分数阶微积分在粘弹性材料本构方程中的某些应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文由彼此相关而又独立的四章所组成。第一章为序言,简要介绍了本文所需的数学工具,也即分数阶微积分的基本概念、发展历史及应用。在§1.1节中,简要介绍了分数阶微积分的发展历史及其最近的应用,给出了Riemann-Liouville型分数阶积分算子_0D_t~(-α)(0<R(α)<1)、微分算子_0D_t~β(0<R(β)<1)和局部分数阶导数D~qf(y)的定义及主要性质,并讨论了分数阶积分和微分算子的Laplace变换。在§1.2节中,给出了广义Mittag-Leffler函数E_(α,β)(z)的定义及其某些重要公式。在§1.3节中,给出H-Fox函数H_(p,q)~(m,n)[(?)]的定义、级数表达式、渐近性态及其基本性质,并讨论了H-Fox函数的特例,如广义Mittag-Leffler函数E_(α,β)(z)和H_(1,2)~(1,1)(z),Fox-H函数是求解分数阶微分方程的有力工具。在§1.4节,将分数阶微积分理论应用在粘弹性材料的本构方程中,分别讨论了整数阶粘弹性模型和分数阶粘弹性模型的发展及其应用。本章是以后各章的基础。
     在第二章用分数阶的St.Venant模型研究了人颅骨的粘弹性。首先将标准的整数阶St.Venant模型推广至如下的分数阶形式:然后应用离散求逆Laplace变换的方法,根据Boltzmann迭加原理,可得在如下的准静态加载过程
This paper is composed of four chapters, which are independent and correlative to one another. In chapter 1, i.e. introduction, the history and applications of fractional calculus are introduced. In section §1.1, the development history and recent applications of the fractional calculus are introduced concisely, the definitions and the main properties of the Riemann-Liouville fractional integral operator _0D_t~(-α)(0 < R(α) < 1) and differential operator _0D_t~β (0 < R(β) < 1) and local fractional derivative D~qf(y) are given, and the Laplace transforms of fractional integral and derivative operators are discussed. In section §1.2, the definitions and some important formulae of the generalized Mittag-Leffler function E_(α,β)(z) are given. In section §1.3, the definition, series expression, asymptotic behavior and some basic properties of H-Fox function The special cases of the Fox function are discussed, such as the generalized Mittag-Leffler function E_(α,β)(z) and H_(1,2)~(1,1)(z). H-Fox function is a powerful tool for the solving of the fractional differential equations. In section §1.4, the fractional calculus theory is applied to the constitutive equations of viscoelastic materials. The developments and applications of the integer-order viscoelastic models and the fractional viscoelastic models are discussed respectively. This chapter is the basis for the following chapters.
    In chapter 2, we investigate the viscoelasticity of human cranial bone by fractional St. Venant model. Firstly the standard (integer-order) St. Venant model is generalized to the fractional-order form as follows:
    Applying the discrete inverse Laplace transform method and the Boltzmann superpo-
引文
[1] R. Hilfer, Applications of Fractional Calculus in Physics[M]. World Scientific Press, Singapore, 2000.
    [2] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations[M]. John Wiley & Sons, Inc., New York, 1993.
    [3] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional'Integrals and Derivatives: Theory and Applications [M]. Gordon and Breach, New York, 1993.
    [4] H. M. Srivastava and R. K. Saxena, Operators of fractional integration and their appli- cations[J]. Appl. Math. Comp., 2001, 118: l-52.34z
    [5] K. B. Oldham and J. Spanier, The Fractional Calculus[M]. Academic Press, New York, 1974.
    
    [6] I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and some of their Applications[M]. Academic Press, San Diego, 1999.
    
