顶点算子超代数的表示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超对称性在二维共形场论中扮演了重要的作用,这促使我们来研究顶点算子超代数及其表示理论.顶点算子超代数是顶点算子代数的自然推广.H. Tsukada (1990)研究了一些重要的顶点算子超代数.V. G. Kac和W. Wang (1996)详细地研究了三类重要的顶点算子超代数,即关于仿射Kac-Moody超代数、Neveu-Schwarz (NS)代数、自由费密子的顶点算子超代数.他们把Y. Zhu的A(V)-理论推广为顶点算子超代数的A(V)-理论,并讨论了顶点算子超代数的表示理论.H. Li (1996)利用顶点算子的Local system构造并讨论了顶点算子超代数及其表示.徐晓平(1998)在其书中也给出了许多有关顶点算子超代数及其模的知识.本文,我们进一步研究了顶点算子超代数和相关的结合代数的表示,顶点算子超代数的双模理论,以及利用Neveu-Schwarz(NS)-型的顶点算子超代数和二元线性码理论构造了一类编码顶点算子超代数,进而研究了其表示理论.本文将分三部分来分别讨论顶点算子超代数的表示问题.
     第一部分:设V是一个顶点算子超代数.我们得到了一系列的结合代数An(V)(对任何n∈i/2+(?)+(i∈{0,1})).我们也给出了An(V)-模但非An-1/2(V)-模的不可约模范畴和单的可容许的V-模的范畴之间的一一对应关系.对于给定的An(V)-模但非An-1/2(V)-模U,我们还构造了一类广义Verma可容许的V-模Mn(U).进而利用结合代数的表示进一步研究了顶点算子超代数的表示论.
     第二部分:对于任意一个顶点算子超代数V,m,n∈1/2(?)+,通过构造An(V)-Am(V)-双模An,m(V),讨论了双模An,m(V)的性质.刻画了V的一个从可容许的V-模的第m层子空间到第n层子空间的作用.我们利用An,m(V)和Am(V)-模U还构造了一类Verma型可容许的V-模M(U)=(?)n∈1/2Z+An,m(V)(?)Am(V)U,证明了M(U)与本文第一章构造的广义Verma可容许的V-模M(U)的确是同构关系.
     第三部分:我们首先讨论了顶点算子超代数的张量积.进而,我们利用任意一个含有奇重量的二元码研究了编码顶点算子超代数的表示论.利用M. Miyamoto的证明,我们证明了满足本文假设的(V,Y)同构于MD,其中D是某个含有奇重量码字的二元线性码.此外,我们也证明了对任意一个含有奇重量码字的二元线性编码D,编码顶点算子超代数MD是有理的.进而,我们利用M. Miyamoto的结论和诱导模的方法给出了MD的不可约表示的一般形式.利用这个结果,我们进一步研究了汉明顶点算子超代数MH7的表示.证明了在汉明顶点算子超代数MH7中只存在一组7个相互正交的中心电荷为1/2的共形向量.并且我们还给出了所有的汉明顶点算子超代数的不可约表示的分类.
Vertex operator superalgebras can be considered as natural generalizations of vertex operator algebras. The supersymmetry, which plays an important role in two-dimensional conformal field theories, is one of the main reasons to study vertex operator superalgebras. There has been a rapid development in the theory of vertex operator superalgebras over the past decades. Several important types of vertex operator superalgebras have been studied since 1990 by H. Tsukada. The Zhu's A(V)-theory on vertex operator algebras was generalized to A(V)-theoty on vertex operator superalgebras by V. G. Kac and W. Wang in 1996. They also studied in detail three classes of vertex operator superalgebras, i.e., the vertex operator su-peralgebras associated to the affine Kac-Moody superalgebras, the Neveu-Schwarz algebras, and the free fermions. The representations of these vertex operator su-peralgebras were also studied. By the " local system of vertex operators " for a (super) vector space, H. Li proved that any local system of vertex operators on a (super) vector space M has a natural vertex (super)algebra structure with M as a module and studied the representations of vertex operator superalgebras in 1996. For more results on the theory of vertex operator superalgebras and their repre-sentations on can refer to Xu'book pressed in 1998. In this paper, we study the representations of vertex operator superalgebras and related associative algebras, bimodules associated to vertex operator superalgebras and the representations of code vertex operator superalgebras obtained by combining the minimal vertex op-erator superalgebra L(1/2,0)(?)L(1/2,1/2) with a binary linear code which contains codewords of odd weight. The present paper includes three main parts.
