天津滨海地区水库水质咸化机理分析及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天津市是个水资源极度匮乏的城市,水危机已成为制约天津市社会经济发展的重要因素。已经实施的引滦济津工程和引黄济津工程,为解决天津市水资源危机发挥了重大的作用。天津滨海地区的北大港水库作为引黄济津工程的调蓄水库,一直存在水质咸化的问题,限制了其作为饮用水源水库功能;正在实施的南水北调工程将是彻底解决天津市水资源危机的重要举措,拟将天津滨海地区的北塘水库设置为该工程配套的调蓄水库,经调查研究发现,北塘水库也存在水质咸化问题。因此,研究天津滨海地区水库水质咸化机理和水质咸化数学模型,进而研究水库水质咸化的防治措施,具有重大的理论意义和迫切的现实意义。
     从传质理论出发,根据天津滨海地区的自然地理和气候气象特点,结合天津滨海地区水库水质咸化的实际情况,全面地分析了天津滨海地区水库水质咸化的影响因素有盐碱土、咸化浅层地下水、气候气象条件(,包括风、蒸发、气温等)、大气沉降、海水入侵、库内底咸水的水质水量及水库水深(水位)等,其中主要的水质咸化机理是盐碱土和咸化浅层地下水的传质作用、蒸发量大于降雨量的蒸发浓缩作用、风的搅拌加快水质咸化速度的作用以及与水库水深相关的下渗压咸作用等。
     进行了盐碱土、咸化浅层地下水、水深、风、温度等主要因素对水库水质咸化影响的半定量的室内试验研究,探讨了它们对水库水质咸化影响的规律,得出如下结论:1)盐碱土和咸化浅层地下水的含盐量越高,上覆水体水质咸化速度越快;2)水深增加,水体水质咸化速度减慢;3)风的存在将加快水体水质咸化速度;4)温度越高,水体水质咸化速度越快。
     采用现场水质咸化模拟试验与实际数据的物料平衡相结合的方法,研究了天津滨海地区的北大港水库水质咸化机理与数学模型,并研究了北大港水库水质咸化防治措施,得出如下结论:1)由于风的扰动作用,北大港水库水质咸化模型为完全混合零维模型,即水质咸化程度只与时间有关,与空间点位无关;2)北大港水库库底盐碱土的传质作用是水质咸化的最主要因素,蒸发浓缩作用是次要因素;3)在研究期间,北大港水库水质咸化模型的数学表达式为零维线性模型,即水质咸化程度与时间成正比;4)防治北大港水库水质咸化主要的工程措施是加高围堤(库底高程不变,加大水深)、缩小水库面积(保证调蓄库容不变),管理措施是蓄淡水前尽量排尽库内原存底咸水。
     采用对比的方法研究了天津滨海地区的北塘水库与北大港水库的水质咸化特点,用简化条件的理论推导方法研究了在传质与渗漏压咸共同作用下北塘水库水质咸化的数学模型,再结合北塘水库的实际情况研究讨论了各种因素对水库水质咸化的影响规律,最后研究了北塘水库水质咸化防治措施,得出如下结论:1)简化条件后推导出的在传质与渗漏压咸共同作用下的北塘水库水质咸化的数学模型,基本上符合北塘水库水质咸化的实测数据反映的趋势,即蓄水的前期水质咸化速度快,经过一段时间后,水的含盐量大体上保持不变;2)在前述理论模型的基础上,讨论了调蓄水深、非稳定渗流、围堤侧渗流、传质通量、初始盐度、蓄水过程及蒸发和降雨等因素对北塘水库水质咸化影响的规律;3)在上述研究和讨论的基础上,提出了北塘水库水质咸化防治的工程措施和管理措施,其中最有效的措施是采用加高围堤的方式增加北塘水库的库容,即库底高程不变,底面积不变,加大水深。
The water resource is very insufficient in Tianjin city, which have become an important influencing factor to social and economic development. The project of Yellow River water transfer for Tianjin and the project of Luan-He water transfer for Tianjin have played important roles in solving the water shortage in Tianjin. As the storing reservoir of the project of Yellow River water transfer for Tianjin, Bei-Da-Gang reservoir in Tianjin Binhai Area has a problem of water salinization all long, which impacts its function as the drinking water source reservoir. The South-to-North Water Transfer Project, which is planning and carrying out for several years, will exhaustively solve the water crisis in Tianjin. The project need Bei-Tang reservoir in Tianjin Binhai Area as a storing reservoir. There also has a problem of water salinization of Bei-Tang reservoir after some researches. Therefore, the study on the reservoir water salinization mechanism and mathematical model in Tianjin Binhai Aera, and the study on the prevention and treatment measure for the reservoir water salinization, has significance in theory and practice.