    [7] B. B. Mandelbrot, The Fractal Geometry of Nature[M]. Freeman, San Francisco, 1982.
    [8] B. B. Mandelbrot (Translated by Wen Zhiying and Su Hong), Les Objets Fractals: Forme, Hasard et Dimension[M]. World Publishing Corporation, Beijing, 1999.
    [9] B. B. Mandelbrot and M. Frame, Fractals: Encyclopedia of Physical Science and Technology [M]. 2001, 6: 185-208.
    [10] H. Takayasu (Translated by Shen Burning, Chang Ziwen), Fractal (Chinese Version)[M]. Earthquake Press, Beijing, 1989.
    [11] A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechan- ics[C]. Springer, New York, 1997.
    [12] K. M. Kolwankar, Fractals and differential equations of fractional order[J]. J. Indian Inst. Sci., 1998, 78(4): 275-291.
    [13] R. R. Nigmatullin, The realization of the generalized transfer equation in a medium with fractal geometry [J]. Phys. Stat. Sol. (B), 1986, 133: 425-430.
    [14] T. F. Nonnenmacher and R. Metzler, On the Riemann-Liouville fractional calculus and some recent applications [J]. Fractals, 1995, 3(3): 557-566.
    [15] F. Y. Ren, J. R. Liang and X. T. Wang, The determination of the diffusion kernel on fractals and fractional diffusion equation for transport phenomena in random media[J]. Physics Letter A, 1999, 253(2):, 535-546;
    [16] A. Rocco and B. J. West, Fractional calculus and the evolution of fractal phenomena[J]. Physica A, 1999, 265(3): 535-546.
    [17] D. S. Wang and L. Cao, Chaos, Fractal and their Applications (Chinese Version) [M]. Science and Technology Press of China, Hefei, 1995.
    [18] B. B. Mandelbrot et al, Is nature fractal[J]? Science, Feb. 1998, 279(5352).
    [19] V. M. Ovidiu and others, Universality classes for asymptotic behavior of relaxation process in systems with dynamical disorder: dynamical generalizations of stretched exponential[J]. J. Math. Phys., 1996, 37(5): 2279-2306.
    [20] H. Schiessel and A. Blumen, Hierarchical analogues to fractional retaxation equations[J]. J. Phys. A: Math. Gen., 1993, 26: 5057-5069.
    [21] F. Mainardi, Fractional relaxation-oscillation and fractional diffusion-wave phenomena[J]. Chaos, Solitons and Fractals, 1996, 7: 1461-1477.
    [22] Yu. A. Rossikhin and M. V. Shitikova, Analysis of theological equations involving more than one fractional parameters by the use of the simplest mechanical systems based on these equations[J]. Mechanics of Time-Dependents Materials, 2001, 5: 131-175.
    [23] Y. E. Ryabov and A. Puzenko, Damped oscillation in view of the fractional oscillator equation[J]. Phys. Rev. B, 2002, 66: 184-201.
    [24] B. N. N. Achar, J. W. Harmeken and T. Clarke, Damping characteristics of a fractional oscillator[J]. Physica A, 2004, 339: 311-319.
    [25] R. Hiller, Fractional diffusion based on Riemann-Liouville fractional derivatives[J]. J. Phys. Chem. B, 2000, 104: 3914-3917.
    [26] J. R. Leith, Fractal scaling of fractional diffusion processes[J]. Signal Processing, 2003, 83: 2397-2409.
    [27] R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations[J]. Physica A, 2000, 278: 107-125.
    [28] W. R. Schneider and W. Wyss, Fractional diffusion and wave equations[J]. J. Math. Phys., 1989, 30(1): 134-144.
    [29] W. Wyss, The fractional diffusion equation[J]. J. Math. Phys., 1986, 27(11): 2782-2785.
    [30] L. R. da Silva, L. S. Lucena, E. K. Lenzi, R. S. Mendes and K. S. Fa, Fractional and nonlinear diffusion equation: additional results[J]. Physica A, 2004, 344: 671-676.
    [31] V. V. Anh and N. N. Leonenko, Harmonic analysis of random fractional diffusion-wave equations[J]. Applied Mathematics and Computation, 2003, 141: 77-85.
    [32] A. M. A. El-Sayed and F. M. Gaafar, Fractional calculus and some intermediate physical processes[J]. Applied Mathematics and Computation, 2003, 144: 117-126.
    [33] W. G. G15ckle and T. F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics[J]. Biophysical Journal, 1995, 68: 46-53.
    [34] M. Kopf et al, Anomalous diffusion behavior of water in biological tissues[J]. Biophysical Journal, 1996, 70(6): 2950-2958.
    [35] G. Srinivas, A. Yethiraj and B. Bagchi, Nonexponentiality of time dependent survival reactions in polymer chain[J]. J. Chem. Phys., 2001, 114(2): 9170-9179.
    [36] M. Y. Xu and W. C. Tan, Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J]. Science in China Series A, 2001, 44(11): 1387-1399.
    [37] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport[J]. Phys. Rep., 2002, 371: 461-580.
    [38] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations[J]. Chaos, Solitons and Fractals, 2002, 14: 433-440.
    [39] I. A. L6pez and W. O. Urbina, Practional differentiation for the Gaussian measure and applications[J]. Bull. Sci. Math., 2004, 128: 587-603.
    [40] Y. Al-Assaf, R. El-Khazali and W. Ahmad, Identification of fractional chaotic system parameters[J]. Chaos, Solitons and Fractals, 2004, 22: 897-905.
    [41] W. T. Coffey, Y. P. Kalmykov and S. V. Titov, Inertial effects in anomalous dielectric relaxation[J]. Journal of Molecular Liquids, 2004, 114: 35-41.
    [42] R. Hiller, On fractional diffusion and continuous time random walks[J]. Physica A, 2003, 329: 35-40.
    [43] R. Metzler and J. Klafter, The random walk's guide to anomalous diffusion: a fractional dynamics approach[J]. Phys. Rep., 2000, 339: 1-77.
    [44] R. R. Nigmatullin and S. I. Osokin, Signal processing and recognition of true kinetic equations containing non-integer derivatives from raw dielectric data[J]. Signal Processing, 2003, 83: 2433-2453.
    [45] M. D. Ortigueira, On the initial conditions in continuous-time fractional linear systems[J]. Signal Processing, 2003, 83: 2301-2309.
    [46] B. M. Vinagre and Y. Q. Chen, Fractional calculus applications in automatic control and robotics[A]. 41st IEEE Conference On Decision and Control[C], Las Vegas, Dec. 2002.
    
