与W代数相关联的几类无限维李代数的结构和表示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二维共形场论((Conformal Field Theory)是理论物理和统计物理研究的重要内容.在研究二维共形场的额外对称(Additional Symmetry)的过程中,A. B.Zamolodchikov [Z]在198_5年引入了W代数.W代数又被称为扩展的共形代数(Extended Conformal Algebra),主要用来描述共形场的对称性.它不仅在二维量子场论中有着广应用[[BPZ],而且为研究可积系统提供了有力工具[[BG].此外,W代数具有丰富的代数结构,与李理论的很多领域密切相关,比如Kac-Moody代数[[BFe],顶点代数[ZD],李超代数[[FRP]等.因此,研究与W代数相关联的无限维李代数的结构与表示对理论物理以及李理论都具有一定的意义.
     本文主要研究了广义Schr(o|¨)dinger-Virasoro代数,扭形变Schr(o|¨)dinger-Virasoro代数以及一类无限维李代数称之为扩展W代数的结构和表示,这些李代数都包含特殊的W代数作为其子代数.
     第二章研究了广义Schr(o|¨)dinger-Virasoro代数的中心扩张和导子代数,以及扭形变Schr(o|¨)dinger-Virasoro代数的导子代数和自同构群.广义Schr(o|¨)dinger-Virasoro代数是Schr(o|¨)dinger-Virasoro代数的自然推广,其自同构群以及Verma模的完全可约性由文献[[TZ]得到.目前,这类李代数的结构和表示理论的很多方面还没有得到完全研究.本文第二章的前半部分,确定了这类李代数的中心扩张和导子代数.扭形变Schr(o|¨)dinger-Virasoro代数是Schr(o|¨)dinger-Virasoro李代数的自然形变,它的运算关系中含有两个参数.对于参数的一些特殊取值,文献[RU]对这类代数的表示理论和同调理论进行了研究.在第二章的后半部分,通过对参数的全面讨论,给出了这类代数的导子代数和自同构群.
     第三章主要研究了形变Schr(o|¨)dinger-Virasoro代数的中间序列的不可分解模.基于第二章的研究以及文献[[LSZ]的结果,这类代数的结构问题已经得到了较全面的研究.但是,此类代数的表示问题,尤其是Harish-Chandra模的分类,至今还没有完整的结果.本文的第三章,利用文献[[Su]所引入的方法,对此类代数的中间序列的不可分解模进行了讨论.这样,结合第三章以及文献[[FLL]和[[LS 1]的结果,这类代数的中间序列的不可分解模得到了完全的分类.
     第四章定义了一类无限维李代数,称之为扩展W代数,研究了这类李代数的中心扩张,导子代数和自同构群.这类李代数可以看成无中心广义wits代数以及它的两个中间序列模的半直积.它包含无中心的广义wits代数和广义W代数w(。句作为其子代数.在它的运算关系中含有四个参数,对参数的不同取值,可以得到很多熟知的无限维李代数.由于此类代数的运算关系含有较多参数,因而,要对其结构和表示理论进行完全的研究是较为困难的.本文的最后一章,对这类李代数的二上同调群,导子代数以及自同构群进行了讨论.
Conformal field theory is an important part in theoretical physics and statisticalphysics. During the process of investigating the additional symmetry in two-dimensionalconformal field theory, Zamolodchikov [Z] introduced W-algebras in 1985. They werealso called extended conformal algebra, and mainly used to describe the symmetriesof the conformal fields. They not only have many applications in two-dimensionalquantum field theories [BPZ], but also serve as a useful tool in the investigation ofrational conformal field theories [BG]. Besides, W-algebras have very rich mathemat-ical structures, which are very closely related to various aspects of Lie theory, suchas kac-Moody algebra [BFe], vertex algebra [ZD], Lie superalgebra [FRP]. Thereforeit is of great importance to study the structures and representations of some infinite-dimensional Lie algebras related to the W-algebras in Lie theory and theoretical physics.