     In the first part, let V be a vertex operator superalgebra. We construct a sequence of associative algebras An(V) for n∈1/2Z+. It is also exposed that there is a pair of functors between the category of An(V)-modules which are not An-1/2(V)- modules and the category of admissible V-modules. The functors exhibit a bijection between the simple modules in each category. We also construct a generalized Verma admissible V-module Mn(U) from an An(V)-module U which is not an An-1/2(V)-module. Furthermore, we study the theory of representations of vertex operator superalgebras by associative algebras An(V), n∈1/2Z+.
     In the second part, let V be a vertex operator superalgebra and m,n∈1/2Z+. We construct an An(V)-Am(V)-bimodule An,m(V) which characterizes the action of V from the level m subspace to level n subspace of an admissible V-module. We study the properties of the An(V)-Am(V)-bimodule An,m(V) and discuss relations between An(V)-modules and admissible V-modules. We also construct a Verma type admissible V-module M(U)=(?)n∈Z An,m(V)(?)Am(v) U, which is proved to be isomorphic to the M(U) defined in the first part of this paper.
     In the third part, we study the structure of the tensor product of vertex op-erator superalagebras. Furthermore, we study the representations of code vertex operator superalgebras resulting from a binary linear code which contains code-words of odd weight. We prove that the code vertex operator superalgebra MD is rational, and Miyamoto's construction of induced modules is generalized to code vertex operator superalgebra. We show that there exists only one set of mutually orthogonal seven conformal vectors with central charge 1/2 in the Hamming code vertex operator superalgebra MH7, and we classify all irreducible MH7-modules. As in [29] and [31], our main tool is the theory of induced modules developed by Dong and Lin in [33] and fusion rules of the rational vertex operator algebra L(1/2,0) with central charge 1/2 (see [26]).
引文
[1]Borcherds R E, Vertex algebras Kac-Moody algebras and the Monster, Proc Natl Acad Sci USA,1986,83,3068-3071
    [2]Frenkel I B, Lepowsky J, Meurman A, Vertex Operator Algebras and the Monster, Pure and Applied Math,134, Academic Press,1988
    [3]Dong C, Lepowsky J, Generalized Vertex Algebras and Relative Vertex Operators, In: Inc, Boston, Progress in Mathematics,112, Birkhauser Boston,1993
    [4]Frenkel I B, Huang Y, Lepowsky J, On axiomatic approaches to Vertex Operator Algebras and Modules, Memoirs Amer Math Soc,104,1993
    [5]Dong C, Representations of the moonshine module vertex operator algebra, Contemp. Math.,1994,175,27-36
    [6]Lepowsky J, Li H, Introduction to Vertex Operator Algebras and Their Representations. In:Inc, Boston, Progress in Mathematics,227, Birkhauser Boston,2004
    [7]Zhu Y, Modular invariance of characters of Vertex Operator Algebras, J Amer Math Soc, 1996,9,237-302
    [8]Frenkel I B, Zhu Y, vertex operator algebras associated to representations of affine and Virasoro algebra, Duke Math. J.,1992,66,123-168
    [9]Tsukada H, Vertex Operator Superalgebras, Comm Alg,1990,18(7),2249-2274
    [10]Feingold A J, Frenkel I B, Ries J F X, Spinor construction of Vertex Operator Algebra trailty and E8(1), In:Amer Math Soc, Contemp Math,121, Providence,1991