     Based on the mass transfer theory, integrated with the characteristic of geography and weather in Tianjin Binhai Aera, combined with the reservoir water salinization, we roundly analyze and generalize the factors for reservoir water salinization as follows, saline soil, saline shallow groundwater, weather conditions (such as wind, evaporation and air temperature etc.), atmospheric deposition, sea water intrusion, water quality and quantity in reservoir bottom, and water depth in reservoir (water level) etc.. The main reservoir water salinization mechanisms are as follows, mass transfer of saline soil and saline shallow groundwater, and evaporation concentrating for evaporation over precipitation, and increase of water salinization speed owing to wind agitation, and percolation desalinization correlated with water depth in reservoir etc..
     We have done a lot of semi-quantitatively laboratory experiments to study the law of influence of reservoir water salinization about some main factors such as saline soil, saline shallow groundwater, water depth, wind and temperature. We drew some conclusions as follows: 1) if the salinity of saline soil or saline shallow groundwater is higher, the speed of water salinization is faster; 2) the speed of water salinization is slower when the water depth is greater; 3) wind can accelerate the speed of water salinization; and 4) when temperature is higher, the speed of water salinizatio is faster.
     We studied the water salinization mechanism and mathematical model of Bei-Da-Gang reservoir in Tianjin Binhai Aera by simulation experiment and mass balance of collected data interrelated with reservoir water salinization. Then we studied the prevention and treatment measure for water salinization of Bei-Da-Gang reservoir. Some conclusions were obtained as follows: 1) because of the agitation of wind, water salinization mathematical model can be described with complete mixing zero-dimension model, i.e. the degree of water salinization is not related with space but with time; 2) the mass transfer of the saline soil in the reservoir bottom is the most important factor for the reservoir water salinization and evaporation concentrating is secondary; 3) during the study period, the expression of reservoir water salinization mathematical model is linear model, i.e. the reservoir water salinity directs proportional to time; 4) the main engineering measure to control the water salinization of Bei-Da-Gang reservoir are building some higher reservoir banks and reducing the reservoir area under both the reservoir volume and the absolute altitude of the reservoir bottom remain changeless, and the management measure is draining the saline water in the reservoir by all means before storing fresh water.
     We compared the water salinization characteristics of Bei-Tang reservoir with those of Bei-Da-Gang reservoir. Through the methods of theoretical derivation by simplifying the factors, we inferred the water salinization mathematical model of Bei-Da-Gang reservoir under action of mass transfer together with percolation desalinization. Then we discussed the reservoir water sanilization influencing laws of some important factors consisting in Bei-Tang Reservoir. At last, we investigated the prevention and treatment measure for water salinization of Bei-Tang Reservoir. We achieved some results as follows: 1) the water salinization mathematical model, which is derived in theory, can basically explain the trend of the field test data in Bei-Tang reservoir, i.e. the speed of water salinization is faster in the beginning of storing water, then the water salinity keeps immobile on the whole; 2) Based on the theoretical model above, we discussed the reservoir water sanilization influencing laws of some important factors such as water depth, unsteady seepage, lateral seepage of reservoir bank, initial water salinity, the process of inflow and evaporation and precipitation etc.; 3) on the base of forementioned study, we put up some the engineering and management measures to reduce the water salinization in Bei-Tang reservoir, and the most effective measure is to implement a project, which is to increase the reservoir volume by increasing the height of reservoir bank under both the reservoir area and the absolute altitude of the reservoir bottom remain changeless.
引文
[1] 丁南瑚.增强水的危机感,提高节水自觉性[J].净水技术,1999,(2):2~4.
    [2] 金鉴明,王礼嫱.自然环境保护论文集[M].北京:中国环境科学出版社,1998:17~24.
