水力学模型在水文学中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国是一个水旱灾害频发的国家,水利在国民经济中具有重要的位置,水利的兴衰直接影响到国家的稳定和人民的生活。在科学技术发展日新月异的今天,水利也应跟上现代化的要求。科学治水需要有科学的工具。水力学模型是平原区洪水演进、流域防洪调度、兴利除害、技术治水、科学管水合理利用的重要工具。本文结合流域情况,首先提出了采用变动权重新安江三水源模型计算流域面平均雨量,可以减少由于降雨的不均匀性、暴雨中心位置不同而引起由固定权重法计算的面平均雨量失真,再针对水文学模型难以预报平原区水位过程,提出了应用水力学洪水演进模型。通过水文学与水力学模型的耦合,可以较好地考虑回水的影响预报出水位。
     针对潮汐的传播和涨、落潮不同的水力特性,本文对Saint-Venant方程组差分求解,将曼宁系数分解为涨潮系数和和落潮系数进行率定,准确地计算出逐时段河道各断面的水位和流量。将所建立的水力学模型应用于平原区水资源供需平衡分析及宁波三江口河口潮流量推算,结果表明,模拟过程与实测过程吻合良好,本文建立的模型是实用的,逐步完善可以更广泛地在生产中应用。
China is a country in which drought and flood has often happened. Water conservancy is playing important role in national economy. The development of water conservancy has a direct influence on the stability of nation and the level of people's life. Today, age of science and technology change with each passing day, development of water conservancy must fit for the demand of modernization. Science of water control required a tool of science. Hydrodynamic model is important tools of river flood routing and flood control, promote the beneficial and abolish the harmful, technically water control and scientific water manage. Based on the characteristics of drainage basin, the variable weighted method has been integrated into Xin'anjiang Model to calculate the areal rainfall, the distortion is reduced for asymmetry of rainfall and the different center of rainstorm. Because of the difficulty for forecasting water level in plain basin using hydrology method, a hydrodynamic model is brought forward. It can be preferable consider the influence of backwater to forecast water level in plain basin by coupling hydrodynamic model and hydrology model.According to different hydraulic characteristic of flood and ebb tide, Manning Coefficient is calibrated separately to calculate water level and discharge at each section on successive periods by applying the Saint-Venant equations with differential method. The model is applied to analyse the demand and supply of water resources in plain and simulate the tidal-discharge in Ningbo City. The results show that the calculated discharges are closed to the observed values, this model is practicable and it can widely used in yield by improving.
引文
[1] 葛守西.现代洪水预报技术[M].北京:中国水利水电出版社,1999.
    [2] Horton R E. The Role of Infiltration in the Hydrologic Cycle[M]. Trans. AGU, 1931.
    [3] Sherman L K. Streamflow from Rainfall by the Unit Hydrograph Method[M]. Eng. N. Rec, 108, 1932.
    [4] McCarthy G T. The unit hydrograph and flood routing[J]. Presented at conference of U. S. Corps of Engineers, North Atlantic Division, 1938(6).
    [5] 赵人俊,流域水文模拟[M].北京:水利电力出版社,1984.
    [6] 钱正英,张光斗主编.中国可持续发展水资源战略研究综合报告及各专题报告[M].北京:中国水利电力出版社,2001.
    [7] Hino M. Runoff Forecasts by Linear Predictive Filter[J]. Proc. ASCE, J. Hyd. Div., 96 (Hy3), 1970: 681-701.
    [8] Hino M. On-line Prediction of a Hydrologic System[M]. presented ata ⅤⅩ Congre of IAHR, Istanbul, 1973.
    [9] Kidanidis P K, Bras R L. Real-Time Forecasting with a Conceptual Hydrologic Model [(1) Analysis of Uncertainty; (2) Application and results][J]. Water Resour. Res., (1) 1980, 16(6): 1025-1033, (2) 1980, 16(6): 1034-1044
    [10] Restrepo Posada P J, Bras R L, Automatic Parameter Estimation of a Large Conceptual Rainfall-Runoff Model: A Maximum Likelihood Approach[J]. Department of Civil Engineering Massachusetts Institute of Technology Report, 1982, No. 267.
