海拉尔—塔木察格盆地不同类型油藏储层特征及渗流规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以海-塔盆地四类低渗透储层为研究对象,结合物理模拟、渗流力学、数值分析等方法,对比了低渗透砂岩、低渗透凝灰质砂岩及低渗透砂砾岩等不同岩性低渗透储层孔隙结构特征,并在此基础上对低渗透油藏单相和两相流体渗流规律进行了系统研究。研究结果表明
     1.低渗透砂岩、低渗透凝灰质砂岩储层在孔隙结构类型、喉道与渗透率关系、分选性与渗透率关系等方面较为接近,而与低渗透砂砾岩相差较大。海塔盆地储层可动流体百分数、平均喉道半径等在大庆外围低渗透油田中处于中等偏上水平。表明其开发效果将优于其余外围低渗透油藏。其中塔木察格砂岩的常规压汞、恒速压汞以及核磁共振数据表明该储层好于其它海塔低渗透储层。
     2.建立了新的变形介质油藏非线性渗流产能方程,结果表明储层非线性渗流的程度越大,介质的形变程度越大,油井的产能越低;在变形介质条件下增大生产压差,油井产能增加。但渗透率的降低幅度也增大,采油指数随生产压差的变化曲线上存在一个最大值,这为低渗透油藏产能优化提供了理论参考。
     3.建立了新的描述低渗透油藏非线性渗流机理模型。结果表明流度与启动压力梯度是形成非线性渗流的主要因素。并确定了产生非线性渗流的压力梯度区域。定量的研究了启动压力梯度、流度及微观孔隙结构对非线性渗流作用的影响。
     4.提出了不同低渗透储层可动油和残余油在地层孔喉中的分布规律。各储层残余油分布在大于储层流动孔喉下限半径的孔喉空间中,而不仅局限于小喉道。不同储层渗吸采油的比例不同,应据此制定合适的注水速度。
     5.建立了考虑低渗透渗流影响的油水相渗理论新模型。分析了非线性作用对油水相渗的影响。结果表明在非线性渗流区域范围内,压力梯度越高油相相渗越高,水相相渗越低。
     6.提出了新的油水两相驱替模型。研究了油水活塞式、非活塞式水驱油非线性渗流规律。与Darcy渗流相比,非线性渗流条件下油井所需生产压差更大,含水率更高,采出程度更低。
Combining with the physical simulation, mechanics of fluid flow in porous medium and numerical analysis, the paper studied the pore structure characteristics of low permeability sandstone, low permeability tuffaceous sandstone and low permeability glutenite. Then, based on the above research, the seepage flow law of the single phase fluid and two phase fluids seepage were studied.
     1. Compared with low permeability glutenite, pore structure, relation of throat radius and permeability and separation of low permeability sandstone and low permeability tuffaceous sandstone is similar. Compared to other Daqing low permeability reservoirs, the movable fluid percent and average throat radius of Halar-tamuchage reservoir is in the mid to upper level. It showed that the development results will be better than other reservoirs. Meantime, the results of mercury injection, constant rate mercury injection and NMR presented that the tamuchage reservoir is better than other low permeability reservoir of Halar-tamuchage basin
     2. Non-linear seepage flow deliverability equation of deformation reservoir was established. The results presented that more serious non-linear seepage flow degree and bigger deformation resulted in lower deliverability. Increasing drawdown will decrease the non-linear effect impact on the seepage flow, and improve the deliverability. However, the decreased extent of the permeability will be enlarged. So, production index have a maximum with the drawdown on the condition of low permeability deformation reservoir. It afforded a reference for the deliverability optimization of low permeability reservoir.
     3. New model for describing the mechanism of non-linear seepage flow was presented. The results showed that mobility and start-up pressure gradient are the main reasons of non-linear seepage flow effect. Meantime, the pressure gradient region, which producing the non-linear seepage flow, was calculated. Impact of start-up pressure gradient, mobility and microscopic pore structure on seepage flow has been researched.
