康氏木霉纤维素酶的发酵及其对稻草降解利用的初探
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纤维素是自然界中存在最广泛的一类碳水化合物,同时它也是地球上数量最大的再生资源。目前,自然界中纤维素只有一小部分得到了利用,绝大多数纤维素不仅被白白浪费,而且还会造成环境污染。利用微生物生产的纤维素酶将其转化为人类急需的能源、食物和化工原料,对于人类社会解决环境污染、食物短缺和能源危机具有重大的现实意义。
     本论文主要工作包括:纤维素酶高产菌株的选育及产酶条件的研究;康氏木霉(Trichoderma koningii)和黑曲霉(Aspergillus niger)纤维素酶发酵培养基的优化研究;β-葡萄糖苷酶的纯化及酶学性质研究;康氏木霉和黑曲霉混菌发酵产纤维素酶的研究;纤维素酶降解稻草粉的实验研究和利用稻草粉产乙醇的初步研究。经过大量实验工作,得到了如下结果:
     1)以稻草为主要碳源时,在所实验的菌种中,康氏木霉ZJ4产CMC酶和滤纸酶的活性均为最高。康氏木霉ZJ4经紫外线和硫酸二乙酯复合诱变,得到的突变株ZJ5产纤维素酶的水平明显提高。研究了其纤维素酶的产生条件:以稻草粉为碳源、(NH_4)_2SO_4为氮源、稻草与麦麸比为2:1时,康氏木霉ZJ5产酶最高。该菌株产酶最适培养温度为28℃,最适起始pH 5.0,装液量30mL,转速200r/min,当培养时间为144h时,CMC酶、滤纸酶活和β-葡萄糖苷酶活均达到最高值,分别为582.6U/mL、72.56U/mL和34.62U/mL。
     2)研究了CMC酶和滤纸酶粗酶液的酶学性质,结果如下:CMC酶的最适作用温度为50℃,在40℃和50℃时热稳定性较好;滤纸酶的最适作用温度为50℃,在40℃时热稳定性较好;CMC酶的最适反应pH为4.5,在pH 2.5~pH 6.0之间较稳定;滤纸酶的最适反应pH为5.0,在pH 3.5~pH 6.0之间较稳定;Zn~(2+)、Al~(3+)、Mg~(2+)和Mn~(2+)对CMC酶酶促反应均有一定的促进作用,Mg~(2+)和Mn~(2+)对滤纸酶酶促反应有一定的促进作用。
     3)稻草先粉碎到80目,再经15%醋酸预处理可以显著提高康氏木霉ZJ5发酵产纤维素酶的水平。首次利用预处理的稻草粉为主要碳源,经过正交实验,得到了
    
    康氏木霉ZJS发酵产纤维素酶的最佳培养基组成(留L):稻草粉,33;麦鼓,20;
    大麦粉,23;困H4)2504,8。
     4)首次用响应面方法对康氏木霉ZJS产纤维素酶的培养基进行了优化。获得的
    优化培养基组成为(g/L):稻草粉,33;麦数,15;大麦粉,15;(N H4)250;,4。
    在优化培养基中发酵144h,CMC酶活、滤纸酶活和卜葡萄糖苔酶活分别达到了
    765.8U/mL、155.3U/mL和39.54U/mL。
     5)本研究首次将响应面分析法用于黑曲霉ZJI产p一葡萄糖普酶培养基组成的
    优化,取得了较好的效果。在培养基优化前p一葡萄糖营酶活为1875U/mL,经优化
    后,该酶活性达到了403 .7U/mL,显著大于优化前的水平。经响应面分析获得的优
    化培养基组成为(g/L):稻草粉,6.963:麦鼓,20;大麦粉,16.5;困H4)2504,
    2 .44;KHZPO4,0.5:MgSO4·7HZO,0.5。
     6)利用Sephadexo一00柱和oEAE一sephadexA一50柱分离纯化了D一葡萄糖营
    酶,并研究了其酶学性质和酶促反应动力学。p一葡萄糖营酶的最适作用温度为50
    ℃,在40℃时热稳定性较好;日一葡萄糖营酶的最适反应pH为5.5,在pH 30一pH 8.0
    之间较稳定;zn2+、川3+、ca2+和MnZ十对卜葡萄糖普酶酶促反应均有一定的促进
    mg ZJZg
    作用。确定了以水杨素为底物时的动力学参数:式行4.530mg/mL,蛛二0.06974
    (mLmin),动力学方程为:
    VP
    0 .06974Cs
    4 .530+Cs
    7)利用稻草为主要碳源,通过正交实验,得到了康氏木霉ZJS和黑曲霉
    固体混菌发酵产纤维素酶的最佳培养基组成:稻草粉,6g;麦鼓,49;
    (N H4)2504,0.89;KHZPO4,0.059:MgSO4·7HZO,0.059;加水30mL,
    大麦粉,
    起始pHS.o
    在优化培养基中发酵96h,CMC酶活、滤纸酶活和p一葡萄糖首酶活分别达到了
    2 135U/mL、738.2U/mL不{1 1 125U/mL。
     8)利用单因子实验得到了稻草粉酶解糖化的最佳条件:稻草粉先经
    1.0%NaOH+1 .0%HZo:预处理,底物浓度为2.5%,糖化温度50OC,反应体系pH4.8,
    