     In this thesis, we mainly study the structures and representations of some infinite-dimensional Lie algebras, including the generalized Schr(o|¨)¨dinger-Virasoro algebras, thetwisted deformative Schr(o|¨)¨dinger-Virasoro algebras and a class of infinite Lie algebracalled extended W-algebra. These Lie algebras contain some special W-algebras astheir subalgebra.
     In Chapter 2, we study the central extensions and derivation algebra of the gen-eralized Schr(o|¨)¨dinger-Virasoro algebras, and the derivation algebra and automorphismgroup of the twisted deformative Schr(o|¨)¨dinger-Virasoro Lie algebras. The generalizedSchr(o|¨)¨dinger-Virasoro algebra is the generalization of the Schr(o|¨)¨dinger-Virasoro alge-bra, whose automorphism group and the irreducibility of Verma modules were com-pletely determined in [TZ]. But, the representations and structures of this Lie algebraare not completely investigated so far. In the first part of chapter 2, the central exten-sions and derivations of this Lie algebra were determined. The twisted deformativeSchr(o|¨)¨dinger-Virasoro is the natural deformation of the Schr(o|¨)¨dinger-Virasoro algebra,whose structures contain two parameters. For the special values of the parameters,the representations and structures of this Lie algebra were studied in [RU]. In the lat-ter part of chapter 2, after some more discussions on parameters, the derivation algebra and automorphism group of the twisted deformative Schr(o|¨)¨dinger-Virasoro Lie algebrasare determined.
     In Chapter 3, we obtain the indecomposable modules of intermediate series overthe deformative Schr(o|¨)¨dinger-Virasoro algebra. On the basis of the results in chaptertwo and [LSZ], the structures of these Lie algebras were already characterized. But,the representation theory, especially the classification of the Harish-Chandra module,has not been studied up to the present day. In chapter 3, by using the method providedin [Su], the indecomposable modules of intermediate series over these Lie algebraswere given. Combined these with the results of [FLL] and [LS1], the indecomposablemodules of intermediate series over these Lie algebras were completely classified.
     In Chapter 4, a class of infinite dimension Lie algebra called extended W-algebrawas defined, and the second cohomology group, derivation algebra and automorphismgroup of this Lie algebra were completely determined. This Lie algebra can be viewedas the semi-direct product of a generalized Witt algebra and two of its intermediateseries modules. It contains the generalized Witt algebra and the generalized W-algebraW(a,b) as its subalgebras. One can see that there are four parameters in the structureof this Lie algebra. For the special values of these parameters, it can obtain manywell-known infinite dimension Lie algebras. Because of a considerable number of pa-rameters, it is a challenging work to determine the structures and representations of thisLie algebra. In the last chapter of this thesis, the second cohomology group, derivationalgebra and automorphism group of this Lie algebra were completely studied.
引文
[BPZ] Belavin AA, Polyakov AM. Zamolodchikov AB. Infinite Conformal Symmetryin Two-Dimensional Quantum Field Theory. Nuclear Physics B, 1984, 241:333-380.
    [Z] Zamolodchikov AB. Infinite additional symmetries in two-dimensional con-formal quantum field theory, Theoretical and Mathematical Physics, 1985,65(3):1205-1213.
    [BG] Bilal A, Gervais JL. Systematic Construction of Conformal Theories withHigher-Spin Virasoro Symmetries. Nuclear Physics B, 1989, 3183:579-630.
    [BFe] Balog J, Feher L, Forgacs, et al. Kac-Moody realization of W-algebras. PhysicsLetters B, 1990, 244(3-4):435-441.
    [ZD] Zhang W, Dong CY. W-Algebra W(2, 2) and the Vertex Operator Alge-bra L(1/2, 0) ? L(1/2, 0). Communications in Mathematical Physics, 2009,285(3):991-1004.