    [11] 朱华.马斯京根法的矩阵方程求解法[J].水文.1987,(4):7-9.
    [12] Freeze R A, Harlan R L. Blueprint of a Physically-based Digitally-simulated Hydrological Response model[J]. Journal of Hydrology, 1969, 9:237-258.
    [13] Beven K J, Kirkby M J. A physically based variable contributing area model of basin hydrology[J]. Hydrological Science Bulletin, 1979, 24(1):43-69.
    
    [14] Abbott M B, Bathurst J Cetal. An introduction to the European Hydrological System-System Hydrologique European, "SHE" 1: History and Philosophy of a Physically based Distributed Modeling System[J]. Journal of Hydrology, 1986a, 87: 45-49.
    [15] Famoglietti JS, Wood EF, Sivapala M, et al. A catchment scale water balance model for FIFE[J]. Journal of Geophysics Research, 1992, 97(D17):18997-19007.
    [16] 李兰等.流域水文数学物理耦合模型[J].中国水利学会优秀论文集,2000,322-329.
    [17] 苏凤阁,郝振纯.大尺度分布式水文模型研究[J].水利水电工程理论研究及技术应用,2000.
    [18] 郭生练等.基于DEM的分布式流域水文物理模型[J].武汉水利电力大学学报,2000,33(6):1-5.
    [19] 吴险峰,刘昌明.流域水文模型研究的若干进展[J].地理科学进展,2002,21(4):341-348.
    [20] 芮孝芳,朱庆平.分布式流域水文模型研究中的几个问题[J].水利水电科技进展,2002,(6):56-58.
    [21] 庄一鸰等.水文预报[M].北京:华东水利学院、成都科学技术大学合编,1999.
    [22] 王船海,李光炽.实用河网水流计算[M].南京:河海大学出版社,2001年.
    [23] 浙江省水利厅编.浙江省河流简明手册[M].西安:西安地图出版社出版,1999年.
    [24] 中华人民共和国水利部.水文情报预报规范(SL250-2000).
    [25] 邵学强等.浦阳江流域水文水力学洪水预报模型[J].浙江水利科技,2003,(3):10-11.
    [26] 邵学强等.浙江省东苕溪瓶窑站变动权重新安江三水源模型的研究[J].水文,2004,24(6),32-34.
    [27] 金新芽、邵学强.一维水动力模型在河口潮流推算的应用[J].东海海洋,2005(4).
    [28] 李光炽.流域洪水演进模型及其参数反问题研究[D].河海大学博士论文,2001 年.
    
    [29] 汪德灌.计算水力学理论与应用[M].南京:河海大学出版社,1989.
    [30] K.麦赫默德,K.叶副耶维奇.明渠不恒定流[M].北京:水利电力出版社,1987.
    [31] M.B.阿包特.计算水力学[M].北京:海洋出版社,1985.
    [32] 李光炽、王船海.大型河网水流模拟的矩阵标识法[J].河海大学学报,1995,23(1):36-43
    [33] 李光炽、王船海.内涝型流域洪灾洪水模拟[J].成都科技大学学报,1995,(1):87-96.
    [34] 王船海、李光炽.行洪区型流域洪水模拟[J].成都科技大学学报,1995,(2):6-14.
    [35] 李光炽等.城市防洪的一种方法—纳潮[J].自然灾害学报,1995,4(2):44-50.
    [36] 王船海、李光炽.流域洪水模拟[J].水利学报,1996,(3):44-50.
    [37] Abott, M. B., Computational Hydraulics[m]. Pitman, London, 1979
    [38] 张英,李宪文主编.防汛手册[M].北京:中国科学技术出版社,1992.
    [39] 胡明思、骆承政.中国历史大洪水[M].北京:中国书店,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700