    滤纸酶:p一葡萄糖昔酶二1:1。运用二次通用旋转组合设计,考察了底物浓度(X,)、
    酶解pH(xZ)和酶解温度(X3)对稻草粉糖化率(Y)的影响,得到了下列回归方
    程:
     Y=0 .5744一o.o5214x一0.07一29x2+o.o443sx3一o.07929x22一。一27x32一
    0 .0 1 785XIX2+0.00708lXIX3一0.05478X2X3
     9)本文研究发现利用纤维素酶降解稻草粉时,稻草粉的酶解率与处理时间和酶
    的浓度都有关。通过对实验数据的分析,得到了纤维素的残留量(St)和酶解量(Y)
    与处理时间(t)之间的经验公式:
     [st]/[s。]==e一kI;[Y]/[S。]=(l一e一“)
     10)本文首次利用稻草研究了糖化发酵生产乙醇的几种工艺,在糖化、发酵二
    步工艺中,采用正交实验,得出了台湾酵母(5扮ccharo梢lyce:cerevisia。)利用稻草粉
    水解液发酵产乙醇的最佳培养条件:起始pH为5.0、接种量巧%、培养时间48h、
    培养温度为30℃;在此条件下,乙醇浓度可以达到3.105%(v/v)。在边糖化边发酵
    工艺中,利用正交实验,得到了酒精酵母利用稻草粉产乙醇的最佳培养条件:起始
    pH为5.0、滤纸酶:p一
Cellulose is the most abundant organic raw material in the world, and it is the only renewable resource that is available in large quantities. Presently, only a few cellulose are utilized, most of cellulose are wasted and pollute environment. So it has great realistic meaning for human being to solve environment pollution, food shortage and energy crisis that using cellulase produced by microorganism transform cellulose to energy , chemical and food.
    This paper included : 1) study on the screening out of strain with high cellulase activity and the conditions for enzyme production; 2) culture medium optimization for producing cellulase by Trichoderma koningii ZJ5 and Aspergillius niger ZJ1; 3) study on purification and properties of P -glucosidase: 4) study on cellulase production by mixed culture with Trichoderma koningii ZJ5 and Aspergillius niger ZJ1; 5) research on the kinetics of the hydrolysis of rice straw powder by cellulase; 6) study on fermentation of rice straw to ethanol. The main results were as follows:
    1) This paper compared the ability of producing cellulase of several fungi when rice straw powder as primary carbon source, Trichoderma koningii ZJ4 can produce relatively high cellulase. The productivity of cellulase of Trichoderma koningii ZJ4 mutant Trichoderma koningii ZJ5 was improved greatly after mutated by ultraviolet and diethyl sulfate. The medium with straw powder as carbon source, (NH4)2SO4 as nitrogen source and straw powder/bran=2: 1 was optimal and the maximum cellulase activity was reached at 28C and pH 5.0 when cultivated 144 hours. The maximum of CMCase, filter paper and 3 -glucosidase activity were 582.6U/mL, 72.56U/mL and 34.62U/mL respectively.
    2) The properties of CMCase and filter paper enzyme were studied and results as follows: The optimal temperature of CMCase was 50C and it was stable under 50C; The optimal temperature of filter paper enzyme was 50 C and it was stable under 40 C; The optimum pH value of CMCase was 4.5 and it was stable between pH 2.5 and pH 6.0, while the optimum pH value of filter paper enzyme was 5.0 and it was stable in pH 3.5~pH 6.0; Zn2+, A13+, Mg2+ and Mn2+ have active effects on CMCase activity , Mg2+
    
    
    
    and Mn2+ have active effects on filter paper enzyme activity.
    3) When rice straw was pretreated by 15% acetic acid after it was smashed to 80 mesh, it can increase cellulase production by Trichoderma koningii ZJ5. When pretreated rice straw powder as primary carbon source, the optimal fermentation medium, which was obtained by orthogonal test was as following (g/L): rice straw powder, 33; wheat bran, 20; barley flour, 23; (NH4)2SO4, 8.
    4) Response surface methodology was used to optimize medium for cellulase production by Trichoderma koningii ZJ5. The composition of fermentation medium was
    (g/L): rice straw powder, 33; wheat bran, 15; barley flour, 15; (NH4)2SO4 , 4. The maximum of CMCase, filter paper enzyme and P -glucosidase activity were 765.8U/mL, 155.3U/mL and 39.54U/mL, respectively under the optimized culture medium after 144 hours.
    5) Response surface methodology was also used to optimize a medium for P -glucosidase production by Aspergillius niger ZJ1. P -glucosidase activity was 403.7U/mL after optimization and higher significant than that in fermentation medium before optimized ( 3 -glucosidase activity was 187.5U/mL) .The optimized composition of fermentation medium was (g/L): rice straw powder, 6.963; wheat bran, 20; barley flour, 16.5; (NH4)2SO4, 2.44; KH2PO4, 0.5; MgSO4-7H2O, 0.5.
    6) & -glucosidase of Aspergillius niger ZJ1 was purified by Sephadex G-100 and DEAE-Sephadex A-50 chromatography, and its properties and kinetics was studied. Its optimum temperature was 50癈, and it was stable under 40"C. Its optimum pH was 5.5 and it was stable in pH 3.0 ~pH 8.0. Metal cation influence enzyme activity, Zn2\ AI3\ Ca2+ and Mn2+ have active effects on enzyme activity. Km and Vm of P -glucosidase
    for salicin as substrate was 4.530mg/mL and 0.06974 mg/ (mL-min) respect
引文
Akhtar M. Biochemical pulping of aspen wood chips with three strains of Ceriporiopsis subvermispora. Holzforschung, 1994, 48:199-202.
    Ali S, Hall J, Soole KL, et al.Targeted expression of microbial cellulases in transgenic animals. In:Petersen SB,Svensson B,Pedersen S, editors. Carbohydrate Bioengineering. Progress in Biotechology,Vol. 10. Amsterdam: Elsevier ,1995, 279-293.
    Amore R, Wilhelm M, Hollenberg CP .The fermentation of xylose-an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol, 1989, 30:351-357
    Assouline Z, Shen H,Kilbum DG et al.Production and properties of a factor X-cellulose-binding domain fusion protein.Protein Eng, 1993, 6:787-792.
    Awafo V A ,Chahal D S, Simpson B K. Evaluation of combination treatments of sodium hydroxide and steam explosion for the production of cellulase-systems by two T.reesei mutants under solid-state fermentation conditions. Bioresource technology, 2000,73(3) :235-245.
    Bailey BA, Lumsden RD.Direct effects of Trichoderma and Gliocladium on plant growth and resistance to pathogens. In: Harman GF,Kubicek CP.editors. Vol.2,Trichoderma & Gliocladium Enzymes,biological control and commercial applications, London:UK,Tayior & Francis,1998, 327-342.
    Bajpai P. Applications of enzymes in the pulp and paper industy. Biotechnol Prog, 1999, 15:147-157.
    Baker R A, Bruemmer J H. Quality and stability of enzymically peeled and sectioned citrus fruit.
    
