE GLOBECOM, 2002, 2:1534-1538.
    [54] O. Ormond, P. Perry, J. Murphy. Network selection decision in wireless heterogeneous networks. in Proc. 16th IEEE International Symposium on PIMRC, 2005:2680-2684.
    [55] S. J. Yu, S. M. Yoon, J. K. Lee, et al.. Service-oriented issues: mobility, security, charging and billing management in mobile next generation networks. in Proc. 1th IEEE International Workshop on Broadband Convergence Networks, 2006:1-10.
    [56] E. A. Yavuz, C. M. Leung. Computationally efficient method to evaluate the performance of guard-channel-based call admission control in cellular networks. IEEE Trans. Veh. Technol., 2006, 55(4):1412-1424.
    [57] Guoqin ning, Jing Zhang, Gan Liu, Guangxi Zhu. GCQCP based vertical handoff scheme for heterogeneous hierarchical wireless networks. in Proc. IEEE WCNC, 2007. (Submitted)
    [58] S. S. Rappaport, L. R. Hu. Microcellular communication systems with reneging and dropping for waiting new and handoff calls. Proc. IEEE, 1994, 82(9):1383-1397.
    [59] S. S. Rappaport, L. R. Hu. Personal communication systems using multiple hierarchical cellular overlays. IEEE J. Select. Areas Commun., 1995, 13(2): 406-415.
    [60] P. Fitzpatrick, C. S. Lee and B. Warfield. Teletraffic performance of mobile radio networks with hierarchical cells and overflow. IEEE J. Select. Areas Commun., 1997, 15(8):1549-1557
    [61] D. Calin and D. Zeghlache. Traffic modeling of a hierarchical cellular system in the presence of heterogeneous calls. in Proc. 47th IEEE VTC, 1997, 2:959-963.
    [62] C. Chang, C. J. Chang and K. R. Lo. Analysis of a hierarchical cellular system with reneging and dropping for waiting new and handoffs calls. IEEE Trans. Veh. Technol., 1999, 48(4):1080-1091.
    [63] S. H. Wie, J. S. Jang, B. C. Shin and D. H. Cho. Handoff analysis of the hierarchicalcellular system. IEEE Trans. Veh. Technol., 2000, 49(5):2027-2036.
    [64] K. Maheshwari, A. Kumar. Performance analysis of microcell utilization for supporting two mobility classes in cellular wireless networks. IEEE Trans. Veh. Technol., 2000, 49:321-333.
    [65] F. Tansu, M. Salamah. On the vertical handoff decision for wireless overlay networks. in Proc. IEEE International Symposium on Computer Networks, 2006:111-115.
    [66] K. R. Lo, C. J. Chang, C. Chang and C. B. Shung. A QoS-guaranteed fuzzy channel allocation controller for hierarchical cellular systems. IEEE Trans. Veh. Technol., 2000, 49(5):1588-1597
    [67] C. Cimone, D. D. Weerakoon, A. H. Aghvami. Performance evaluation of a two layer hierarchical cellular system with variable mobility users using multiple class application. in Proc. 50th IEEE VTC, 1999:2835-2839
    [68] W. Shan, P. Z. Fan, Y. Pan. Performance evaluation of a hierarchical cellular system with mobile velocity-based bidirectional call-overflow scheme. IEEE Trans. on Parallel and distributed system, 2003, 14(1):72-83.
    [69] J. Roberto, B. Marca and T. V. Vinhoza. Comparative Performance of Hierarchical Cell Architectures. IEEE Radio and Wireless Conference, Sept. 2004:287-290
    [70] Guoqin ning, Guangxi Zhu, Xiaofeng Lu. A bidirectional call-overflow scheme under new practical mobile model for hierarchical cellular systems. in Proc. 4th IEEE CCNC, , Las Vegas, USA, Jan.2007. accepted.
    [71] K. H. Chiang, N. Shenoy. A 2-D random-walk mobility model for location management studies in wireless networks. IEEE Trans. Veh. Technol., 2004, 53(2):413-424.
    [72] R. Thomas, H. Gilbert, G. Mazziotto. Influence of the Movement of the Mobile Station on the Performance of a Radio Cellular Network. in Proc. 3rd Nordic Seminar, Paper9.4., Copenhagen, Sept. 1988.