    [FRP] Frappat L, Ragoucy E, Sorba, P. W-algebras and superalgebras from con-strained WZW models: a group theoretical classification. Communications inMathematical Physics, 1993, 1573:499-548.
    [TZ] Tan SB, Zhang XF. Automorphisms and Verma modules for generalizedSchr(o|¨)¨dinger-Virasoro algebras. Journal of Algebra, 2009, 322(4):1379-1394.
    [RU] Roger C, Unterberger J. The Schr(o|¨)¨dinger-Virasoro Lie group and algebra: Rep-resentation theory and cohomological study. Annales Henri Poincare, 2006, 7(7-8):1477-1529.
    [LSZ] Li JB, Su YC, Zhu LS. 2-cocycles of original deformative Schr(o|¨)dinger-Virasoroalgebras. Science in China Series a-Mathematics, 2008, 51(11):1989-1999.
    [Su] Su YC. Simple modules over the high rank Virasoro algebras. Communicationsin Algebra, 2001, 29(5):2067-2080.
    [FLL] Fa HX, Ding LP, Li JB. Classification of modules of the intermediate sereis over a Schr(o|¨)dingger-Virasoro type. Journal of University of Science and Technology of China, 2010, 40(6):(2010).
    [LS1]Li JB, Su YC. Representations of the Schr(o|¨)dinger-Virasoro algebras. Journal of Mathematical Physics, 2008, 49(5):053512.
    [A1] Artin E. Galois theory, New York, DoverPublications, 1998
    [T] Tignol JP. Galois' theory of algebraic equations, World Scient抓c, 2004.
    [B1] Borel A. Essays in the history of Lie groups and algebraic groups, American Mathematical Society, 2001.
    [FH] Fulton W, Harris J., Representation theory. A first course, Graduate Texts in Mathematics 129, New York, Springer-Verlag, 1991.
    [A2] Adams JF. Lectures on Lie Groups, Chicago Lectures in Mathematics, 1969
    [Ser] Serre JP. Lie Algebras and Lie Groups: Lecture notes in mathematics, 1965.
    [Hp] Humphreys JE. Introduction to Lie Algebra and Representation Thoery. Graduate Texts in Mathematics 9, New York, Springer-Verlag, 1972.
    [W]万哲先.李代数,北京,科学出版社,1964.
    [Me]孟道骥.复半单李代数引论,北京,北京大学出版社,1998.
    [SLC]苏育才,卢才辉,崔一敏.有限维半单李代数简明教程,北京,科学出版社, 2008.
    [K1] Kac VG. Infinite-Dimensional Lie Algebras (third ed.), Cambri心e UniversityPress, 1990
    [Xu] Xu XP. Kac-Moody Algebra and There Representations, Science Press, 2007.
    [K2] Kac VG., Representations of classical lie superalgebras, Lecture Notes in Math-ematics, 1978, 676:597-626.
    [K3] Kac VG. Lie superalgebras, Advances in Mathematics, 1997, 26(1):8-96.
    [Br] Brendan J. Kazhdan-Lusztig polynomials and character formulae for the Lie su-peralgebra q(n).Advances in Mathematics, 2004, 182(1):28-77.
    [S1] Su YC. Composition factors of Kac modules for the general linear Lie superal-gebras. Mathematische Zeitschrift, 2006, 252(4):731–754.
    [SZ2] Su YC, Zhang RB. Character and dimension formulae for general linear super-algebra. Advances in Mathematics, 2007, 211(1):1–33.
    [SZ3] Su YC, Zhang RB. Cohomology of lie superalgebras sl(m|n) and osp(2|2n). Pro-ceedings of the London Mathematical Society, 2007, 94(1):91–136.
    [H1] Huang YZ. A Theory of Tensor-Products for Module Categories for a VertexOperator Algebra 4. Journal of Pure and Applied Algebra, 1995, 100:173-216.