    In:Nagy S,Attaway JA, editors. Citrus Nutrition and Quality, Washington, DC: American Chemical Society, 1989, 140-148.
    Baker R A, Wicker L. Current and potential applications of enzyme infusion in the food industry. Trends Food Sci Technol, 1996, 7:279-284.
    Bayer EA, Morag E, Lamed R. The Cellulosome a treasure-trove for biotechnology. Trends Biotechnol, 1994, 12:379-386.
    Beauchemin KA, Rode LM, Sewait VJH. Fibrolytic enzymes increase fiber digestibility and growth rate of steers fed dry forages. Can J Anim Sci, 1995, 75:641-644.
    Beguin P.Molecular biology of cellulose degradation. Annu Rev Microbiol, 1990, 44: 219-248.
    Benitez T, Limon C, Delgado-Jarana J, et al. Glucanolytic and other enzymes and their genes. In: Harman GF,Kubicek CP, editors. Trichoderma & Francis, 1998, 101-127.
    Bhat MK, Bhat S. Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv, 1997, 15:583-620.
    Bhat MK, Bhat S. Clostridium thermocellum cellulosome: dissociation, isolation and characterization of subunits and the potential biotechnological implications. In: Pandalai SG,editor. Recent Research Developments in Biotechnology and Bioengineering, Vol. 1. Part-I, Trivandrum, India, Research Signpost, 1998, 59-84.
    Bothast RJ, Nichols NN, Dien BS. Fermentation with new recombinant organisms. Biotechnol Prog, 1999, 15:875.
    Bruce A, Srinivasan U, Staines HJ, et al. Chitinase and laminarinase production in liquid culture by Trichoderma spp. And their role in bio-control of wood decay fungi. Int Biodeter Biodegr, 1995, 10:337-353.
    Buchert J, Oksanen T, Pere J, et al. Applications of Trichoderma reesei enzymes in the pulp and paper industy. In: Harman GF, Kubicek CP, editors. Trichoderma & Gliocladium Enzymes, biological control and commercial applications, Vol.2, 1998, 343-363.
    Burroughs W, Woods W, Ewing SA, et al. Enzyme additions to fattening cattle rations. J Anim Sci, 1960, 19:458-464.
    Caldini C, Bonomi F, Pifferi PG, et al. Kinetic and immobilization studies on fungal glycosidases for aroma enhancement in wine.Enzyme Microb Technol, 1994, 16:286-291.
    Canales AM, Garza R, Sierra JA, et al. The application of a P-glucanase with additional side activities in brewing. MBAA Tech Q, 1988, 25:27-31.
    Chet I, Benhamou N, Haran S. Mycoparasitism and lytic enzymes. In: Harman GF, Kubicek CP, editors. Trichoderma &Gliocladium Enzymes, biological control and commercial applications. Vol.2, London: Taylor & Francis, 1998, 327-342.
    Cho K M, Yoo Y J, Kang H S. 8-Integration of endo/exo-glucanase and β-glucosidase genes into the yeast chromosomes for direct conversion of cellulose to ethanol. Enzyme Microb Technol ,1999, 25:23-30.
    
    
    Claasen PAM, van Lier JB, Lopez-Contreras AM, et al. Utilisation of biomass for the supply of energy carriers. Appl Microbiol Biotechnol, 1999, 52:741-755.
    Coughlan M P. Cellulases: production, properties and applications. Biochem Soc Trans, 1985, 13: 405-406.
    Cowan WD. Animal feed. In: Godfrey T, West S, editors. Industrial Enzymology. 2nd ed. London, Macmillan Press, 1996, 360-371.
    De La Cruz J, Pintor-Toro JA, Benitez T, et al. Anovel endo-β-1,3-glucanase, BGN 13. 1, involved in the mycoparasitism of T.harzianum. J Bacteriol, 1995, 177:6937-6945.
    Deng XX, Ho NWY . Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol, 1990, 24/25:193-199.
    Divne C, Stahlberg J, Reinikaine T, et al. The three-dimensional crystal structure of the catalytic core of cellobiohydrolase I from Trichoderma reesei. Science, 1994, 265 (5171) : 524-528.
    Domek K M, Ingram L O. Determination of the intracellular concentration of ethanol in Saccharomyces cerevisiae during fermentation. Appl Environ Microbiol, 1986, 51:197-200.
    Domingues F C, Queiroz J A, Cabral J M S, et al .The influence of culture conditions on mycelial structure and cellulase production by Trichoderma reesei Rut C-30. Enzyme and Microbial Technology, 2000, 26: 394-401.
    Dominguez R. A common protein fold and similar active site in two distinct families of beta-glycanases. Nat Struct Biol, 1995, 2 (2) : 569-576.
    El-Nawwi S A, El-kader Amal Abd. Production of single-cell protein and cellulase from sugarcane bagasse: effect of culture factors.Biomass and Bioenergy, 1996,11 (4) :361-364.
    Fantozzi P, Petruccioli G, Montedoro G. Trattamenti con additivi enzimatici alle paste di oliva sottoposte ad estrazione per pressione unica: Influenze deile cultivars, dell'epoca di raccolta e della conservazione. Grasse, 1977, 54:381-388.
    Galante YM, De Conti A, Monteverdi R. Application of Trichoderma enzymes in food and feed industries. In: Harman GF, Kubicek CP,editors. Trichoderma &Gliocladium Enzymes, biological control and commercial applications. Vol. 2. London:Taylor & Francis, 1998a, 327-342.
    Galante YM, De Conti A, Monteverdi R. Application of Trichoderma enzymes in textile industry. In: Harman GF, Kubicek CP.editors. Trichoderma &Gliocladium Enzymes, biological control and commercial applications. London:Taylor & Francis, 1998b, 2:311-326.
    Galante YM, De Conti A, Monteverdi R. Application of Trichoderma enzymes in textile industry. In: Galante YM, Monteverdi R, Inama S. et al. New applications of enzymes in wine making and olive oil production. Italian Biochem Soc Trans, 1993, 4:34.
    Galbe M, Larsson M, Stenberg K, et al. Ethanol from wood: design and operationof a process development unit for technoeconomic process evaluation. ACS Symposium Series 666. American Chemical Society, Washington DC, 1997, 110-129.
    Galbe M, Zacchi G Simulation processes for conversion of lignocellulosics. In: Saddler JN (ed)
    