    [73] C. Bettstetter. Smooth is better than sharp: A random mobility model for simulation of wireless network. in Proc. ACM Int’l Workshop Modeling, Analysis, and Simulation of Wireless and Mobile Systems, 2001.
    [74] E. M. Royer, P. M. Melliar-Smith, L. E. Moser. An Analysis of the Optimum Node Density for Ad Hoc Mobile Networks. in Proc. IEEE ICC, 2001, 3:857-861.
    [75] R. A. Guerin. Channel occupancy time distribution in a cellular radio system. IEEE Trans. Veh. Technol., 1987, 35(3):89-99.
    [76] A. Bar-Noy, I. Kassler, M. Sidi. Mobile Users: To Update or Not to Update?. Proc. IEEE INFOCOM, 1994, 2:570-576.
    [77] S. Tekinay. Modeling and Analysis of Cellular Networks with Highly Mobile Heterogeneous Traffic Sources. Ph. Dissertation, George Mason University, Fairfax, Virginia, Summer 1994.
    [78] M. M. Zonoozi, P. Dassanayake, M. Faulkner. Mobility modelling and channel holding time distribution in cellular mobile communication systems. in Proc. IEEE GLOBECOM, 1995:12- 16.
    [79] C.Bettstetter, G. Resta and P.Santi. The node distribution of the random waypoint mobility model for wireless Ad Hoc networks. IEEE Trans. on Mobile Computing, 2003, 2(3):257-269.
    [80] J. G. Markoulidakis, E. D. Sykas. Model for location updating and handover rate estimation in mobile telecommunications. Electronics Letters, 1993, 29(17):1574-1575.
    [81] J. G. Markoulidakis, G. L. Lyberopoulos, D. F. Tsirkas, et al.. Mobility modeling in third-generation mobile telecommunications systems. IEEE Personal Communications, 1997, 4(4):41-56.
    [82] A. Iera, A. Molinaro, S. Marano. Handoff management with mobility estimation in hierarchical systems. IEEE Trans. Veh. Technol., 2002, 5(5):915-934.
    [83] J. Harri, F. Filali, C. Bonnet. A framework for mobility models generation and its application to inter-vehicular networks. in Proc. IEEE Wireless Networks, Communications and Mobile Computing, 2005, 1:42-47.
    [84] P. A. Dintchev, B. Perez-Quiles, E. Bonek. An improved mobility model for 2G and 3G cellular systems. in Proc. 5th IEEE 3G Mobile Communication Technologies, 2004:402-406.
    [85] T. Tugcu, C. Ersoy. Application of a Realistic Mobility Model to Call Admissions in DS-CDMA Cellular Systems. in Proc. 53th IEEE VTC, 2001, 2:1047-1051.
    [86] E. Jugl, H. Boche. A New Mobility Model for Performance Evaluation of Future Mobile Communication Systems. in Proc. IEEE ICC, 1999, 3:1751-1755.
    [87] Thomas, R., H. Gilbert, and G. Mazziotto. Influence of the Moving of the Mobile stations on the Performance of a Radio Mobile Cellular Network. Proc. 3rd Nordic Seminar., Copenhagen, pp.09.04/1-8, 1988.
    [88] V. S. Frost, B. Melamed. Traffic modeling for telecommunications networks. IEEE Communications Magazine, 1994, 32(3):70-81.
    [89] K. K. Leung, W. A. Massey, W. Witt. Traffic models for wireless communication networks. IEEE J. Select. Areas Commun., 1994, 12(8):1353-1356.
    [90] C. Rose. Minimizing the average cost of paging and registration: A timer-based method. ACM Wireless Networks, 1996, 2(2):109-116.
    [91] M. M. Zonoozi and P. Dassanayake. User mobility modeling and characterization of mobility patterns. IEEE J. Select. Areas Comm., 1997, 15(7): 1239- 1252.
    [92] P. V. Orlik and S. S. Rappaport. A model for teletraffic performance and channel holding time characterization in wireless cellular communication. in Proc. IEEEICUPCR, 1997, 2:671-675.
    [93] H. Heffes, K. M. Ryan. User mobility and channel holding time in mobile communications. in Proc. 47th IEEE VTC, 1997, 2:577-581.