    [HL1] Huang YZ, Lepowsky J. A Theory of Tensor-Products for Module Categoriesfor a Vertex Operator Algebra 3. Journal of Pure and Applied Algebra, 1995,100(1-3):141-171.
    [L] Li HS. Local systems of vertex operators, vertex superalgebras and modules,Journal of Pure and Applied Algebra, 1996, 109(2):143-195.
    [K1] Kac VG. Vertex Algebras for Beginners, University Lecture Series, 10 AmericanMathematical Society, Providence, RI, 1996.
    [M2] Miyamoto M. Binary codes and vertex operator (super) algebras. Journal ofAlgebra, 1996, 181(1):207–222.
    [M3] Miyamoto M. Griess algebras and conformal vectors in vertex operator algebras,Journal of Algebra, 1996, 179(2):523-548.
    [D1] Drinfeld VG. Quantumg groups, Proceedings ICM-1986, Berkeley, 1987.
    [PS] Pasquier V, Saleur H. Common structures between finite systems and conformalfield-theores through quantum groups, Nuclear Physics B, 1990, 330:523–556.
    [K2] Kassel, Christian, Quantum groups, Graduate Texts in Mathematics, 155, Berlin,New York: Springer-Verlag, 1995.
    [ZGB] Zhang RB, Gould MD, Bracken AJ. From representations of the braid group tosolutions of the Yang-Baxter equation, Nuclear Physics B, 1991, 354:625–652.
    [BKA] Bakalov B, Kac VG, Voronov AA. Cohomology of conformal algebras. Com-munications in Mathematical Physics, 1999, 200(3):561-598.
    [CK] Cheng SJ, Kac VG. A new N = 6 superconformal algebra. Communications inMathematical Physics, 1997, 186(1):219-231.
    [FJS] Fu JY, Jiang QF, Su YC. Classification of modules of the intermediate seriesover Ramond N = 2 superconformal algebras. Journal of Mathematical Physics,2007, 48(4):043508.
    [LSZ] Li JB, Su YC, Zhu LS. Classification of indecomposable modules of the in-termediate series over the twisted N = 2 superconformal algebra, Journal ofMathematical Physics, 2010, 51(8):083513.
    [S2] Su YC. Low dimensional cohomology of general conformal algebras gcN, Jour-nal of Mathematical Physics, 2004, 45(1):509-514.
    [Bl] Block RE, On the Mills-Seligman axioms for Lie algebras of classical type.Transactions of the American Mathematical Society, 1966, 121:378 392
    [GF] Gelfandand IM, Fuks DB, Cohomology of the Lie algebra of vector fields of acircle. Functional Analysis and its Applications, 1968, 2 (1968), 342–343.
    [V] Virasoro MA. Subsidiary Conditions and Ghosts in Dual-Resonance Models,Physical Review D, 1970, 1:2933–2936.
    [Ka] Kac VG. Some problemson infinite dimensional Lie algebras, Lie Algebras andRelated Topics, Lecture Notes in Mathematics, 933, Springer-Verlag, 1982.
    [Ma] Mathieu O. Classification of Harish-Chandra Modules over the Virasoro Lie-Algebra. Inventiones Mathematicae, 1992, 107(2):225-234.
    [Su1] Su YC. A Classification of Indecomposable Sl2(C)-Modules and a Conjectureof Kac on Irreducible Modules over the Virasoro Algebra. Journal of Algebra,1993, 161(1):33-46.
    [S3] Su YC. Harish-Chandra modules of the intermediate series over the high rank Vi-rasoro algebras and high rank super-Virasoro algebras, Journal of MathematicalPhysics, 1994, 35:2013-2023.
    [S4] Su YC. Classification of Harish-Chandra Modules over the Super-Virasoro Al-gebras. Communications in Algebra, 1995, 23(10):3653-3675.