    
    Bioconversion of forest and agricultural plant residues. CAB International, Wallingford, UK, 1993, 291-319.
    Gilkes N R. Domains in microbial beta-1, 4-glycanases: sequence conservation, function, and enzyme families. Microbiol Rev, 1991, 55 (2) : 303-315.
    Godfrey T, West S. Industrial Enzymology, 2 nd ed. London: Macmillan Press, 1996.
    Graham H, Lowgren W, Pettersson D, et al. Effect of enzyme supplementation on digestion of a barley/pollard based peg feed. Nutrition Report International, 1988, 38:1073-1079.
    Grassin C, Fuquembergue P. Fruit juices. In: Godfrey T, West S, editors. Industrial enzymology, 2 nd ed. UK: Macmillan, 1996, 226-234.
    Gunata YZ, Bayonove CL, Cordonnier RE, et al. Hydrolysis of grape monoterpenyl glycosides by Candida molischiana and Candida wickerhamii β-glucosidases. J Sci Food Agric, 1990, 50:499-506.
    Gutierrez-Correa Marcel, Portal Leticia, Moreno Patricia, et al. Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar can bagasse.Bioresource Technology, 1999,68(2) 173-178.
    Haapala Reetta .Parkkinen Elke ,Suominen Pirkko, et al. Production of emdo-1,4-β-glucanase and xylanase with nylon-web immobilized and free Trichoderma reesei .Enzyme and Microbial Technology , 1996,18:495-501.
    Hall J, Simi A, Surani MA, et al. Manipulation of the repertoire of digestive enzymes secreted into the gastrointestional tract of transgenic mice. Bio/Technol, 1993, 1:376-379.
    Hari Krishna S, Janardhan Reddy T, Chowdary G V.Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast.Bioresource Technology ,2001,97, (2) :193-196.
    Hari Krishna S, Prasanthi K, Chowdary G V, et al. Simultaneous saccharification and fermentation of pretreated suar cane leaves to ethanol.Process Biochemistry ,1998,33 (8) :825-830.
    Harkki A, Uusitalo J, Bailey M, et al. A novel fungal expression system: secretion of active calf chymosin from the filamentous fungus Trichoderma reesei. Bio/Technol, 1989, 7:596-603.
    Harman GE, Kubicek CP. Trichoderma and Gliocladium: Enzymes, biological control and commercial appplications, Vol. 2. London: Taylor & Francis Ltd , 1998, 393.
    Henrissat B, Claeyssens M, Tomme P, et al.Cellulase families revealed by hydrophobiccluster analysis.Gene, 1989, 81: 83-95.
    Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J, 1991,280 (2) : 309-316.
    Henrissat B. Beta-glucosidase, beta-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold beta/alpha architecture and with two conserved glutamates near the carboxy-terminal ends of beta-strands four and seven. FEBS Lett,1995,363(2) :382-385.
    Ho NWY, Chen ZD, Brainard A. Proceedings of the Tenth International Conference on Alcohols,
    
    Colorado Springs, Col., 1993, 738-750.
    Humpf H-U, Schrier P. Bound aroma compounds from the fruit and the leaves of Blackberry (Rubus laciniata L.). J Agric Food Chem, 1991, 39:1830-1832.
    Humphrey A E. Hydrolysis of cellulose: Mechanism of enzymatic and acid catalysis. Brown R D and Jurasek L (Ed.), Advances in chemistry series 182, ACS, Washington D.C, 1979, 25.
    Jeffries TW, JinY-S. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol, 2000, 47:222-268.
    Jeffries TW, Shi N-Q .Genetic engineering for improved xylose fermentation by yeasts. In: Scheper T (ed) Adv Biochem Eng Biotechnol. Springer, Berlin, Heidelberg, New York, 1999, 117-161.
    Jeffris TW, Klungness JH, Sykes MS, et al. Comparison of enzyme-enhanced with conventional de-inking of xerographic and laser-printed paper. Tappi J, 1994, 77:173-179.
    Joutsjoki V, Torkkeli T. Nevalainen H. Transformation of T.reesei with the H.resinae glucoamylase P(gamP) gene: production of a heterologous glucoamylase by Trichodema reesei. Curr Gent, 1993, 24:223-229.
    Juy M, Amit A G, Alzari PM, et al. Crystal structure of a thermostable bacterial cellulose degrading enzyme. Nature, 1992, 357 (6373) : 89-91.
    Krammer G, Winterhalter P, Schwab M, et al. Glycosidecally bound aroma compounds in the fruits of prunus species: Apricot (P.armeniaca, L.),Peach (P.persica, L.), Yellow plum (P. Domestica, L.ssp. Syriaca). J Agric Food Chem, 1991, 39:778-781.
    Kraulis P J, Jones T A. Determination of three-dimensional protein structures from nuclear magnetic resonance data using fragments of known structures. Protein, 1989, 2(1) : 188-201.
    Kung L Jr, Kreck EM, Tung RS, et al. Effects of a live yeast culture and enzymes on in vitro ruminal fermentation and milk production of dairy cows. J Dairy Sci, 1997, 80:2045-2051.
    Leatham G, Myers G, Wegner T. Biochermical pulping of aspen chips:energy savings resulting from different fungal treatments. Tappi J, 1990, 73:197-200.
    Lewis GE, Hunt CW, Sanchez WK, et al. Effect of direct-fed fibrolytic enzymes on the digestive characteristics of a forage-based diet fed to beef steers. J Animal Sci, 1996, 74:3020-3028.
    Liming xia .Cellulase production by solid state fermentation on lignocellulosic waste from the xylose industry .Process Biochemistry , 1999, 34: 909-912.
    Linder M, Lindeberg G, Reinikainen T, et al. The difference in affinity between two fungal cellulose-binding domains is dominated by a single amino acid substitution. FEBS Lett, 1995a, 372 (1) : 96-98.
    Linder M, Mattine M L, Kontteli M, et al. Identification of functionally important amino acids in the cellulose-binding domains of Trichoderma reesei cellobiohydrolase I .Protein Sci, 1995b, 4 (6) : 1056-1064.
    Lorito M, Hayes CK, Di Pietro A, et al. EL Purification, characterisation, and synergistic activity of a glucan-1,3-glucosidase and N-acetyl-β-glucosaminidase from Trichoderma harzianum. Phytopathol,
    
