基于SOBEK模型的黄河三角洲自然保护区淡水湿地生态需水量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,由于黄河进入河口地区的水沙资源量减少、河道渠化、农业开发和城市化影响等原因,黄河河口生态系统尤其是作为黄河河口重要生态单元的河口淡水湿地出现了生态退化、面积萎缩、生物多样性衰减等严重生态失衡问题,威胁黄河三角洲生态系统的稳定和经济社会的可持续发展。因此,黄河河口水量供给和生态用水的基本保证成为维持和重建河口生态系统的关键。
     本文以黄河三角洲自然保护区内的淡水湿地为研究对象,围绕水量模拟和黄河水量分配为专题展开研究。首先,分析黄河干流利津至入海口段资料,在SOBEK模型中建立了一维水动力学模型。该模型以描述河道水流运动的Saint-Venant方程组为基础,按一维ADI法进行离散,用追赶法对离散形成的线性代数方程组进行求解,计算结果符合实际情况。然后,在解译的湿地DEM资料的基础上,在SOBEK模型中建立了二维水动力学模型,按照类似一维情况求解。根据历年遥感影像,以及多年来黄河水沙情况,确定恢复芦苇湿地的面积,制定相应的工程措施,最终在黄河水量与湿地内芦苇生长需求之间求得了较佳方案,湿地漫流结果基本符合黄河水量要求及芦苇生长条件。
     计算成果表明,SOBEK模型在黄河三角洲自然保护区內的生态需水量计算是可行的,为生态需水量研究探索了新的方法。本研究为河口湿地生态需水,保护河口生态系统,以及黄河水资源管理与调度提供技术支持,是维持黄河健康生命的关键问题之一。
Recently, because of the reduction of water and sand resources coming into the Yellow River Delta, channellizing of riverway, developing of agriculture, citifying and so on, ecosystem in Yellow River estuary, especially freshwater wetland, appeared ecology degeneration, area shrinking, biologic diversity decreasing and serious ecology unbalance problems, which threaten ecosystem stabilization of Yellow River Delta, and sustainable development of economy society. So, supplying water and guaranteeing basic ecologic use is the key of sustaining and rebuilding estuary ecosystem.
     Make freshwater wetland in Yellow River Delta as study object, and make water quantity simulation and distribution as subject. Firstly, analyse the data from Yuwa. to sea, and set up one-dimension SOBEK model, which based on Saint-Venant equation, dispersed by ADI scheme, solved by matching pursuit method. And the result accords to the real situation. Then, based on DEM data of wetland, set up two-dimension SOBEK model, and solve it the same as one-dimension method. According to past years SPOT images, and water and sand quantity, confirm the area of reed wetland restoration, and make corresponding project measure. At last, make better projcet between water quantity of Yellow River and demand of reed growth, and overflow result accords to the both need.
     Results indicate that it's feasible of calculating ecology water demands in Yellow River Delta by SOBEK model, and make a new method. The research supports for wetland ecology water demand, protecting estuary ecosystem, and water resources manage and attemper. This is one of the key problems about maintaining the healthy of Yellow River.
引文
[1] 庞家珍,姜明星.黄河河口演变[J].海洋湖泊通报,2003(3):1-13.
    [2] 许健民.黄河三角洲(东营市)湿地评价与可持续利用研究[R].2001:1-19.
    [3] Atkinson. G and K. Hamilton. Accounting for progress: Indicators for sustainable development[J]. Environment. 1996, 38(7): 16.
    [4] 李鸿凯.向海湿地生态安全评价及恢复研究[D].2002:1-7.
    [5] 崔保山,杨志峰.湿地生态环境需水量研究[J].环境科学学报,2002,22(2):219-223.
    [6] 崔保山,杨志峰.湿地生态环境需水量等级划分与实例分析[J].资源科学,2003,25(1):21-28.
    [7] 张永泽,王恒.自然湿地生态恢复研究综述[J].生态学报,2001,21(2):309-314.