     4. The distribution character of movable oil and irreducible oil in low permeability reservoir was presented. The irreducible oil distributes not only in small pore-throat, but also in the pore throat that is bigger than the cut-off pore-throat. Proportion of imbibition produced oil to the overall produced oil is different in different low permeability reservoir of Hailar-tamuchage basin. So, the reasonable flooding rate can be obtained by the proportion.
     5. The oil/water relative permeability model with non-linear seepage flow was established. The non-linear seepage flow impact on the oil/water relative permeability was analysed. The result showed that bigger pressure gradient will result in higher oil relative permeability and lower water relative permeability.
     6. Displacement model of non-linear seepage flow was showed. Research on the piston like displacement and non-piston like displacement was presented. Compared with Darcy seepage flow, on the condition of non-linear seepage flow, the drawdown is higher; the water cut is bigger; degree of reserve recovery is lower.
引文
[1]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345-359
    [2]罗蛰谭,王允诚.油气储集层的孔隙结构[M].科学出版社 1986:21-137
    [3]沈平平.油水在多孔介质中的运动理论与实践[M].北京:石油工业出版社,2000:6-35
    [4]高慧梅,姜汉桥,陈民锋.多孔介质孔隙网络模型的应用现状[J],大庆石油地质与开发,2007,26(2):74-78
    [5]姚军,赵秀才,衣艳静等.数字岩心技术现状及展望[J].油气地质与采收率,2005,12(6):52-54
    [6]周济福.渗流力学研究的现状和发展趋势[J],力学与实践,2007,29(3):1-6
    [7]罗蛰潭,王允诚.储层孔隙结构、润湿性和油田采收率[J],成都理工大学学报,1980,4:1-16
    [8]廖明光,夏宏全.孔隙结构新参数r顶点及其应用[J].石油勘探与开发,1997,24(3):78-81
    [9]廖明光,巫祥阳.毛管压力曲线分析新方法及其在油气藏描述中的应用[J].西南石油学院学报,1997,19(2):5-9
    [10]王尤富,凌建军等.低渗透砂岩储层岩石孔隙结构特征参数研究[J].特种油气藏,1999,6(4):25-39
    [11]彭彩珍,李治平,贾闽惠.低渗透油藏毛管压力曲线特征分析及应用,西南石油学院学报,2002,24(2):21-24
    [12]李传亮.孔喉比对地层渗透率的影响[J],油气地质与采收率,2007,14(5):78-87
    [13]A.J.Katz,A.H.Thompson.Fractal Sandstone Pores:Implications for Conductivity and Pore Formation[J].Physical Review Letters.1985,54(12)
    [14]李克文,秦同洛.分维几何及其在石油工业中的应用[J],石油勘探与开发,1990,5:109-114
    [15]屈世显.沉积岩的孔隙分维与孔隙率的关系[J].西安石油大学学报,1991,6(3):1-3
    [16]屈世显.分形与分维及在地球物理学中的应用[J].西安石油大学学报,1991,6(2):8-13
    [17]王域辉,廖淑华.分形与石油[M].北京石油工业出版社,1994:123-175
    [18]贺承祖,华明琪.储层孔隙结构的分形几何描述[J].石油与天然气地质,1998,19(1):15-23
    [19]何琰,吴念胜.确定孔隙结构分形维数的新方法[J].石油实验地质,1999,21(4):372-375
    [20]马新仿,张士诚,郎兆新.储层岩石孔隙结构的分形研究[J].中国矿业,2003,12(9):46-48
    [21]师永民,张玉广,何勇.利用毛管压力曲线分形分维方法研究流动单元[J],地学前缘,2006,13(3):129-134
    [22]Greg Gubelin,Austin Boyd.Total Porosity and Bound-Fluid Measurements From an NMR Tool.SPE39096