    [47] R. L. Bagley and P. J. Torvik, On the fractional calculus model of viscoelastic behavior[J]. J. Rheol., 1986, 30(1): 133-155.
    
    [48] R. Metzler and T. F. Nonnenmacher, Fractional relaxation processes and fractional rhe- ological models for the description of a class of viscoelastic materials[J]. Int. J. Plasticity, 2003, 19: 941-959.
    
    [49] A. Chatterjee, Statistical origins of fractional derivatives in viscoelasticity[J]. Journal of Sound and Vibration, 2005, 284: 1239-1245.
    
    [50] H. Schiessel, R. Metzler, A. Blumen and T. F. Nonnenmacher, Generalized viscoelastic models: their fractional equations with solutions[J]. J. Phys. A: Math. Gen., 1995, 28: 6567-6584.
    
    [51] S. W. J. Welch, R. A. L. Rorrer and R. G. Duren, JR., Application of time-based fractional calculus methods to viscoelastic creep and stress relaxation of materials[J]. Mechanics of Time-Dependent Materials, 1999, 3: 279-303.
    
    [52] M. Y. Xu and W. C. Tan, Representation of the constitutive equation of viscoelastic materials by the generalized fractional element networks and its generalized solutions [J]. Science in China Series G, 2003, 46(2): 145-157.
    
    [53] S. Kempfle, I. Schafer and H. Beyer, Fractional calculus via functional calculus: theory and applications[J]. Nonlinear Dynamics, 2002, 29: 99-127.
    
    [54] N. Laskin, Fractional quantum mechanics and Levy path integrals[J]. Physics Letters A, 2000, 268: 298-305.
    
    [55] D. Baleanu and S. I. Muslih, About fractional supersymmetric quantum mechanics [J]. Czechoslovak Journal of Physics, 2005, 55(9): 1063-1066.
    