    1994, 84:398-405.
    Lynd LR.Overview and evaluation of fuel ethanol from cellulosic biomass: technology, economics, the environment and policy. Annu Rev Energy Environ, 1996, 21:403-465.
    Macarron R, Beeumen J, Henrissat B, et al. Identification of an essential Glutamate residue in the active site of endoglucanase III. FEBS Lett, 1993, 316 (2) : 137-140.
    Mandels M. Applications of cellulases. Biochem Soc Trans, 1985, 13:414-415.
    Margolles-Clark E, Hayes CK, Harman GE, et al. Improved production of Trichoderma harzianum endochitinase by expression in Trichoderma reesei. Appl Environ Microbiol, 1996, 62:2145-2151.
    Marlatt C, Ho C-T, Chien M. Studies of aroma constituents bound as glycosides in tomato. J Agric Food Chem, 1992, 40:249-252.
    Martinez A, Rodrguez M, York S, et al. Effects of Ca(OH)2 treatments ("overtiming") on the composition and toxicity of bagasse hemicellulose hydrolysates. Biotechnol Bioeng, 2000, 69:526-536.
    McMillan JD. Bioethanol production: status and prospects. Renewable Energy, 1997, 10:295-302.
    Meunier-Goddik Lisbeth, Bothwell Michelle , Sangseethong Kunruedee, et al. Physicochemical properties of pretreated poplar feedstocks during simultaneous saccharification and fermentation. Enzyme and Microbial Technology ,1999,24:667-674.
    Mitsuishi Y, Nitisinprasert S, Saloheimo M, et al. Site-dircte mutagenesis of the putative catalytic residue of T.reesei .FEES Lett, 1990, 275(1) : 135-138.
    Moniruzzaman M, Dien BS, Skory CD, et al. Fermentation of corn fibre sugars by an engineered xylose utlizing Saccharomyces yeast strain.World J Microbiol Biotechnol, 1997, 13:341-346.
    Natividad Ortega, Maria D Busto, Manuel Perez-Mateos. Kinetics of cellulose saccharification by Trichoderma reesei cellulases. International Biodeterioration &Biodegradation, 2001, 47: 7-14.
    Noe P, Chevalier J, Mora F, et al. Action of enzymes in chemical pulp fibres. Part II: enzymatic beating. J Wood Chem Technol, 1986, 6:167-184.
    Nyyssonen E, Penttila M, Harkki A, et al. Efficient production of antibody fragments by the filamentous fungus Trichoderma reesei. Bio/Technol, 1993, 11:591-595.
    Oksanen J, Ahvenainen J, Home S. Microbial cellulase for improving filtrability of wort and beer. In: Proc Eur Brew Chem Helsinki, 1985, 419-425.
    Pabst A, Barron D, Etievant P, et al. Enzymatic hydrolysis of bound aroma constituents from raspberry fruit pulp. J Agric Food Chem, 1991, 39:173-175.
    Pajunen E. Optimal use of β-glucanases in wort production: In: EBC-Symposium on wort production, Monograph XI, Maffliers, France, 1986, 137-148.
    Palmqvist E, Hahn-Hagerdal B, Saengyel Z, et al. Simultaneous detoxification and enzyme production of hemicellulose hydrolysates after steam-pretreatment. Enzyme Microb Technol, 1997, 20:286-293.
    Paloheimo M, Miettinen-Oinonen A, Torkkeli T, et al. Enzyme production in Trichoderma reesei using the cbhl promoter. In:Suominen P, Reinikainen T, editors. Proceedings of the 2nd Tricel Symposium. Vol. 8. 1993, 229-237.
    