    [23]Borgia,G.C.A New Unfree Fluid Index in Sandstones Through NMR Studies.SPE 28366
    [24]肖立志.核磁共振测井资料解释与应用导论[M].北京:石油工业出版社.2001
    [25]Hsu,Wen-Fu,Li,Xiaoyu.Wettability of Porous Media by NMR Relaxation Methods.SPE 24761
    [26]R.J.Zittel,D.Beliveau,T.O,Sullivan.Reservoir Crude-Oil Viscosity Estimation From Wireline NMR Measurements-Rajasthan,India.SPE 101689
    [27]J.L.Bryan,F.P.Manalo,Y.Wen.Advances in Heavy Oil and Water Property Measurements Using Low Field Nuclear Magnetic Resonance.SPE78970
    [28]Rodrigues Patricia,Romero Pedro.Estimation of Fluid Properties Using NMR Correlations in Berea Rocks.SPE 69608
    [29]Hou,B.L.,Coates,G.R.Nuclear Magnetic Resonance Logging Methods for Fluid Typing.SPE 48896
    [30]P.Egermann,N.Doerler,M.Fleury,J.Behot,F.Deflandre.Petrophysical Measurements From Drill Cuttings:An Added Value for the Reservoir Characterization Process.SPE88684
    [31]F.Ferrer,M.Vielma,A.Lezama,Permeability Model Calibration and Pore Throat Radius Determination Using Core Analysis and Nuclear Magnetic Resonance Data in Mixed-Lithology Reservoirs,Southwestern Venezuela.SPE108078
    [32]J.Ouzzane,M.Okuyiga,N.Gomaa.Application of NMR T_2 Relaxation for Drainage Capillary Pressure in Vuggy Carbonate Reservoirs.SPE101897
    [33]Maddinelli,Giuseppe,Carati.NMR Imaging of Gelation Processes Inside Rock Cores.SPE 25219
    [34]Chen,Songhua,Qin,Fangfang,Kim.NMR Imaging of Multiphase Flow in Porous Media.SPE 24760
    [35]燕继红译.NMR技术的最新进展-测量总孔隙度[J].石油物探译丛.1998.12:69-89
    [36]肖立志,杜有如,叶朝辉.储油岩心魔角旋转核磁共振纵向驰豫特征.科学通报.1994,39:478
    [37]黄延章,尚根华,陈永敏.用核磁共振成像技术研究周期注水驱油机理.石油学报.1995,16(4):62-64
    [38]阙洪培.多孔介质润湿性的测定-核磁共振(NMR)松驰法.国外油田工程.1995.6:1-5
    [39]高效曾.核磁共振孔隙度和岩性有关.测井技术.1998,22(4):295-298
    [40]高敏,安秀荣,祗淑华等.用核磁共振测井资料评价储层的孔隙结构[J],测井技术,2000,24(3):188-193
    [41]运华云,赵文杰,刘兵开等.利用T_2分布进行岩石孔隙结构研究[J].测井技术,2002,26(1):18-21
    [42]唐小梅,何宗斌,张超谟等.用核磁共振T_2分布定量求取孔隙结构参数的区域性对比研究[J].江汉石油学院学报,2003,25(4):75-77
    [43]刘堂宴,马在田,傅容珊.核磁共振谱的岩石孔喉结构分析[J].地球物理学进展.2003,18(4):737-742
    [44]何雨丹,毛志强,肖立志.核磁共振T_2分布评价岩石孔径分布的改进方法[J],地球物理学报,2005,48(2):373-378
    [45]王为民,郭和坤,叶朝辉.利用核磁共振可动流体评价低渗透油田开发潜力[J].石油学报,2001,22(6):40-44
    [46]杨正明,苗盛,刘先贵等.特低渗透油藏可动流体百分数参数及其应用[J].西安石油大学学报,2007,22.(2):96-99
    [47]贾文玉,闫安宇,田素月等.渗透率的理论计算方法[J].测井技术,2000,24(3):216-219
    [48]周灿灿.核磁共振自旋回波串确定渗透率方法探讨[J].测井技术,2002,26(2):123-126
    [49]王为民,郭和坤,叶朝辉.低磁场条件下天然气核磁共振特性的实验研究[J].波谱学杂志.2001,18(3):223-227
    [50]郭平,黄伟岗,姜贻伟等.致密气藏束缚与可动水研究[J].天然气工业,2006,26(10):99-101
    [51]高瑞民.核磁共振测试天然气藏可动气体饱和度[J].天然气工业,2006,26(6):33-35