    [11]Kac V, Wang W, Vertex Operator Superalgebras and their Representations, In:Amer. Math. Soc, Contemp. Math.,175,161-191, Providence,1994
    [12]Kac V, Vertex Algebras for Beginners, In:Amer. Math. Soc., University Lecture Series, 10, Providence,1996
    [13]Li H, Local systems of Vertex Operators Vertex Superalgebras and Modules, J Pure AppL. Alg.,1996,109,143-195
    [14]Li H, Local systems of twisted Vertex Operators Vertex Superalgebras and twisted Mod-ules, In:Amer Math Soc, Contemp. Math.,1996,193,203-236
    [15]Dong C, Zhao Z, Twisted Representations of Vertex Operator Superalgebras, Commu. Contemp. Math.,2006,8,101-122
    [16]Xu X, Introduction to Vertex Operator Superalgebras and Their Modules, In:Kluwer Academic Publishers, Mathematics and its Applications,456, Dordrecht,1998
    [17]Dong C, Jiang C, Bimodules associated to vertex operator algebra, math QA/0601626 (to appear in Math Z)
    [18]Dong C, Jiang C, Bimodules and g-rationality of vertex operator algebra, math QA/0607758(to appear in Trans Amer Math Soc)
    [19]Dong C, Jiang C, Representations of vertex operator algebras, math QA/0603588,2006
    [20]Dong C, Jiang C, Rationality of vertex operator algebras, math QA/0607679,2006
    [21]Li H, Representation theory and tansor product theory for vertex operator algebras, [Dissertation](Ph.D. thesis), Rutgers University,1994
    [22]Dong C, Li H, Mason G, Twisted Representations of Vertex Operator Algebras, Math Ann,1998,310,571-600
    [23]Dong C, Li H, Mason G, Vertex Operator Algebras and Associative Algebras, J Algebra, 1998,206,67-96
    [24]Dong C, Li H, Mason G, Twisted Representations of Vertex Operator Algebras and Associative Algebras. International Math Research Notices,1998,8,389-397
    [25]Miyamoto M, Tanabe K, Uniform product of Ag,n(V) for an orbifold model V and G-twisted Zhu algebra, J. Algebra,2004,274,80-96
    [26]Dong C, Mason G and Zhu Y, Discrete series of the Virasoro algebra and the moonshine module, Proc. Symp. Pure. Math., American Math. Soc.,1994,56 Ⅱ,295-316
    [27]Huang Y, A theory of tensor products for module categories for vertex operator algebras, IV, J. Pure AppL. Algebra.,1995,100,173-216
    [28]Miyamoto M, Griess algebra and conformal vectors in vertex operator algebras, J. Alge-bra,1996,179,523-548
    [29]Miyamoto M, Binary codes and vertex operator (super)algebras, J. Algebra,1996,181, 207-222
    [30]Dong C, Griess R and Hoehn G, Framed vertex operator algebras, codes and the moon-shine module, Commu. Math. Phys.,1998,193,407-448
    [31]Miyamoto M, Representation theory of code vertex operator algebras, J. Algebra, 1998,201,115-150
    [32]Miyamoto M, A Hamming code vertex operator algebra and construction of vertex oper-ator algebras, J. Algebra,1998,201,115-150
    [33]Dong C, Lin Z, Induced modules for vertex operator algebras, Commu. Math. Phys., 1996,179,154-184
    [34]Li H, The regular representation, Zhu's A(V)-theory, and induced modules, J. Algebra, 238,2001,159-193
    [35]Lam C H, Code vertex operator algebra under coordinate change, Comm. Algebra.,1999, 27,4587-4605
    [36]Lam C H, Twisted representations of code vertex operator algebras, J. Algebra.,1999, 217,275-299
    [37]Matsuo A, Matsuo, The automorphism group of the Hamming code vertex operator algebras, J. Algebra,2000,228,204-226