    
    Penttila M, Andre L, Lehtovaara P, et al. Efficient secretion of two fungal cellobiohydrolases by Saccharomyces cerevisiae. Gene, 1988, 63:103-112.
    Penttila M. Heterologous protein production in Trichoderma. In: Harman GF, Kubicek CP, editors. Trichoderma & Gliocladium-Enzymes, biological control and commercial applications, Vol 2. London: Taylor &Francis, 1998, 365-382.
    Perry TW, Purkhiser ED, Beeson WM. Effects of supplemental enzymes on nitrogen balance, digestibility of energy and nutrients and on growth and feed efficiency of cattle. J Anim Sci, 1966, 25:760-764.
    Pommier JC, Fuentes JL, Goma G Using enzymes to improve the product quality in the recycled paper industry. Part 1: the basic laboratory work. Tappi J, 1989, 72:187-191.
    Pommier JC, Goma G, Fuentes JL, et al. Using enzymes to improve the process and the product quality in the recycled paper industry. Part 2: industrial applications. Tappi J , 1990, 73:197-202.
    Poutanen K. Enzymes: an important tool in the improvement of the quality of cereal foods. Trends Food Sci Technol, 1997, 8:300-306.
    Prasad DY, Heitmann JA, Joyce TW. Enzymatic de-inking of coloured offset newsprint. Nord Pulp Pap Res J, 1993, 8:284.
    Prasad DY, Heitmann JA, Joyce TW. Enzyme de-inking of black and white letterpress printed newsprint waste. Progress in Paper Recycling, 1992, 1:21-30.
    Reczey K, Szengyel Z S, Eklund R, et al. Cellulase production by T.reesei. Bioresource Technology, 1996, 57:25-30.
    ReeseET, Mandels M. Cellulose and cellollose derivatives : part v, Bikales MN and Segal L (Ed), Iohn Wiley &.Sons.Inc., New York, 1971, 1079-1094.
    Reese E T. Polysaccharases and the hydrolysis of insoluble substrates. Proc Sess, 1976,(6) :9-12.
    Reese ET, Mandels M. Rolling with the time: production and applications of Trichoderma reesei cellulase. Annual Report of Fermentation Processes, 1984, 7:1-20.
    Reese ET. History of the cellulase program at the US Army Natick development centre. Biotechnol BioengSymp, 1976, 6:9-20.
    Romero M D, Aguado J, Gonzalez L, et al. Cellulase production by Neurospora crassa on wheat straw.Enzyme and Microbial Technology, 1999, 25: 244-250.
    Rouvinen J, Bergfors T, Teeri T. Three-dimisional structure of cellobiohydrolase II from T.reesei. Science, 1990, 249 (4967) : 380-386.
    Rust JW, Jacobsen NL, McGilliard AD, et al. Supplementation of dairy calf diets with enzymes. 1. Effect on nutrient utilization and on the composition of rumen fluid. J Anim Sci, 1965, 24:156-160.
    Saloheimo M, Bajaras V, Niku-Paavola M-L, et al. A lignin peroxidase-encoding cDNA from the white-rot fungus Phlebia radiata: characterisation and expression in Trichoderma reesi. Gene, 1989, 85:343-351.
    Saloheimo M, Niku-Paavola M-L. Heterologous production of ligninolytic enzyme: expression of the
    
    
    Phlebia radiata laccase gene in Trichoderma reesei. Bio/Technol, 1991, 9:987-990.
    Sarthy A V, McConanughty B, Lobo Z, et al. Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae.Appl Environ Microbio, 1987. 153:1996-2000.
    Sedlak M, Ho NWY. Expression of E. Coli araBAD operon encoding enzymes for metabolizing L-arabinose in Saccharomyces cerevisiae. Enzyme Microb Techno I . 2001. 2:16-24.
    Seiboth B, Hakola S, Mach R L, et al. Role of four major cellulases in triggering of cellulase gene expression by cellulose in Trichoderma reesei, J of Bacteriol, 1997, 179 (17) : 5318-5320
    Shou Takashima, Hiroshi Iikura, Akira Nakamura, et al, Overproduction of recombinant Trichoderma reesei cellulases by Aspergillus oryzae and their enzymatic properties. J of Biotechnology , 1998, 65: 163-171.
    Sinnott M L.Catalytic mechanism of enzymatic glycosyl transfers. Chem Rev, 1990,90( 12) : 1171-1192.
    South C R , Hogsett D A L, Lynd L R. Modeling simultaneous saccharification and fermentation of lignocellulose to ethanol in batch and continuous reactors. Enzyme and Microbial Technology , 1995,17:797-803.
    Souza M C de O, Roberto I C, Milagres A M F. Solid-state fermentation for xylanase production by Thermoascus aurantiacus using response surface methodology. Appl Microbiol Biotechnol, 1999, 52: 768-772.
    Spezio M, Wilson D B, Karplus P A. Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry, 1993, 32 (38) : 9906-9916.
    Stenberg K, Tenborg C, Galbe M, et al. Optimisation of steam pretreatment of SO2-impregnated mixed softwoods for ethanol production. J Chem Technol Biotechnol, 1998, 71:299-308
    Su P, Delaney S F, Rogers P L. Cloning and expression of a beta-glucosidase gene from Xanthomonas albilineans in Escherichia coli and Zymomonas mobilis. J Biotechnol, 1989, 9:139-152.
    Sulzenbacher G Structure of the Fusarium oxysporum endoglucanase I with a nonhydrolyzable substrate analogue: substrate distortion gives rise to the preferred axial orientation for the leaving group. Biochemistry, 1996, 35 (48) : 15280-15287.
    Sun Tao, Liu Beihui , Li Zuohu , et al .Effects of air pressure amplitude on cellulase productivity by Trichoderma viride SL-1 in periodic pressure solid state fermenter. Process Biochemistry, 1999, 34: 25-29.
    Svetlana Velkovska. Mark R Marten, David F Ollis. Kinetic model for batch cellulase production by Trichoderma reesei Rut C-30. Journal of Biotechnology, 1997, 54:83-94.
    Taherzadeh M J. Ethanol from lignocellulose: physiological effects of inhibitors and fermentation strategies. Ph.D. thesis, Chalmers University of Technology, Sweden, 1999a.
    Taherzadeh M J, Niklasson C, Liden G Conversion of dilute-acid hyrolyzates of spruce and birch to ethanol by fed-batch fermentation. Bioresource Technol, 1999b, 69:59-66.
    Takashima S, Nakamura A, Masaki H, et al. Cloning, sequencing, and expression of a thermostable cellulase gene of Humicola grisea. Biosci Biotechnol Biochem, 1997, 61 (2) : 245-250.
    