    [3] 张小明.威协人类生存的淡水危机[J].河南教育,2002,(8):55.
    [4] 洪阳.中国21世纪水安全[J].环境保护,1999,(10):10.
    [5] 国家环保总局.1998中国环境状况公报[J].环境保护,1999,(7):3~9.
    [6] 解振华.中国环境保护工作1999年取得的进展[J].环境保护,2000,(2):3~5.
    [7] 王小芳,杨玲娟.从我国水资源的现状论水污染治理的策略[J].天水师范学院学报,2001,21(5):41~43.
    [8] 俞澄生.南水北调的资源、环境和社会效应[J].长江流域资源与环境,1994,3(3):265~270.
    [9] 刘颖秋.南水北调工程的论证意见和建议[J].科技导报,1996,(5):10~14.
    [10] 国家计委,水利部.南水北调工程总体规划[R].2002,9.
    [11] 天津市南水北调城市水资源规划编写组.天津市南水北调城市水资源规划报告[R].2001,5.
    [12] 天津市水利勘测设计院.天津市水资源规划报告[R].2001,5.
    [13] 天津市水利局水利志编纂委员会.天津水利志[M].天津:天津科学技术出版社,2004:1~23.
    [14] 黄翠芳.超量开采地下水对环境的影响及其对策[J].西北水资源与水工程,10(3):27~30.
    [15] 张胜红,郭书英,徐向广.2000年引黄济津应急调水实施方案研究[J].海河水利,2001,(2):10~11.
    [16] 水利部淮河水利委员会,水利部海河水利委员会.南水北调东线工程规划(2001年修订)简介[J].中国水利,2003,(1.B):43~47.
    [17] 周君亮.南水北调东线工程规划布局商榷[J].江苏水利,2002,1:4~7.
    [18] 水利部长江水利委员会.南水北调中线工程规划(2001年修订)简介[J].中国水利,2003,(1.B):48~41.
    [19] 孙景亮.南水北调中线工程城市供水规划问题[J].河北水利水电技术(增刊),2003:42~44.
    [20] 李洪远,常青.天津滨海湿地自然保护区功能价值与保护对策[A].中国科协2002年学术年会第22分会场论文集,2002:77~79.
    [21] 赵文玉,王启山,赵玉明,等.“引黄水”在北大港水库蓄存期水质咸化机理分析及防治措施[J].南水北调与水利科技,2004,2(13):24~26.
    [22] 魏复盛.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002:109~186.
    [23] 陈涛,张国亮.化工传递过程基础[M].北京:化学工业出版社,2002:18~22.
    [24] 《化学工程手册》编辑委员会.化学工程手册(第10篇,传质)[M].北京:化学工业出 版社,1989:21~89.
    [25] Cussler, E. L. Diffusion, Mass Transfer in Fluid Systems[M]. Cambridge: Cambridge University Press, 1984: 15~214.
    [26] 淮秀兰,刘登瀛,等.快速瞬态质量传递规律的实验与理论研究[J].自然科学进展,2002,12(4):403~408.
    [27] 淮秀兰,姜任秋,等.快速瞬态传质过程中非费克效应的实验与理论研究[J].工程热物理学报,2000,21(5):595~599.
    [28] 蒋方明,刘登瀛.非费克质量传递的“瞬态薄层”模型[J].应用科学学报,2001,19(2):95~99.
    [29] Cullen H. M., deMenocal P. B., Hemming S., et. al.. Climate change and the collapse of the Akkadian empire: Evidence form deep sea.[J]. J. Geol., 2000, 288(4): 379-382.
    [30] deMenocal P. B.. Cultural responses to climate change during the Late Holocene[J]. J. Sci., 2001, 292(5517): 667~669.
    [31] Williams W. D.. Anthropogenic salinization of inland waters[J]. J. Hydrobiol., 2001, 466: 329~337.
    [32] Pillsbury A. F.. The salinity of rivers[J]. Sci. Am., 1981, 245(1): 54~65.
    [33] Gates T. K., Burkhalter J. P. Labadie J. W., et. al.. Monitoring and modeling flow and salt transport in salinity-threatened irrigated valley[J]. J. Irrig. Drain. Eng. Asce., 2002, 128(2): 87~99.