    [52]Dullien F.A.L著,杨富民,黎用启译.多孔介质:流体渗移与孔隙结构[M].北京:石油工业出版社,1990
    [53]H.H.Yuan,B.F.Fwanson,Resolving Pore Space Characteristics by Rate-Controlled Porosimetry.SPE 14892
    [54]Pedro.G..Toledo,L.E.Scrieven.Supplement to Pore-Space Statistics and Capillary Pressure Curves from Volume-control Prosimetry:Mechanisms of Mercury Injection and Withdrawal.SPE27950
    [55]王金勋,杨普华,刘庆杰.应用恒速压汞实验数据计算相对渗透率曲线[J].石油大学学报(自然科学版)2003,27,(4):66-69
    [56]杨鹏,黄立信,俞理.低渗透油藏微生物运移能力研究[J].油气地质与采收率2006,13(2):85-87
    [57]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报.2006,30,(2):22-25
    [58]杨正明,张英芝,郝明强等.低渗透油田储层综合评价方法[J].石油学,2006,27,(2):64-67
    [59]J.贝尔著.李竞生译.多孔介质流体动力学[M].北京:中国建筑工业出版社,1983:91-144
    [60]邓英尔,阎庆来,马宝岐.界面分子力作用与渗透率的关系及其对渗流的影响[J].石油勘探与开发,1998,25(2):46-49
    [61]黄延章.低渗透油层渗流机理[M].北京:石油工业出版社,1998:30-138
    [62]徐绍良,岳湘安,侯吉瑞等,边界层流体对低渗透油藏渗流特性的影响[J].西安石油大学学报,2007,27(2):26-28
    [63]李中锋,何顺利.低渗透储层原油边界层对渗流规律的影响[J].大庆石油地质与开发,2005,24(2):57-59
    [64]李克文.原油与浆体流变学[M].北京:石油工业出版社,1994
    [65]罗哲鸣.原油流变性及测量[M].东营:石油大学出版社,1994
    [66]Gavin Longrnuir.Pre-Darcy flow:a Missing piece of the Improved Oil Recovery Puzzle,SPE 89433
    [67]B.A.弗洛林..土力学原理[M].同济大学土力学及地基基础教研室译.中国工业出版社,1964.
    [68]薛定谔.A.E.多孔介质中的渗流物理[M].北京:石油工业出版社,1982:55-253
    [69]冯文光.非达西低速渗流的研究现状与展望[J].石油勘探与开发,1986,(4):76-80
    [70]冯文光,葛家理.单一介质、双重介质中非定常非达西低速渗流问题[J].石油勘探与开发,1985,(1):56-62
    [71]葛家理.油气层渗流力学[M].北京:石油工业出版社,1982:17-28
    [72]黄延章.低渗透油层非线性渗流特征[J].特种油气藏,1997,4(1):9-14
    [73]姚约东,葛家理.低渗透油层非达西渗流规律的研究[J],新疆石油地质,2000,21(3):213-215
    [74]邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用[J].石油学报,2001,22(4):72-77
    [75]杨清立.特低渗透油藏非线性渗流理论及其应用[D].中国科学院渗流流体力学研究所.2007:1-30
    [76]诺曼.石油开采中的界面现象[M].北京:石油工业出版社,1994
    [77]何更生.油层物理[M].北京:石油工业出版社,1994
    [78]王行信,周书欣.砂岩储层粘土矿物与油层保护[M].北京:地质出版社,1992:69-123
    [79]李道品.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:5-189
    [80]张英芝,杨铁军,王文昌等.特低渗透油藏开发技术研究[M].石油工业出版社,2004:17-30
    [81]И.Л马尔哈辛.油层物理化学机理[M]北京:石油工业出版社,1987
    [82]陆大卫.石油测井新技术适用性典型图集[M].北京:石油工业出版社,2001:6-35
    [83]姜占西.核磁共振测井在大庆油田的应用研究[D].吉林大学,2006:4-30
    [84]王为民.核磁共振岩石物理研究及其在石油工业中的应用[D].中国科学院武汉数学与物理研究所,2001:38-65
    [85]王为民,孙佃庆,苗盛.核磁共振测井基础实验研究[J].测井技术,1997,21(6):385-392
    [86]张绍槐.保护储集层技术[M].北京:石油工业出版社,1993:159-205
    [87]裘亦楠.油气储层评价技术[M].北京:石油工业出版社,1997::284-342
    [88]李克向.保护油气层钻井完井技术[M].北京:石油工业出版社,1993
    [89]汪伟英,唐周怀,吕迎红等.储层岩石水敏性影响因素研究[J].江汉石油学院学报,2001,23(2).49-50
    [90]Monaghan P H.Salathiel R A,et al.Laboratory studies of formation damage in sands containing clays.Petroleum Transactions,AIME,1959.