    
    Tantirungkij M, Nakashima N, Seki T, et al. Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng, 1993, 75:83-88.
    Tenborg C, Stenberg K, Galbe M, et al. Comparison of SO2 and H2SO4 impregnation of softwood prior to steam pretreatment on ethanol production. Appl Biochem Biotechnol, 1998, 70-72:3-16.
    Theurer B, Woods W, Burroughs W. Influence of enzyme supplements in lamb fattening rations. J Anim Sci, 1963, 22:150-154.
    Thomke S, Rundgreen M, Hessel man K. The effect of feeding high-viscosity barley to pigs. In: Proceedings of the 31st meeting of the European Association of Animal Production, Commission on Animal Production, Munich, Germany, 1980, 5.
    Tilbeurgh H, Tomme P, Claeyssens M, et al. Limited proteolysis of the cellobiohydrolase I from T.reesei. FEBS Lett, 1986, 204 (2) : 223-227.
    Tomme P, Gilkes NR, Miller RC Jr. et al. An internal cellulose-binding domain mediates adsorption of an engineered bifuctional xylanase/cellulase. Protein Eng, 1994, 7:117-123.
    Tomme P, Warren R A, Gilkes N R. Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol, 1995, 37 (1) : 1-81.
    Toon ST, Philippidis GP, Ho NWY, et al. Enhanced cofermentation of glucose and xylose by recombinant Saccharomyces yeast strains in batch and continuous operating modes. Appl Biochem Biotechnol, 1997, 63-65:243-255.
    Tormo J, Lamed R, Chirino A J, et al. Crystal structure of a bacterial family-IIIcellulose-binding domain: a general mechanism for attachment to cellulose. EMBO J, 1996, 15(21) : 5739-5751.
    Trimbur D E, Warren R A, Withers S G Region-directed mutagenesis of residues surrounding the active site nucleophile in beta-glucosidase from Agrobacterium faecalis. J Biol Chem, 1992, 267 (15) : 10248-10251.
    Tull D, Withers S G, Gilkes N R, et al. Glutamic acid 274 is the nucleophile in the active site of a retaining exoglucanase. J Biol Chem, 1991, 266 (24) : 15621-15625.
    Uhlig H. Industrial enzymes and their applications, New York: John Wiley & Sons, Inc., 1998, 435. Visser J, Voragen A G J. Pectins and Pectinases. Proceedings of an International Symp., Progress in Biotechnology, Vol. H.Amsterdam: Elsevier, 1996, 990.
    Vlaev S D, DjejevaG, Raykovska V, et al. Cellulase production by Trichoderma sp.grown on corn fibre substrate. Process Biochemistry, 1997,32 (7) : 561-565.
    Von Sivers M, Zacchi G, Olsson L, et al. Cost analysis of ethanol from willow using recombinant Escherichia coli. Biotechnol Prog, 1994, 10:555-560.
    Walsh GA, Power RF, Headon DR. Enzymes in animal feed industry. Trends Biotechnol, 1993, 11:424-430.
    Wang Q, Tull D, Meinke A, et al. Glu280 is the nucleophile in the active site of Clostridium thermocellum CelC, a family Aendobeta-1, 4-glucanase. J Biol Chem, 1993, 268(19) : 14096-140102.
    Ward M, Wilson LJ, Kodama KH. et al. Improved production of chymosin in Aspergillus by expression
    
    as a glucoamylase chymosin fusion. Bio/Technol, 1990, 8:435-440.
    Wyman C E. Opportunities and technological challenges of bioethanol. Presentation to the committee to review the R and D strategy for biomass-derived ethanol and biodiesel transportation fuels. Review for the research strategy for biomass-derived transportation fuels. National Research Council. National Academy, Washington DC, 1999, 1-48.
    Xu G Y, Ong E, Gilkes N, et al. Solution structure of a cellulose-binding domain from Cellulornonas fimi by nuclear magnetic resonance spectroscopy. Biochemistry, 1995, 34(21): 6993-7009.
    陈柏铨,彭万峰,付国英,等.纤维素直接发酵乙醇微生物的选育Ⅲ:里氏木霉与运动发酵单胞菌原生质的融合的研究.纤维素科学与技术,19942(2):53-58.
    陈春洪,邝哲师,陈薇,等.里氏木霉纤维素酶产生条件的研究.微生物通报,1998,25(2):77-79.
    陈洪章,李佐虎.纤维素原料微生物与生物量全利用.生物技术通报,2002,(2):25-29.
    陈庆森,刘剑虹,潘建阳,等.利用多菌种混合发酵转化玉米秸杆的研究.生物技术,1999,9(4):15-20.
    陈盛,黄智跃,刘艳如.壳聚糖固定化纤维素酶的研究.生物化学与生物物理进展,1996,23(3):250-254.
    陈新爱,夏黎明,岑沛霖.里氏木霉纤维二糖酶bgl Ⅱ基因的cDNA克隆及其在大肠杆菌中的表达.菌物系统,2002,21(2):223-227.
    崔福绵,刘菡,韩辉.康宁木霉CP88329纤维素酶产生条件的研究.微生物通报,1995,22(2):72-76.
    杜秉海,曲音波,高培基,等.纤维废渣固态乙醇发酵及纤维素—淀粉共发酵的研究.食品与发酵工业,1995,21(5):15-20.
    段金柱,曹淡君.固体发酵与液体发酵生产纤维素酶产率与催化性能比较.粮食与饲料工业,2000,3:24-26.
    高洁,汤烈贵主编.纤维素科学.北京:科学出版社,1996,24-31.
    管斌,孙艳玲,谢来苏,等.抗分解代谢阻遏纤维素酶突变株的选育.无锡轻工大学学报,2000,19(3):244-247.
    韩峰,孙彩云,宋桂经,等.拟康氏木霉(Trichoderma pseudokonlngii)Uv Ⅲ产纤维素酶液体发酵研究.工业微生物,2002,32(1):28-30,35.
    郝志军,李忠兴.青霉NXP25纤维素酶的产生及性质.微生物学通报,2002,29(1):64-66.
    李洪刚,段堂荣.纤维素酶在乙醇生产中的应用.酿酒科技,1996,3:44-45.
    李素芬,霍贵成.纤维素酶的分子结构组成及其功能.中国饲料,1997,13:12-14.
    李宪臻,黄云战,徐德贵,等.天然纤维素的微生物降解机理研究进展.食品与发酵工业,1996,22(2):74-78.
    李忠兴,焦旭东,郝志军.康宁木霉液体深层发酵生产纤维素酶.微生物通报,1999,26(6):403-405.
    梁霆,王遂,莫志忠,等.纤维索酶液体深层发酵条件的研究.生物技术,1997,7(6):22-26.
    林开江,阮丽娟,王龙英,等.用玉米粉生产纤维素酶的发酵工艺探讨.生物技术,1998,8(2):31-34.
    彭志英主编.食品生物技术.北京:中国轻工业出版社,1999,43-48.
    