    [34] Kotb T. H. S., Watanabe T., Ogino Y., et. al.. Soil salinization in the Nile Delta and related policy issues in Egypt[J]. Agri. Wat. Mngt., 2000, 43(2): 239~261.
    [35] Robson J. F., Stoner R. F., Perry J. H.. Disposal of drainage water from irrigated alluvial plains[J]. Agri. Water Sci. Tech., 1983, 16: 41~55.
    [36] Beaumont P.. Agricultural and environmental changes in the upper Euphrates catchment of Turkey and Syria and their political and economic implications[J]. Appl. Geog., 1996, 16(2): 137~157.
    [37] 樊自立,马英杰,等.塔里木河水质盐化及改善途径[J].水科学进展,2002,13(6):719~725.
    [38] 谭红兵,刘兴起,等.格尔木河中下游——达布逊湖段水化学变化特征研究[J].湖泊科学,2001,13(1):43~50.
    [39] Allison G. B., Cook P. G, Barnett S. R., et. al.. Land clearance and fiver salinization in the western Murray basin, Australia[J]. J. Hydrol., 1990, 119: 1~20.
    [40] Herczeg A. L, Simpson H. J., Mazor E.. Transport of soluble salts in a large semi-arid basin: River Murray, Australia[J]. J. Hydrol., 1993, 144: 59~84.
    [41] Phillips F. M., Hogan J. F., Mills S. K. et. al.. Environmental tracers applied to qualntifying causes of salinity in arid-region rivers: preliminary results from the Rio Grande, South-wastern USA[P]. In Development in Wat. Sci., 50. Water Resources Perspectives: Evaluation, Management and Policy (eds. Alsharhan A. S. and Wood W. W.). Elsevier, Amsterdam, 2002.
    [42] Efrat Farber, Avner Vengosh, Ittai Gavrieli, et. al.. The origin and mechanisms of salinization of the Lower Jordan River[J]. Geo. Cos. Acta, 2004, 68(9): 1989~2006.
    [43] 王苏民,窦鸿身.中国湖泊志[M].北京:科学出版社,1998:175~178.
    [44] 吴瑞金.我国湖泊资源环境现状与对策[J].中国科学院院刊(科技与社会),2001,(3):176~181.
    [45] 王苏民,张振克.中国湖泊水资源开发利用中的短缺问题与对策[J].河海大学学报,2000,28(增刊):47~52.
    [46] 李立人,王雪冬.乌伦古湖水质现状及污染防治对策[J].干旱环境监测,2003,17(2):102~105.
    [47] 黄文钰,姜加虎,黄群.岱海水质咸化及对策研究[J].污染防治技术,1997,10(3):127~129
    [48] Dalinsky P.. The salinization Mechanism of Lake Kinneret-a research for the period 1912~1968. Water Planning for Israel(Tahal), 1969, 746, Tel-Aviv, in Hebrew.
    [49] Alon Rimmer. The mechanism of Lake Kinneret salinization as a linear reservoir[J]. J. Hydrol., 2003, 281(3): 173~186.
    [50] Rimmer A., Gal G.. Estimating the saline springs component in the solute and water balance of Lake Kinneret, Israel[J]. J. Hydrol., 2003, 284(1): 228~243.
    [51] Simon E., Mero F.. The salinization mechanism of Lake Kinneret[J]. J. Hydrol., 1992, 138(3): 327~343.
    [52] 陈永灿,张宝旭,李玉梁.密云水库富营养化分析与预测[J],水利学报,1998,7:61~64.
    [53] 李玉英,候任合.于桥水库富营养化趋势及成因[J].水利水电技术,2001,32(8):61~63.
    [54] Cheng Wen-po, Chi Fung-Hwa. Influence of eutrophication on the coagulation efficiency in reservoir water[J]. Chemosphere, 2003, 53(7): 773~778.
    [55] Recknagel F., Burch M., Jablonskas G., et. al.. Combined effects of organic pollution and eutrophication in the South Para reservoirs, South Australia[J]. War. Sci. Tech., 1998, 37(2): 113~220.
    [56] 何杉,马增田,王裕玮.白洋淀水质预测[J],水电站设计,1997,13(3):30~38.
    [57] Hemandez, P., Ambrose Jr. R. B., Prats D., et. al.. Modeling eutrophication kinetics in reservoir microcosms[J]. Wat. Res., 1997, 31(10): 2511~2519.