    [56] F. B. Adda and J. Cresson, Fractional differential equations and the Schrodinger equa- tion[J]. Applied Mathematics and Computation, 2005, 161: 323-345.
    
    [57] G. Dattoli, Operational methods, fractional operators and special polynomials [J]. Applied Mathematics and Computation, 2003, 141: 151-159.
    
    [58] M. M. El-Borai, Semigroups and some nonlinear fractional differential equations[J]. Applied Mathematics and Computation, 2004, 149: 823-831.
    
    [59] S. S. de Romero and H. M. Srivastava, An application of the N-fractional calculus operator method to a modified Whittaker equation[J]. Applied Mathematics and Computation, 2000, 115: 11-21.
    [60] K. Y. Chen and H. M. Srivastava, Some infinite series and functional relations that arose in the context of fractional calculus [J]. Journal of Mathematical Analysis and Applications, 2000, 252: 376-388.
    [61] B. B. Mandelbrot, Topics on fractals in mathematics and physics[A]. In: L. H. Y. Chen, Challenges for the 21st Century -Fundamental Sciences (Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics) [C], World Scientific, Singapore, March 2000.
    [62] R. Gorenfio and F. Mainardi, Essentials of Fractional Calculus[M]. MaPhySto Center, preliminary version, 2000.
    [63] T. A. Surguladze, On certain applications of fractional calculus to viscoelasticity[J]. Journal of Mathematical Sciences, 2002, 112(5): 4517-4557.
    [64] I. M. Gel'fand and G. E. Shilov. Generalized Function (Translated by Lin Jianbing)[M]. Science Press, Beijing, (in Chinese), 1984.
    