    [94] Y. G. Fang, I. Chlamtac. Teletraffic analysis and mobility modeling of PCS networks. IEEE Trans. Commun., 1999, 47(7):1062-1072.
    [95] Y. G. Fang, I. Chlamtac. A new mobility model and its application in the channel holding time characterization in PCS networks. in Proc. IEEE INFOCOM, 1999, 1:20-27.
    [96] P. I. Bratanov. User mobility modeling in cellular communications networks. Ph. D. dissertation, Vienna University of Technology, 1999.
    [97] Y. Lan and T. Yu. A dynamic central scheduler load balancing mechanism. IEEE/ACM Trans. on Networking, 2000, 5(1):58-70.
    [98] B. Eklundh. Channel utilization and blocking probability in a cellular mobile telephone system with directed retry. IEEE Trans. Commun., 1986, 34(4):329-337.
    [99] J. Karlsson, B. Eklundh. A cellular mobile telephone system with load sharing-an enhancement of directed retry. IEEE Trans. Commun., 1989, 37(5):530-535.
    [100] A. Balachandran, P. Bahl, G. M. Voelker. Hot-spot congestion relief in public area wireless networks. in Proc. 4th IEEE WMCSA, 2002:70-80.
    [101] H. Velayos, V. Aleo, G. Karlsson. Load balancing in overlapping wireless LAN Cells. in Proc. IEEE ICC, 2004, 7: 3833 – 3836.
    [102] L. G. Anderson. A simulation study of some dynamic channel assignment algorithms in a high capacity mobile telecommunications system. IEEE Trans. Veh. Technol., 1973, 22(4):210-217.
    [103] S. M. Elnoubi, R. Singh, S. C. Gupta. A new frequency channel assignment algorithm in high capacity mobile communication systems. IEEE Trans. Veh. Technol., 1982,31(3):125-131.
    [104] M. Zhang, T. S. Yum. Comparions of channel assignment strategies in cellular mobile telephone mobile systems. IEEE Trans. Veh. Technol., 1989, 38(3):211-215.
    [105] K. I. Yeung, T. P. Yum. Compact pattern-based dynamic channel assignment for cellular mobile systems. IEEE Trans. Veh. Technol., 1994, 43(4):892-896.
    [106] 方旭明,诸昌铃,范平志.蜂窝移动通信系统中基于紧凑模式的信道借用指配策略.电子学报,2000,28(4):18-20.
    [107] S. Kim, P. K. Varshney. Adaptive load balancing with preemption for multimedia cellular networks. in Proc. IEEE WCNC, 2003, 3:1680-1684.
    [108] S. K. Das, S. K. Sen, R. Jayaram. A dynamic load balancing strategy for channel assignment using selective borrowing in cellular mobile environment. Wireless Networks, 1997, 3(5): 333-347.
    [109] Y. B. Zhang. A new adaptive channel assignment algorithm in cellular mobile systems. in Proc. 32th IEEE HICSS, 1999, 8:5-8.
    [110] H. Jiang, S. S. Rappaport. CBWL: A new channel assignment and sharing method for cellular communication systems. IEEE Trans. Veh. Technol., 1994, 43(2):313-322.
    [111] Y. T. Wang. A Fuzzy-Based Dynamic Channel Borrowing Scheme for Wireless Cellular Networks. in Proc. 57th IEEE VTC, 2003, 3:1517-1521.
    [112] Y. T. Wang. Adaptive neural-fuzzy controllers for dynamic channel borrowing in wireless cellular networks. in Proc. 15th IEEE PIMRC, 2004, 2:864-868.
    [113] G. Bianchi, I. Tinnirello. Improving load balancing mechanisms in wireless packet networks. in Proc. IEEE ICC, 2002, 2: 891-895.
    [114] L. Du, J. Bigham, L. Cuthbert. Towards intelligent geographic load balancing for mobile cellular networks. IEEE Trans. on Systems, Man, and Cybernetics, 2003, 33(4):480-491.
    [115] C. Lee, H. Kang, T. Park. Dynamic sectorization of microcells for balanced traffic in cdma: genetic algorithms approach. IEEE Trans. Veh. Technol., 2002, 51(1):63-72.