    [8] 王菲.复式河道数值模型应用研究[D].2003:17-18.
    [9] 芮孝芳.水文学原理[M].南京:河海大学出版社,2004.
    [10] SOBEK technical reference manual, version 2.10.
    [11] 谢鉴蘅.河流模拟[M].北京:中国水利水电出版社,1990:18-15,22-361.
    [12] 杨国录.河流数学模型[M].北京:海洋出版社,1993:115-123,175-181.
    [13] 谭维炎.计算浅水动力学[M].北京:清华大学出版社,1998:6-12.
    [14] 吴作平等.河网水流数值模拟方法研究[J].水科学进展,2003(5):350-353.
    [15] 李义天.河网非恒定流隐式方程组的汉点分组解法[J].水利学报,1997(3):49-51.
    [16] 齐学斌,庞鸿宾,赵辉等.地表水地下水联合调度研究现状及其发展趋势[J].水科学进展,1999(1):89-94.
    [17] 赖锡军,汪德耀.山溪性河流水动力学耦合模型研究[J].河海大学学报,2002(5):57-60.
    [18] Pieter Wesseling. Principles of Computational Fluid Dynamics[M]. Sptinger, 2001: 334-338.
    [19] 汪德爟.计算水力学理论与应用[M].河海大学出版社,1989.
    [20] Dronkers JJ.河流近海区和外海的潮汐计算[J].水利水运科技情况,1976(增刊):24-67.
    [21] 张二骏等.河网非恒定流三级联合解算法[J].华东水利学院学报,1982(1):1-134.
    [22] 吴寿红.河网非恒定流四级解算法[J].水利学报,1985(8):42-50.
    [23] 芮孝芳,冯平.多支流河道洪水演算方法的探讨[J].水利学报,1990(2):26-32.
    [24] 李义天.河网非恒定流隐式方程组的汉点分组解法[J].水利学报,1997(3):49-57.
    [25] 程文辉.明渠计算中的双消除法的应用[J].华东水利学院学报,1985(3):60-725.
    [26] 白玉川,万春艳,黄本胜等.河网非恒定流数值模拟的研究进展[J].水利学报,2000(12):43-47.
    [27] 李毓湘,逢勇.珠江三角洲地区河网水动力模型研究[J].水动力学研究与进展,2001, 16(1):143-155.
    [28] 韩龙喜,张书农,金忠青.复杂河网非恒定流计算模型——单元划分法[J].水利学报,1994(2):53-56.
    [29] 姚琪,丁训静,郑孝宇.运河河网水量数学模型的研究和应用[J].河海大学学报,1991(7):9-17.
    [30] 徐小明.求解大型河网的非恒定流的非线性方法[J].水动力学研究与进展,2001(3):1-3.
    [31] 徐小明,张静怡,丁健.河网水力数值模拟的松弛迭代法及水位的可视化显示[J].水文:2000(6):1-3.
    [32] Mcguirk J. J., Rodi W. A depth-averaged mathematical model for the near field of side discharge into open-channel flow[J]. Fluid Mech, 1978(86): 761-781.
    [33] Fennema R.J., Chaudhry M H. Implicit methods for two-dimensional unsteady free-surface flows[J]. HydrRes, 1989, 27(3): 321-332.
    [34] Molls T., Molls F.. Space-time conservation method applied to Saint Venant equations[J]. Hydr Engrg, ASCE, 1998, 124(5): 501-508.
    [35] Mingham C. G., Causon D M. High-resolution finite-volume method for shallow water flows[J]. HydrEngrg, ASCE, 1998, 124(6): 605-613.
    [36] Hon Y.C., Cheung K F, Mao X Z, et al.. Multiquadric solution for shallow water equations[J]. HydrEngrg, ASCE, 1999, 125(5): 524-533.
    [37] 溪梅成.数值分析方法[M].合肥:中国科学技术出版社,1995.