    [65] R. Hilfer, Foundations of fractional dynamics[J]. Fractals, 1995, 3(3): 549-556.
    [66] R. Hilfer, Fractional dynamics, irreversibility and ergodicity breaking[J]. Chaos, Solitons & Fractals, 1995, 5(8): 1475-1484.
    [67] H. Jin and M. Y. Xu, Exact solutions of fractional second order fluid flow in a pipe[J]. (Chinese Version), Journal of Shandong University (Natural Science), 2003, 38(1): 23-27.
    [68] K. M. Kolwankar and A. D. Gangal, Fractional differentiability of nowhere differentiable functions and dimensions[J], Chaos, 1996, 6: 505-523.
    [69] A. Carpinteri, B. Chiaia and P. Cornetti, Static-kinematic duality and the principle of virtual work in the mechanics of fractal media[J], Computer Methods in Applied Mechanics and Engineering, 2001, 191 (1-2): 3-19.
    [70] A. Carpinteri and P. Cornetti, A fractional calculus approach to the description of stress and strain localization in fractal media[J], Chaos Solitons and Fractals, 2002, (13)1: 85-94.
    [71] K. M. Kolwankar and A. D. Gangal, Holder exponents of irregular signals and local fractional derivatives [J], Pramana Journal of Physics, 1997, 48: 49-68.
    [72] K. M. Kolwankar and A. D. Gangal, Local fractional Fokker-Plank equation[J], Physical Review Letters, 1998, 80, 214-217.
    [73] E. W. Weisstein, CRC Concise Encyclopedia of Mathematics CD-R0M[M]. CRC Press, Boca Raton, FL, 1999.
    [74] F. Mainardi and R. Gorenflo, On Mittag-Leffler-type function in fractional evolution processes[J]. J. Comput. Appl. Math., 2000, 118(2): 283-299.
    [75] V. V. Anh and N. N. Leonenko, Scaling laws for fractional diffusion-wave equations with singular data[J]. Statistics and Probability Letters, 2000, 48(3): 239-252.
    [76] J. M. Sixdeniers, K. A. Penson and A. I. Solomon, Mittag-Leffler coherent states[J]. J. Phys. A: Math. Gen., 1999, 32(43): 7543-7564.
    [77] V. S. Kiryakova, Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus[J]. J. Comp. Appl. Math., 2000, 118: 241-259.
    [78] I. Podlubny, The Laplace Transfortn Method for Linear Differential Equations of the Fractional Order[M]. UEF-02-94, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, 1994.
    [79] C. Fox, The G and H functions as symmetrical fourier kernels[J]. Trans. Amer. Math. Soc., 1961, 98: 395-429.
    [80] B. D. Carter and M. D. Springer, The distribution of products quotients and powers of independent H-function variates[J]. SIAM, J. Appl. Math., 1977, 33(4): 542-558.
    [81] A. M. Mathai and R. K. Saxena, The H-Function with Applications in Statistics and other Disciplines[M]. Wiley Eastern Limited, New Delhi, 1978.
    [82] H. M. Srivastava, K. C. Gupta and S. P. Goyal, The H-function of One and Two Variables with Applications[M]. South Asian Publ., New Delhi, 1982.
    [83] W. G. GlSckle and T. F. Normenmacher, Fractional integral operators and Fox functions in the theory of viscoelasticity[J]. Macromolecules, 1991, 24: 6426-6434.
    [84] B. L. J. Braaksma, Asymptotic expansions and analytic continuations for a class of Barnes-integrals[J]. Compos. Math., 1964, 15: 239-341.
    [85] Z. X. Wang and D. R. Guo, Introduction to Special Function (Chinese Version) [M]. Peking University Press, Beijing, 2000.
    [86] F. Mainardi, Fractional calculus: some basic problems in continuum and statistical mechanics[A]. In: A. Carpinteri and F. Mainardi, Fractals and Fractional Calculus in Continuum Mechanics[C], Springer, Wien and New York, 1997, pp. 291-348.
    [87] F. Mainardi, Applications of fractional calculus in mechanics[A]. In: P. Rusev, I. Dimovski and V. Kiryakova, Transform Methods and Special Functions, Varna'96[C], SCT Publishers, Singapore, 1997, pp. 309-334.
    [88] Yu. A. Rossikhin and M. V. Shitikova, Application of fractional calculus to dynamic problems of linear hereditary mechanics of solids[J]. Appl. Mech. Rev., 1997, 50(1): 15-67.
    [89] J. D. Ferry, Viscoelastic Properties of Polymers (3rd Ed.)[M]. John Wiley & Sons, INC., New York, 1980.
    [90] Y. C. Fung, Biomechanics- mechanical features of living tissues (Chinese Version)[M]. Translated by K. G. Dai, et al, Science and Technology Press of Hunan, Changsha, 1986.
    [91] N. W. Tschoegl, The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction[M]. Springer, Heidelberg, 1989.
    [92] I. M. Ward, Mechanical Properities of Solid Polymer (2nd Ed.)[M]. John Wiley & Sons., Chichester, 1990, pp. 79-107.
    [93] G. Q. Zhou and X. M. Liu, Viscoelastic Theory (Chinese Version) [M] , University of Science and Technology of China Press, Hefei, 1996.
    [94] G. W. Scott Blair, The role of psychophysics in theology[J]. J. Colloid Sciences, 1947, 2: 21-32.
    [95] M. Stiassnie, On the application of fractional calculus for the formulation of viscoelastic models[J]. Appl. Math. Modelling, 1979, 3: 300-302.
    [96] H. Schiessel, C. Friedrich and A. Blumen, Applications to problems in polymer physics and theology. In: R. Hilfer, Applications of Fractional Calculus in Physics[M], World Scientific, Singapore, 2000, 331-376.
    [97] G. W. Scott Blair, Psychoreology: links between the past and the present[J]. J. Texture Studies, 1974, 5: 3-12.
    [98] T. F. Nonnenmacher, Fractional relaxation equations for viscoelasticity and related phenomena, in: Rheological Modeling: Thermodynamical and Statistical Approaches[M], (eds. J. C. Vasguez and D. Jon), Springer; Berlin, 1991, pp. 309-320.
    [99] M. Alcoutlabi and J. J. Martinez-Vega, Application of fractional calculus to viscoelastic behaviour modelling and to the physical ageing phenomenon in glassy armorphous polymers[J]. Polymer, 1998, 39(25): 6269-6277.
    [100] L. I. Palade, P. Attane, R. R. Huilgol and B. Mena, Anomalous stability behavior of a properly invariant constitutive equation which generalises fractional derivative models[J]. Int. J. Eng. Sci., 1999, 37: 315-329.
    [101] Yu. A. Rossikhin and M. V. Shitikova, Analysis of nonlinear vibrations of a two-degree- freedom mechanical system with damping modelled by fractional derivative[J]. J. Eng. Math., 2000, 37: 343-362.
    