    [38]Lam C H, Fusion rules for the Hamming code vertex operator algebra, Comm. Algebra., 2001,29,2125-2145
    [39]Milas A, Tensor product of vertex operator algebra, arXiv:q-alg/9602026v1,1996
    [40]Dong C, Mason G, On quantum Galois theory, Duke Math.J.,1997,86,305-321
    [41]Scheithauer N R, Vertex algebras, Lie algebra, and superstrings, J. Algebra,1998,200, 363-403
    [42]Wang W, Rationality of Virasoro vertex operator algebras, Duke Math. J. IMRN,1993, 71,197-211
    [43]Arbarello E, Concini C De, Kac V G and Procesi C, Moduli spaces of curves and repre-sentation theory, Comm. Math. Phys.,1988,117,1-36
    [44]Abe T, Rationality of the vertex operator algebra VL+ for a positive definite even lattice L, math. Q A/0311210,2003
    [45]Abe T, Buhl G and Dong C, Rationality, regularity, and C2-cofiniteness, to appear in Trans. Amer. Math. Soc., math.QA/0204021,2002
    [46]Abe T and Dong C, Classification of irreducible modules for the vertex operator algebra VL+:General case, to appear in J. Algebra,math. QA/0210274,2002
    [47]Abe T, Dong C and Li H, Fusion rules for the vertex operator algebras M(1)+and VL+ to appear in Comm. Math. Phys., math. QA/0310425,2003
    [48]Anderson G, and Moore G, Rationality in conformal field theory, Comm. Math. Phys., 1988,117,441-450
    [49]Astashkevich A, On the structure of Verma modules over Virasoro and Neveu-Schwarz algebras, Comm. Math. Phys.,1997,186,531-562
    [50]Belavin A A, Polyakov A M, and Zamolodchikov A B, Infinite conformal symmetries in two-dimensional quantum field theory, Nucl. Phys. B,1984,241,333-380
    [51]Borcherds R E, Monstrous moonshine and monstrous Lie superalgebras, Invent. Math., 1992,109,405-444
    [52]Buhl G, A spanning set for VOA modules, J. Algebra,2002,254,125-151
    [53]Berman S, Billig Y, Irreducible representations for toroidal Lie algebras, J. Algebra,1999, 221,188-231
    [54]Billig Y, Respresentations of the twisted Heisenberg-Virasoro algebra at level zero, Cana-dian Mathematical Bulletin,2003,46,529-537
    [55]Conway J H, A simple construction for the Fischer-Griess monster group, Invent. Math., 1985,79,513-540
    [56]Chari V, Integrable representations of affine Lie algebras, Invent. Math.,1986,85,317-335
    [57]Chari V, Pressley A, Unitary representations of the Virasoro algebra and a conjecture of Kac, Compositio Math,1988,67,315-342
    [58]Dijkgraaf R, Vafa C, Verlinde E and Verlinde H, The operator algebra of orbifold models, Comm. Math. Phys.,1989,123,485-526
    [59]Dong C, Vertex algebras associated with even lattices, J. Algebra,1993,160,245-265
    [60]Dong C, Twisted modules for vertex algebras associated with even lattices, J. Algebra, 1994,165,90-112
    [61]Dong C, Representations of the moonshine module vertex operator algebra, In:Math-ematical aspects of conformal and topological field theories and quantum groups, Proc. Joint Summer Research Conference, Mount Holyoke,1992, ed. P. Sally, M. Flato, J. Lep-owsky, N. Reshetikhin and G. Zuckerman, Contemporary Math.175, Amer. Math. Soc. Providence,1994,27-36
    [62]Dong C, Li H and Mason G, Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys.,2000,214,1-56
    [63]Dong C, Li H and Mason G, Compact automorphism groups of vertex operator algebras, Internat. Math. Res. Notices,1996,18,913-921