    [116] J. S. Wu, J. K. Chung, C. C. Wen. Hot-spot traffic relief with a tilted antenna in cdma cellular networks. IEEE Trans. Veh. Technol., 1998, 47(1):1-9.
    [117] T. Togo, I. Yoshii, and R. Kohno. Dynamic cell-size control according to geographical mobile distribution in a ds/cdma cellular system. in Proc. 9th IEEE Int. Symp. Personal, Indoor and Mobile Radio Communications, 1998, 2: 677–681.
    [118] H.Wu, C. Qiao, S. De, and O. K. Tonguz. Integrated cellular and ad-hoc relay systems: iCAR. IEEE J. Select. Areas Commun., 2001, 19(10):2105–2115.
    [119] S. De, O. K. Tonguz, H. Wu, and C. Qiao. Integrated cellular and ad hoc relay (iCAR) systems: Pushing the performance limits of conventional wireless networks. in Proc. 35th IEEE HICSS, 2002:3931–3938.
    [120] Y. Evsen, K. T. Ozan. Dynamic load balancing and sharing performance of integrated wireless networks. IEEE J. Select. Areas Commun., 2004, 22(5):862-872.
    [121] K. Kawabata, T. Nakamura, E. Fukuda. Estimating velocity using diversity reception. in Proc. IEEE VTC, 1994. 371-374.
    [122] R. Narasimhan, D. C. Cox. Speed estimation in wireless systems using wavelets. IEEE Transactions on Communications, 1999, 47(9): 1357-1364.
    [123] W. M. Jolley, R. E. Warfield. Modeling and analysis of layered cellular mobile networks. in Proc. TDPC, 1991:161-166.
    [124] UNITEL. Idle mode cell reselection for microcell. in Proc. ETSI GSM2, 1991:
    [125] K. L. Yeung, A. S. Nanda. Channel management in microcell/macrocell cellular radio systems. IEEE Transactions on Vehicular Technology, 1996, 45(4): 601-612.
    [126] M. Hellebrand, R. Mathar, M. Scheibenbogen. Estimating position and velocity of mobiles in a cellular radio network. IEEE Trans. Veh. Technol., 1997, 46(1): 65-71.
    [127] Y. D. Cui, H. M. Xu, Z. Li. A study of load balancing in distributed wireless communication system. in Proc. 60th IEEE VTC, 2004, 5:3462-3465.
    [128] J. L. Young, F. R. George. A workload-based adaptive load-balancing technique for mobile ad hoc networks. in Proc. IEEE WCNC, 2005, 4:2002-2007.
    [129] X. Dong and T. H. Lai. Distributed dynamic camer allocations in mobile cellular neworks: search vs. update. IEEE Distributed Computing Systems, pages 108-1 15, 1997.
    [130] T. Lee, I. Kim and C. S. Hwang. A dynamic channel assignment scheme with two thresholds for load balancing in cellular networks. IEEE Radio and Wireless Conference, pages 141-145, 1999.
    [131] S. K. Sen, S. K. Das and R. Jayamm. A structured channel borrowing scheme for dynamic load balancing in cellular networks. IEEE Distributed Computing Systems, pages 116 -123,1997.
    [132] Guoqin Ning, Guangxi Zhu, Liexin Peng, Xiaofeng Lu. Load Balancing Based on Traffic Selection in Heterogeneous Overlapping Cellular Networks. in Proc. 1st IEEE ICI (International Conference on Internet), Bishkek, Kyrgyzstan, Sep. 2005.
    [133] Guangxi Zhu, Guoqin Ning, Renyong Wu, Xiaofeng Lu. Load balancing based on velocity and position in multitier cellular system. in Proc. 3th IEEE CCNC (Consumer Communications and Networking Conference), Las Vegas, USA, Jan.2006.
    [134] 朱光喜,宁国勤,王洪亚.异构分层无线网络中基于逗留时间的动态流量均衡算法研究.通信学报,2006,28(4):29-36.
    [135] 宁国勤,彭烈新,卢小峰,朱光喜. 异构分层无线网络中基于业务和逗留时间的动态流量均衡算法. 计算机科学. (录用待发)
    [136] 宁国勤,朱光喜,彭烈新,卢小锋. 异构分层无线网络中的混合动态流量均衡算法研究. 通信学报. (录用待发)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700