    
    施安辉,刘淑君,肖海杰.纤维素酶固体发酵及其在食品工业中的应用.食品科学,1997,18(7):13-18.
    谭宏,谢小保,莫勇,等.里氏木霉液体发酵产纤维素酶的研究.工业微生物,1996,26(1):7-11.
    汪天虹,王春卉,高培基.纤维素酶纤维素吸附区的结与功能.生物工程进展,2000,20(2):37-40.
    王成华,孙纳新,工健鹏,等.里氏木霉91-3纤维素酶产生条件的研究.食品与发酵工业,1996,22(5):1-5.
    王成华,王健鹏,马梦瑞,等.高活性纤维素酶的研究.中国饲料,1997,8:22-24.
    王丹,林建强,曲音波,等.纤维素酶吸附与纤维素水解.发酵工程学科的进展—第三次全国发酵工程学术讨论会论文集.北京:中国轻工业出版社,2002,324-327.
    王冬,曲音波,高培基.L-山梨糖提高木霉纤维素酶合成速率机制的研究.真菌学报,1995,14(2):143-147.
    王冬,曲音波,高培基.腺苷三磷酸和环腺苷单磷酸对丝状真菌纤维素酶合成的调节.微生物学报.1996,36(1):12-18.
    王景林,刘晓明,吴东林,等.纤维素酶产生菌黑曲霉X-15的选育及其产酶条件.中国兽医学报,2000,20(1):97-99.
    王景林,吴东林.康氏木霉B—7纤维素酶的产生条件及酶学性质研究.生物学杂志,1996,5:17-19
    王景林,尹清强,吴东林,等.高活力纤维素酶菌株康氏木霉B-7的选育与产酶条件的研究.生物技术,1996,6(6):14-17.
    王遂,李洁,郑之兰,等.纤维素酶液体深层生产工艺的研究.生物技术,1998,8(6):26-31.
    邬敏辰,李剑芳.里氏木霉纤维素酶突变株选育的研究.中国酿造,1998,2:11-14.
    邬敏辰,李江华,邬显章.黑曲霉固体培养生产纤维素酶的研究.酿酒,1997,6:5-9.
    吴克,杨本宏,张洁,等.Trichoderma viride菌生物量测定及其纤维素酶合成特征.食品与发酵工业,2002,28(8):9-12.
    吴显荣,穆小民.纤维素酶分子生物学研究进展及趋向.生物工程进展,1994,14(4):25-27.
    夏黎明,代淑梅,岑沛霖.应用固定化里氏木霉糖化玉米秆纤维素的研究.微生物学报,1998,39(2):114-119.
    夏黎明.固体发酵生产高活力纤维二糖酶.食品与发酵工业,1999,25(2):1-5.
    肖春玲,徐常新.微生物纤维素酶的应用研究.微生物学杂志,2002,22(2):33-35
    肖冬光,丁友肪,王德培,等.里氏木霉纤维素酶在乙醇生产中应用的研究.酿酒,1997.3:12-16.
    肖志壮,王婷,汪天虹,等.瑞氏木霉内切葡聚糖酶Ⅲ基因的克降及其在酿酒酵母中的表达.微生物学报,2001,41(4):391-396.
    肖志壮,吴志红,王婷,等.瑞氏木霉EG Ⅰ3′-UTR对基因在酿酒酵母中表达的影响.微生物学报,2001,41(5):587-591.
    阎伯旭,齐飞,张颖舒,等.纤维素酶分子结构和功能研究进展.生物化学和生物物理进展,1999,26(3):233-237.
    阎伯旭,孙迎庆,高培基.有限酶切拟康氏木霉纤维素酶分子研究其结构域的结构和功能.纤维素科学与技术,1998,6(3):1-9.
    
    
    余晓斌,具润谟.里氏木霉液体发酵法生产纤维素酶.食品与发酵工业,1998,24(1):20-25.
    余晓斌,具润谟.分批与流加发酵法生产纤维素酶的研究.食品与发酵工业,1999,25(1):16-19.
    余晓斌,具润谟.里氏木霉Rut C-30液态发酵法生产纤维素酶.无锡轻工大学学报,1998,17(2):6-10.
    云秀芳.纤维素酶在酱油生产中的应用研究.中国调味品,2001,(3):15-19.
    张德强,黄镇亚,张志毅.绿色木霉纤维素酶AS3.3032液体发酵的研究.北京林业大学学报,2001,23(1):56-58.
    张加春,王权飞,余尊祥,等.里氏木霉纤维素酶产生条件研究.食品与发酵工业,2000,26(3):21-23.
    张礼星,石贵阳,徐柔,等.里氏木霉利用麦糟生产纤维素酶.食品与发酵工业,1999,25(3):23-25.
    张苓花,王运吉.固态混合发酵生产纤维素酶的研究.中国饲料,1998,2:14-17.
    张培德,胡琛,余文博.添加蜗牛酶对纤维素酶产生菌发酵的影响初探.工业微生物,2000,30(4):6-10.
    张中良,兰云贤,章元明,等.不同培养条件对纤维素酶产量和酶活力影响.中国饲料,1998,18:10-11.
    张中良,章元明,兰云贤.不同培养条件对纤维素酶产量和活力影响的研究.中国饲料,1997,3:20-22.
    章克昌主编.乙醇与蒸馏酒工艺学.北京:中国轻工业出版社,1995,293-295.
    赵小立,贺筱蓉,周红军,等.黑曲霉产纤维素酶菌株的激光选育.中国激光,1996,23(7):667-672.
    郑佐兴,段明星,徐文联,等.高活性纤维素酶菌株的筛选及其产酶条件的研究.微生物学杂志,1996,16(1):35-38.
    祝令香,于巍,梁改琴,等.康氏木霉K801纤维素酶cbh2基因的克隆及序列分析.菌物系统,2001,20(2):174-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700