    [64]Dong C, Li H and Mason G, Hom functor and the associativity of tensor products of modules for Vertex operator algebras, J. Algebra,1997,188,443-475
    [65]Dong C, Li H and Mason G, Simple currents and extensions of vertex operator algebras, Comm. Math. Phys.,1996,180(3),671-707
    [66]Dong C, Li H, Mason G and Norton S P, Associative subalgebras of Griess algebra and related topics, Proc. of the Conference on the Monster and Lie algebra at the Ohio State University, May 1996, ed. by J. Ferrar and K. Harada, Walter de Gruyter, Berlin-New York,1998
    [67]Dong C and Mason G, Quantum Galois theory for compact Lie groups, J. Algebra,1999, 214,92-102
    [68]Dong C and Mason G, Rational vertex operator algebras and the effective central charge, math. QA/0201318,2002
    [69]Dong C and Mason G, Vertex operator algebras and Moonshine; A Survey, Advanced Studies in Pure Mathematics 24, Progress in Algebraic Combinatorics, Mathematical Society of Japan
    [70]Dong C and Yamskulna G, Vertex operator algebras, generalized doubles and dual pairs, Math. Z.,2002,241,397-423
    [71]Feigin B L and Fuchs D B, Verma modules over the Virasoro algebra, Topology, In:Lecture Notes in Math.1060, Springer-Verlag, Berlin,1984,230-245
    [72]Feingold A J, Ries J F X and Weiner M, Spinor construction of the c=1/2 minimal model. Moonshine, the Monster, and related topics (South Hadley, MA,1994),45-92, Contemp. Math.,193, Amer. Math. Soc., Providence, RI,1996
    [73]Farnsteiner R, Derivations and central extensions of finitely generated graded Lie algebra, Journal of Algebra,1988,118,33-45
    [74]Griess R L, The friendly giant, Invent. Math.,1982,69,1-102
    [75]Griess R L and Hohn G, Virasoro frames and their stabilizers for the E8 lattice type vertex operator algebra, Journal fur die reine und angewandte Mathematik (Crelle),2003,561, 1-37
    [76]Gaberdiel M and Neitzke A, Rationality, quasirationality, and finite W-algebras, DAMTP-200-111
    [77]Goddard P, Kent A and Olive D, Unitary representations of the Virasoro and super-Virasoro algebras, Comm. Math. Phys.,1986,103,105-119
    [78]Hohn G, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, [Disserta-tion] (Ph.D. thesis), Bonn,1995
    [79]Hohn G, The group of symmetries of the shorter moonshine module, preprint, math. QA/0210076,2002
    [80]Huang Y, Virasoro vertex operator algebras, (non-meromorphic) operator product ex-pansion and the tensor product theory, J. Algebra,1996,182,201-234
    [81]Huang Y, A nonmeromorphic extension of the moonshine module vertex operator al-gebra, in "Moonshine, the Monster and Related Topics, Proc. Joint Summer Research Conference, Mount Holyoke,1994" (C. Dong and G. Mason, Eds.), Contemporary Math., pp.123-148, Amer. Math. Soc., Providence, RI,1996
    [82]Huang Y, Differential equations and intertwining operators, math. QA/0206206,2002
    [83]Huang Y and Lepowsky J, Toward a theory of tensor product for representations of a vertex operator algebra, In:Proc.20th Intl. Conference on Diff. Geom. Methods in The-oretical Physics, New York,1991, ed. S. Catto and A. Rocha, World Scientific, Singapore, 1992, Vol.1,344-354
    [84]Huang Y and Lepowsky J, Tensor products of modules for a vertex operator algebra and vertex tensor categories, In:Lie Theory and Geometry, ed. R. Brylinski, J.-L. Brylinski, V. Guillemin, V. Kac, Birkhauser, Boston,1994,349-383