    [91]杨胜来,魏俊之.油层物理学[M].北京:石油工业出版社,2004:107-260
    [92]石京平,宫文超,曹维政等.储层岩石速敏伤害机理研究[J].成都理工大学学报,2003,30(5):501-503
    [93]Muecke I W.Formation fines and factors controlling their movement in porous media[J].JPT,1979,31(2):144-150.
    [94]高博禹,周涌沂,彭仕宓.储层孔隙度应力敏感性研究[J],石油实验地质,2005,27(2):197-201
    [95]李宁,张清秀.裂缝型碳酸盐岩应力敏感性评价室内实验方法研究[J].天然气工业,2000,20(3):30-33
    [96]秦积舜.变围压条件下低渗砂岩储层渗透率变化规律研究[J].西安石油学院学报,2002,17(4):28-35
    [97]陈颐,黄庭芳.岩石物理学[M].北京:北京大学出版社,2001
    [98]罗瑞兰,程林松,彭建春等.油气储层渗透率应力敏感性与启动压力梯度的关系[J].西南石油学院学报,2005,27(3):20-22
    [99]宋付权.变形介质低渗透油藏的产能分析[J],特种油气藏,2002,9(4):33-35
    [100]陈明强,张明禄,蒲春生等.变形介质低渗透油藏水平井产能特征[J].石油学报,2007,28(1):107-110
    [101]张允,王子胜,姚军等.带启动压力梯度的双孔压敏介质压力动态及其应用研究[J].水动力学研究与进展,2007,22(3):332-337
    [102]蔡明金,陈方毅,张利轩.考虑启动压力梯度低渗透油藏应力敏感模型研究[J].特种油气藏,2008,15(2):69-72
    [103]Barkman J H,Davidson DH.J Petrol Technology,1972(7),865-873
    [104]朱斌.地层矿物与速敏性[J],油田化学,1994,11(1):1-4,43
    [105]黄柱花,杨丽华,张金等.含油岩样注水敏感性试验评价方法研究[J].石油钻采工艺,2000,20(6):55-59
    [106]邓英尔,刘慈群.低渗油藏非线性渗流规律数学模型及其应用[J].石油学报,2001,22(4):72-77
    [107]姚约东,葛家理.低渗透油层非达西渗流规律的研究[J],新疆石油地质,.2000,21(3):213-215
    [108]王国先,谢建勇,李建良.储集层相对渗透率曲线形态及开采特征[J],新疆石油地质,2004,25(3):301-304
    [109]高慧梅,姜汉桥,陈民锋等.储集层微观参数对油水相对渗透率影响的微观模拟研究[J].石油勘探与开发,2006,33(6):734-737
    [110]郭尚平,黄延章,周娟.物理化学渗流.微观机理[M].北京:科学出版社,1990:6-25
    [111]姜汉桥,姚军,姜瑞忠.油藏工程原理与方法[M].东营:石油大学出版社,2003:15-80

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700