    [102] Yu. A. Rossikhin and M. V. Shitikova, Analysis of dynamic behaviour of viscoelastic rods whose rheological models contain fractional derivatives of two different orders[J]. ZAMM, 2001, 81(6): 363-376.
    
    [103] Yu. A. Rossikhin and M. V. Shitikova, A new method for solving dynamic problems of fractional derivative viscoelasticity[J]. Int. J. Eng. Sci., 2001, 39: 149-176.
    
    [104] H. Schiessel and A. Blumen, Mesoscopic picture of the Sol-Gel transition: ladder models and fractal networks[J]. Macromolecules, 1995, 28: 4013-4019.
    
    [105] N. Heymans and J. C. Bauwens, Fractal rheological models and fractional differential equations for viscoelastic behavior [J]. Rheol. Acta, 1994, 33: 210-219.
    
    [106] N. Heymans, Modelling non-linear and time-dependent behaviour of viscoelastic materials using hierarchical models[A]. In: I. Emri, Progress and Trends in Rheology V: Proceedings of the Fifth European Rheology Conference[C], Springer, Darmstade Steinkopff, 1998, pp. 100-101.
    
    [107] M. Alcoutlabi and J. J. Martinez-Vega, The effect of physical ageing on the relaxation time spectrum of armorphous polymers: the fractional calculus approach[J]. Journal of Materials Science, 1999, 34: 2361-2369.
    
    [108] T. M. Atanackovic, A modified Zener model of a viscoelastic body[J]. Continuum Mech. Thermodyn., 2002, 14: 137-148.
    
    [109] M. Enelund and P. Olsson, Damping described by fading memory-analysis and application to fractional derivative models[J]. Int. J. Solids and Structures, 1999, 36: 939-970.
    
    [110] C. Friedrich, Rheological material functions for associating comb-shaped or H-shaped polymers: a fractional calculus approach[J]. Philosophical Magazine Letters, 1992, 66(6): 287-292.
    
    [111] C. Friedrich, Mechanical stress relaxation in polymers: fractional integral model versus fractional differential model[J]. J. Non-Newtonian Fluid Mechanics, 1993, 46: 307-314.
    
    [112] C. Friedrich, H. Braun and J. Weese, Determination of relaxation time spectra by analytical inversion using a linear viscoelastic model with fractional derivatives [J]. Polymer Engineering and Science, 1995, 35(21): 1661-1669.
    