    [85]Huang Y and Lepowsky J, A theory of tensor products for module categories for a vertex operator algebra, Ⅰ, Sel. Math.,1995,1,699-756
    [86]Huang Y and Lepowsky J, A theory of tensor products for module categories for a vertex operator algebra, Ⅲ, J. Pure Appl. Alg.,1995,100,141-171
    [87]Hanaki A, Miyamoto M and Tambara D, Quantum Galois theory for finite groups, Duke. Math. J.,1999,97,541-544
    [88]Kac V G, Lie superalgebras, Advances in Math.,1977,26(1),8-96
    [89]Karpilovsky G, Group representations Vol.2, Mathematical studies,177, North-Holland, 1993
    [90]Kaplansky I, Santharoubane L J, Harish-Chandra modules over the Virasoro algebra. In:Infinite-Dimentional Groups with Application. Math. Sci. Res. Inst. Publ.,1985,4, 217-231
    [91]Kitazume M, Miyamoto M and Yamada H, Ternary codes and vertex operator algebras, J. Algebra,2000,223,379-395
    [92]Kac V G and Raina A K, " Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie algebras," World Scientific, Singapore,1987
    [93]Lam C H, Induced modules for orbifold vertex operator algebras, J. Math. Soc. Japan, 2001,53,541-557
    [94]Lam C H, Lam N and Yamauchi H, Extension of Virasoro vertex operator algebra by a simple module, Internat. Math. Res. Notices,2003,11,577-611
    [95]Lam C H and Yamada H, Tricritical 3-state Potts model and vertex operator algebras constructed from ternary codes, preprint
    [96]Lam C H, Yamada H and Yamauchi H, Vertex operator algebras, extended E8-diagram, and McKay's observation on the Monster simple group, preprint
    [97]Li H, The theory of physical superselection sectors in terms of vertex operator algebra language, Arxiv:q-alg/9504026,1995
    [98]Li H, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra,1994,96,279-297
    [99]Li H, The physics superselection principal in vertex operator algebra theory, J. Algebra, 1997,196,436-457
    [100]Li H, Extension of vertex operator algebras by a self-dual simple module, J. Algebra, 1997,187,236-267
    [101]Li H, Determining fusion rules by A(V)-modules and bimodules, J. Algebra,1999,212, 515-556
    [102]Li H, An analogue of the Hom functor and a generalized nuclear democracy theorem, Duke Math. J.,1998,93,73-114
    [103]Li H, Certain extensions of vertex operator algebras of affine type, Comm. Math. Phys., 2001,217,653-696
    [104]Li H, On abelian coset generalized vertex algebras, Comm. Contemp. Math.,2001,3, 287-340
    [105]Langlands R, On unitary representations of the Virasoro algebra, Infinite-Dimentional Lie algebras and their application, Singapore:World Scientific,1986,141-159
    [106]Li W,2-cocycle on the algebra of differential operators, J. Algebra,1989,122,64-80
    [107]Martin C, Piard A, Indecomposable modules over the Virasoro Lie algebra and a conjec-ture of Kac, Comm. Math. Phys.,1991,137,109-132
    [108]Mason G, The quantum double of a finite group and its role in conformal field theory, Proc. LMS Lecture Notes 212, CUP
    [109]Matsuo A, Norton's trace formulae for the Griess algebra of a vertex operator algebra with larger symmetry, Comm. Math. Phys.,2001,224,565-591
    [110]Miyamoto M, Griess algebras and conformal vectors in vertex operator algebras, J. Al-gebra,1996,179,528-548
    [111]Miyamoto M, A new construction of the moonshine vertex operator algebra over the real number field, to appear in Ann. Math.