    [58] 裴新.大桥水库水质的预测分析[J],四川水利,1997,18(6):18~22.
    [59] dos Santos J. S., de Oliveira E., Brans, R. E., et al.. Evaluation of the salt accumulation process during inundation in water resource of Contas river basin(Bshia-Brazil) applying principal componet analysis[J]. Wat. Res., 2004, 38(6): 1579~1585.
    [60] 朱江平.胡陈港水库水质咸化原因分析及治理对策[J].浙江水利科技,2002,4:50~53.
    [61] 徐华鑫.天津自然地理[M].天津:天津社会科学出版社,1988:1~23.
    [62] 来新夏,郭凤岐.天津大辞典[M].天津:天津社会科学出版社,2001:235~239.
    [63] 天津百科全书编辑委员会.天津百科全书[M].天津:天津科技翻译出版公司,1995:1~7.
    [64] 天津市统计局.天津四十年[M].北京:中国统计出版社,1989:1~44.
    [65] 邢嘉明.京津区域生态地理环境研究[M].北京:气象出版社,1988:1~2.
    [66] 天津市滨海新区管委会,天津市统计局.天津滨海新区统计年鉴1994-1998[M].天津:天津人民出版社,2000:57~59.
    [67] 天津市水利局水利志编纂委员会.天津市水利志—大港区水利志[M].天津:天津科学 技术出版社.1998:1-15.
    [68] 天津市水利局水利志编纂委员会.天津市水利志—北大港水库水利志[M].天津:天津科学技术出版社.1998:1~22.
    [69] 天津市水利局水利志编纂委员会.天津市水利志—塘沽区水利志[M].天津:天津科学技术出版社.1998:1~17.
    [70] 黄瑞农.环境土壤学[M].北京:高等教育出版社,1988:7~37.
    [71] (美)福斯(H.D.Foth)蓍,唐耀先等译.土壤科学原理[M].北京:农业出版社,1985:21~50.
    [72] 沈照理.水文地质学[M].北京:科学出版社,1985:55~61.
    [73] 杨忠耀.环境水文地质学[M].北京:原子能出版社,1990:1~10.
    [74] 王运洪.水库湖流多负荷数值模拟[J].广西科学,2001,8(2):118~123.
    [75] 奚玉英,陈国春.由20cm蒸发皿资料和风速计算水库库面蒸发量[J].水电站设计,2002,18(2):76~78.
    [76] (美)科斯乐(E.L.Cusssler)蓍,王宇新等译.扩散一流体系统中的传质[M].北京:化学工业出版社.2002:63~87
    [77] 徐立冲,陆柱,夏建萍.真空冷冻法海水淡化技术研究[J].净水技术,1994,50(4):3~6.
    [78] Start Hightower, Kevin Price, Lisa Henthorne. The US Bureau of Reclamation's research programs in water treatment and desalting technologies[J]. Proceedings from the United States/Middle East Joint Seminar on Desalination Technology, April, 1994: 201~210.
    [79] 张秀宝,高伟生,应龙根.大气环境污染概论[M].北京:中国环境科学出版社,1989:1~22.
    [80] 胡正义,王体健,曹志洪,等.大气干沉降向农田生系统输入硫素通量研究[J].土壤学报,2001,38(3):357~364.
    [81] 李玉中,祝延成,姜世成.羊草草地生态系统干湿沉降氮输入量动态变化[J].中国草地,2000,2:24~27.
    [82] 王大纯 张人权 史毅虹,等.水文地质学基础[M].北京:地质出版社,1986:144~145.
    [83] 涂向阳.海河流域滨海地区海水入侵防治对策研究[D].天津大学硕士学位论文,2004.
    [84] 盛学斌,戴昭华,杨明华.大渤海区海水入侵态势与防治构想[J].生态学报,1996,16(4):418~416.
    [85] 王连弟.天津滨海新区的绿化与土壤盐碱化问题[J].生态经济,1995,1:31~33.
    [86] 杨永利.滨海重盐渍荒漠地区生态重建技术模式及效果的研究—以天津滨海新区为例[D].中国农业大学博士学位论文,2004.