    [113] A. Lion, On the thermodynamics of fractional damping elements[J]. Continuum Mech. Thermodyn., 1997, 9: 83-96.
    [114] M. J. Potvin, Comparison of Time-domain Finite Element Modelling of Viscoelastic Structures Using an Efficient Fractional Voigt-Kelvin Model or Prony Series[M]. Ph. D. Thesis, McGill University, Montreal, 2001.
    [115] M. Caputo and F. Mainardi, Linear models of dissipation in anelastic solids[J]. Rivista del Nuevo Cimento (Serie Ⅱ), 1971, 1(2): 161-198.
    [116] D. Y. Song and T. Q. Jiang, Study on the constitutive equation with fractional derivative for the viscoelastic fluids - modified Jeffreys model and its application[J]. Rheol. Acta, 1998, 37: 512-517.
    [117] P. Haupt, A. Lion and E. Backhaus, On the dynamic behaviour of ploymers under finite strains: constitutive modeling and identification of parameters[J]. International Journal of Solids and Structures, 2000, 37: 3633-3646.
    [118] K. Adolfsson and M. Enelund, Fractional derivative viscoelasticity at large deformations[J]. Nonlinear Dynamics, 2003, 33: 301-321.
    [119] K. Adolfsson, Nonlinear fractional order viscoelasticity at large strains[J]. Nonlinear Dynamics, 2004, 38: 233-246.
    [120] R. Hiller, Analytical representations for relaxation functions of glasses[J]. Journal of Non-Crystalline Solids, 2002, 305: 122-126.
    [121] T. Hayat, S. Nadeem and S. Asghar, Periodic unidirectional flows of a viscoelastic fluid with the fractional Maxwell model[J]. Applied Mathematics and Computation, 2004, 151: 153-161.
    [122] G. T. Yang and W. Z. Wu, Bone Mechanics (Chinese Version)[M]. Science Press, Beijing, 1989.
    [123] G. T. Yang et al, Medical Biomechanics (Chinese Version) [M]. Science Press, Beijing, 1994.
    [124] J. H. McElhaney, Mechanical properties of cranial bone[J]. J. Biomechanics, 1970, 3: 495-511.
    [125] J. L. Wood, Dynamic response of human cranial bone[J]. J. Biomechanics, 1971, 4: 1-12.
    [126] X. H. Zhu et al, Study on viscoelasticity of Human cranial bone[J]. (Chinese Version), Chinese Journal of Biomedical Engineering, 1993, 12(1): 35-42.
    [127] T. F. Nonnenmacher and W. G. G15ckle, A fractional model for mechanical stress relaxation[J]. Philosophical Magazine Letters, 1991, 64(2): 89-93.
    [128] C. Friedrich, Relaxation and retardation function of the Maxwell model with fractional derivatives[J]. Rheol. Acta, 1991, 30: 151-158.
    
    [129] C. Friedrich, H. Schiessel, A. Blumen, Constitutive behavior modeling and fractional derivative[A]. In: D. A. Sihiner, D. D. Kee and R. P. Chhabra, Advances in the Flow and Rheology of Non-Newtonian Fluids[C], Elsevier, New York, 1999, 427-466.
    
    [130] H. T. Qi and M. Y. Xu, Creep comliance of fractional viscoelastic models: generalized Zener and Poynting-Thomson models[J], (Chinese Version), Journal of Shandong University (Natural Science), 2004, 39(3): 42-48.
    
    [131] R. L. Bagley and P. J. Torvik, A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of rheology, 1983, 27(3): 201-210.
    
    [132] S. W. Park, Rheological modeling of viscoelastic passive dampers[A]. Smart Structures and Materials 2001: Damping and Isolation[C], D. J. Inman, Editor, Proceedings of SPIE Vol. 4331, 2001.
    
    [133] T. Pritz, Five-parameter fractional derivative model for polymeric damping materials[J]. Journal of Sound and Vibration, 2003, 265: 935-952.
    
    [134] M. Alcoutlabi and J. J. Martinez-Vega, Modeling of the viscoelastic behavior of amorphous polymers by the differential and integration fractional method: the relaxation spectrum H(τ)[J]. Polymer, 2003, 44: 7199-7208.
    
    [135] Yu. A. Rossikhin and M. V. Shitikova, Analysis of the viscoelastic rod Dynamics via models involving fractional derivatives or operators of two different orders [J]. The Shock and Vibration Digest, 2004, 36(1): 3-26.
    
    [136] S. Sakakibara, Relaxation properties of fractional derivative viscoelaticity models [A]. In: Third World Congress of Nonliear Analysis [C], 47, 2001, pp. 5449-5454.
    
    [137] N. Heymans, Constitutive equations for polymer viscoelasticity derived from hierarchical models in cases of failure of time-temperature superposition [J]. Signal Processing, 2003, 83: 2345-2357.
    
    [138] C. Friedrich, Relaxation functions of rheological constitutive equations with fractional derivatives: thermodynamical constraints[A]. in: J. Casas-Vazquez and D. Jou (Eds.), Rheological modelling: Thermodynamical and statistical approaches, Lecture notes in Physics[C], Vol. 381, Springer, Berlin, Heidelberg, New York, 1991, pp. 321-330.
    
    [139] Y. C. Fung, Foundations of Solid Mechanics[M]. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1965, 15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700