    [112]Miyamoto M, A modular invariance on the theta functions defined on vertex operator algebras, Duke Math. J.,2000,101,221-236
    [113]Miyamoto M,3-state Potts model and automorphisms of vertex operator algebras ol order 3, J. Algebra,2001,239,56-76
    [114]Miyamoto M, VOAs generated by two conformal vectors whose τ-involutions generate S3, J. Algebra,2003,268,653-671
    [115]Miyamoto M, Modular invariance of vertex operator algebras satisfying C2-cofiniteness, Duke Math. J.,2004,122(2),281-346
    [116]Miyamoto M, A theory of tensor products for vertex operator algebra satsifying C2-cofiniteness, math. QA/0309350,2003
    [117]Roitman M, On free conformal and vertex algebras, J. Algebra,1999,217,496-527
    [118]Roitman M, Combinatorics of free vertex algebras, J. Algebra,2002,255,297-323
    [119]Shimakura H, Automorphism group of the vertex operator algebra VL+ for an even lattice L without roots, J. Algebra,2004,280,29-57
    [120]Sakuma S and Yamauchi H, Vertex operator algebra with two Miyamoto involutions generating S3, J. Algebra,2003,267,272-297
    [121]Su Y, Zhao K, Generalized Virasoro and super-Virasoro algebras and modules of the intermediate series, J. Algebra,2002,252,1-19
    [122]Su Y, Simple modules over the higher rank super-Virasoro algebras, Lett. Math. Phys., 2000,53,263-272
    [123]Su Y, Classification of Harish-Chandra modules over the super-Virasoro algebras, Comm.Alg.,1995,23,3653-3675
    [124]Su Y, Harish-Chandra modules of intermediate series over the high rank Virasoro algebras and high rank super-Virasoro algebras, J.Math.Phys.,1994,35,2013-2023
    [125]Wakimoto M, Lectures on infinite-dimensional Lie algebra, World Scientific,2001
    [126]Yamskulna G, C2-cofiniteness of the vertex operator algebra VL+ when L is a rank one lattice, Comm. Algebra,2004,32(3),927-954
    [127]Yamauchi H, Orbifold Zhu theory associated to intertwining operators, J. Algebra,2003, 265,513-538
    [128]Yamauchi H, Modularity on vertex operator algebras arising from semisimple primary vectors, Internat. J. Math.,2004,15,87-109
    [129]Yamauchi H, Module category of simple current extensions of vertex operator algebras, J.Pure Appl. Alg.,2004,189,315-328
    [130]Humphreys J E, Introduction to Lie algebras and representation theory, Springer, Berlin, Hidelberg, New York,1972
    [131]Kac V G, Infinite Dimensional Lie Algebra,3rd Edition, Cambrige Univ. Press, Cam-bridge, UK,1990
    [132]Fabbri M A, Okoh F, Representations of Virasoro-Heisenberg algebras and Virasoro-toroidal algebras, Canad. J. Math.,1999,51(3),523-545
    [133]Jiang Q, Jiang C, Representations of the twisted Heisenberg-Virasoro algebra and the full toroidal Lie algebras, Algebra Colloq., accepted
    [134]Shen R, Jiang C, Derivation algebra and automorphism group of the twisted Heisenberg-Virasoro algebra, comm. alg., accepted
    [135]Wang X, Zhao K, Verma modules over the Virasoro-like algebra, J. Aust. Math. Soc., in press.
    [136]Jiang C, Meng D, Vertex representations for [v+1)-toroidal Lie algebras of type Bl, J. Algebra,2001,246564-593
    [137]Jiang C, Meng D, The irreducible highest weight representations of C∞, Comm. Alg., 1996,24,533-542
    [138]Jiang C, Meng D, Integrable representations for generalized Virasoro-toroidal Lie alge-bras, J. Algebra,2003,270,307-334
    [139]Jiang C, You H, Irreducible representations for the affine-Virasoro Lie algebra of type Bl, Chinese Ann.Math.Ser.B,2004,25,359-368
    [140]Astashkevich A B, On the structrue of Verma modules over Virasoro and Neveu-Schwarz algebras, Comm.Math.Phys.,1997,186,531
    [141]Astashkevich A B, Fuchs D B, Asymptotic of singular vectors in Verma modules over the Virasoro Lie algebra, Pac.J.Math.,1997,177(2),1997
    [142]Moody R V, Pianzola A. Lie algebras with triangular dacompositions, Wiley, New York, 1995
    [143]Billig Y, Energy momentum tensor for the toroidal Lie algebra, arXiv:math/0201313, 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700