    [38] Peaceman D.W., Rachford jr H.H.. The Numerical Solution of Parabolic and Elliptic Differential Equations[J]. Soc.Ind., 1955: 9-21.
    [39] Winninghoff F. J.. On the Adjustment toward a Geostrophic Balance in a Simple Primitive Equation Model with Application to the Problems of Initialization and Objective Analysis[J]. Ph. D. Thesis Dept. of Meteorol. Los Angeles: University of California, 1968: 1-20.
    [40] Arakawa A. and V. R. Lamb. Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model[J]. Methods in Computational Physics, 1977(17):
    [41] Stelling.G.S., A.K. Wiersma, and J.B.T.M. Willemse. Practical aspects of accurate tidal computations[J]. Hydr. Eng., 1986(112): 802-817.
    [42] Wilders P., Th.L. van Stijn, G.S. Stelling, and G.A. Fokkema. A fully implicit splitting method for accurate tidal computations[J]. Num. Meth. in Eng., 1988 (26): 2707-2721.
    [43] Stelling G.S.. On the Construction of Computational Methods for Shallow Water Flow Problems[D]. Delft University of Technology, the Netherlands, 1983: 103-117.
    [44] G. S. SteIIing, S. E A. Duinmeijer. A staggered conservative scheme for every Froude number in rapidly varied shallow water flows[J]. International Journal for Numerical Methods in Fluids, 2003(43): 1329-1354.
    [45] Leendertse J. J.. Aspects of a computer model for long period water-wave propagation[J]. BAND Corporation Memorandum RM-5294-PR, 1967: 35-47.
    [46] Casulli V.. Semi-implicit finite differential methods for two-dimensional shallow water equation[J]. Journal of Computational Physics, 1990(86): 56-74.
    [47] 陶文铨.数值传热学(第2版)[M].西安交通大学出版社,2001.
    [48] 王晓玲.复杂河网中洪水演进二维数值仿真及其应用[J].天津大学学报,2005,5(5):416-421.
    [49] Leendertse J J, Critton E C. A Water Quality Simulation Model for Well Mixed Estuarins and Coastal Seas[J]. Computation Procedures. The Rand Corporation, 1971 (Ⅱ): 1-53.
    [50] Lin B, Falconer R A. Three- dimensional layer integrated modeling of estuarine flows with flooding and drying[J]. Estuarine, Coastal and Shelf Science, 1997(44): 737 -751.
    [51] 程文辉,王船海.用正交曲线网格及“冻结法”计算河道流速场[J].水利学报,1988(6):18-25.
    [52] 曹志芳,李义天.蓄滞洪区平面二维干河床洪水演进数值模拟[J].应用基础与工程科学学报,2001,9(1):74-79.
    [53] 何少苓,王连祥.窄缝法在二维边界变动水域计算中的应用[J].水利学报,1986(12):11-19
    [54] Frank E., Ostan A., Caccato M. & Stelling G.S.. Use of an integrated one dimensional-two dimensional hydraulic Modelling approach for flood hazard and risk mapping[J]. River Basin Management, eds R.A. Falconer & W.R. Blain, WIT Press, Southampton,. UK, 2001: 99-108.
    [55] A. Verwey. Latest Development in Floodplain Modelling — 1D/2D Integration.
    [56] 黄河水利委员会,黄河河口淡水湿地生态需水量研究[R].
    [57] 邵景力,崔亚莉,张德强.基于包气带水分运移数值模型的黄河三角洲蒸发量研究[J].地学前缘,2005,12(特刊).
    [58] 于文颖,迟道才等.盘锦芦苇湿地蒸发散特征研究[J].沈阳农业大学学报,2006,37(5):758-562.
    [59] 吴持恭.水力学(上册)[M].北京:高等教育出版社,1993.
    [60] 黄河水利委员会,黄河流域水资源综合规划[R].
    [61] 刘月杰,博斯腾湖芦苇湿地生态恢复研究[D].2004:47-50.
    [62] 芦苇[M].西安:科技出版社,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700