    [87] 曹稳根.安徽淮北地区盐碱土的成因及其改良措施[J].淮北煤师院学报,1997,18(1):73~76.
    [88] 俞永科,王玫林.浅议柴达木盆地盐碱土成因与暗排技术的应用[J].青海环境,1997,7(1):19~21.
    [89] 天津市地质矿产局.天津市区域地质志[M].北京:地质出版社,1992:116~154.
    [90]毛任钊,张妙仙,张玉铭.海河低平原盐渍涝洼区表层土壤积盐影响通径分析[J].中国生态农业学报,2004,12(2):50~53.
    [91] 毛建华,陆文龙,李秀文,等.应重视天津滨海地区土壤次生碱化的防治[J].农业环境与发展,1995,2:12~14.
    [92] H. Xue, P. H. Nhat, R. Gachter, et. al.. The transport of Cu and Zn from agricultural soils to surface water in a small catchment[J]. Adv. Env. Res., 2003, 8(2): 69~76.
    [93] M. de Wit, H. Behrendt. Emissions from soil to surface water in the rhine and elbe basins[J]. Wat. Sci. Tech., 1999, 39(12): 109~116.
    [94] 万群,黎大志,曾光明.金凤水库土壤中砷对库区水体影响的分析[J].岳阳师范学院学报(自然科学版),2001,14(1):31~33.
    [95] 傅春艳,董文,路永正.土壤、底泥中镉的形态分析及其对水体的影响[J].水资源保护,1996,4:25~28.
    [96] 阮晓红,王超,朱亮.氮在饱和土壤层中迁移转化特征研究[J].河海大学学报,1996,24(2):51~54.
    [97] 吴永峰,汪民,钟佐焱.有机废水快速渗滤处理系统中氧化还原环境特征[J].环境保护科学,1995,21(4):32~36.
    [98] 薛禹群.地下水动力学原理[M].北京:地质出版社,1998:3~30.
    [99] 陈崇希,林敏.地下水动力学[M].武汉:中国地质大学出版社,1999:70~95.
    [100] 天津市地矿局,天津市水利局.天津市地下水水质调查评价及与地表水污染关系的分析研究报告[R].1993.
    [101] 白峰青,黄兴国,贺屹.咸阳市区地下水污染因素及其保护对策研究[J].煤炭工程,2004,5:58~60.
    [102] 李志萍,张金炳,屈吉鸿,等.污染河水中氨氮对浅层地下水的影响[J].地球科学—中国地质大学学报,2004,29(3):363~368.
    [103] 朱广伟,秦伯强,高光.强弱风浪扰动下太湖的营养盐垂向分布特征[J].水科学进展,2004,15(6):775~780.
    [104] 朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据[J].科学通报,2005,50(1):66~71.
    [105] 范成新,张路,秦伯强,等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算[J].中国科学(D辑),2003,33(8):760~768.
    [106] Benson-Evans K., Antoine R., Antoine S.. Studies of the water puality and algae of Llangorse Lake[J]. Aquatic Conservation-Marine and Freshwater Ecosystems., 1999, 9(5): 425~439.
    [107] 马生伟,蔡启铭.浅水湖泊风生流的迎风有限元数值模型研究[J].水科学进展,2000,11(1):70~75.
    [108] Nigiin Kiran, Orhan Yenigun Erdem Albek et al. Wind-induced circulations of the Black Sea[J]. Wat. Sci. Tech., 1996, 32(7): 87-93.
    [109] 管国锋,赵汝溥.化工原理(第二版)[M].北京:化学工业出版社,2003:201~226.
    [110] 严煦世,范瑾初.给水工程(第四版)[M].北京:中国建筑工业出版社,1999:472~480.
    [111] 徐挺.相似理论与模型实验[M].北京:中国农业机械出版社,1982:180~184.
    [112] 袁文忠.相似理论与静力学模型实验[M].成都:西南交通大学出版社,1998:7~42.
    [113] 牛振红,孙明.水面蒸发折算系数的对比观测实验与分析计算(J).水文,2003(3):49~51.
    [114] 郑彤,陈春云.环境系统数学模型[M].北京:化学工业出版社.2003:78~84.
    [115] 陈眉,程晓如.东湖截污工程对改善西南湖区水质的预测研究[J].中国给水排水,2003,19(3):37~39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700