    [PZ] Patera J, Zassenhaus H. The higher rank Virasoro algebra, Communication inMathematical Physics, 1991, 136:1–14.
    [LZ2] Lu RC, Zhao KM. Classification of irreducible weight modules over higher rankVirasoro algebras. Advances in Mathematics, 2006, 206(2):630-656.
    [S5] Su YC. Classification of Harish-Chandra modules over the higher rank Virasoroalgebras. Communications in Mathematical Physics, 2003, 240(3):539-551.
    [HSL] Han JZ, Li JB, Su YC. Lie bialgebra structures on the Schr(o|¨)¨dinger-VirasoroLie algebra. Journal of Mathematical Physics, 2009, 50(8):083504.
    [LS1] Li JB, Su YC. Representations of the Schr(o|¨)dinger-Virasoro algebras. Journal ofMathematical Physics, 2008, 49(5):053512.
    [LSZ] Li JB, Su YC, Zhu LS. 2-cocycles of original deformative Schr(o|¨)dinger-Virasoroalgebras. Science in China Series a-Mathematics, 2008, 51(11):1989-1999.
    [ZTL] Zhang XF, Tan SB, Lian HF. Whittaker modules for the Schr(o|¨)dinger-Witt alge-bra. Journal of Mathematical Physics, 2010, 51(8):083524.
    [U] Unterberger J. On vertex algebra representations of the Schr(o|¨)¨dinger-Virasoro Liealgebra. Nuclear Physics B, 2009, 823(3):320-371.
    [PB] Pei YF, Bai CM. Novikov algebras and Schr(o|¨)dinger-Virasoro Lie algebras. Jour-nal of Physics a-Mathematical and Theoretical, 2011, 44(4):045201
    [GJ1] Gao SL, Jiang CP. Representations for the Nongraded Virasoro-Like Algebra.Communications in Algebra, 2010, 38(5):1808-1846.
    [SSW] Song GA, Su YC, Wu YZ. Quantization of generalized Virasoro-like algebras.Linear Algebra and Its Applications, 2008, 428(11-12):2888-2899.
    [LT] Lin WQ, Tan SB. Nonzero level Harish-Chandra modules over the Virasoro-likealgebra. Journal of Pure and Applied Algebra, 2006, 204(1):90-105.
    [WZ] Wang XD, Zhao KM. Verma modules over Virasoro-like algebras. Journal ofthe Australian Mathematical Society, 2006, 80:179-191.
    [HY] Halpern MB, Yamron JP. A Generic Affine-Virasoro Action. Nuclear Physics B,1991, 351(1-2):333-352.
    [JY] Jiang CB, You H. Irreducible representations for the affine-virasoro lie algebraof type B1. Chinese Annals of Mathematics Series B, 2004, 25(3):359-368.
    [LQ] Liu XF, Qian M. Bosonic Fock Representations of the Affine-Virasoro Algebra.Journal of Physics a-Mathematical and General, 1994, 27(5):131-136.
    [GLZ] Guo XQ, Liu XW, Zhao KM. Harish-Chandra Modules over the Q Heisenberg-Virasoro Algebra. Journal of the Australian Mathematical Society, 2010,89(1):9-15.
    [LWZ] Liu D, Wu YZ, Zhu LS. Whittaker modules for the twisted Heisenberg-Virasoro algebra. Journal of Mathematical Physics, 2010, 51(2):023524
    [LJ] Liu D, Jiang CP. Harish-Chandra modules over the twisted Heisenberg-Virasoroalgebra. Journal of Mathematical Physics, 2008, 49(1):012901.
    [SS1] Shen R, Su YC. Classification of irreducible weight modules with a finite-dimensional weight space over twisted Heisenberg-Virasoro algebra. Acta Math-ematica Sinica-English Series, 2007, 23(1):189-192.
    [SJ] Shen R, Jiang CP. The derivation algebra and automorphism group of the twistedHeisenberg-Virasoro algebra. Communications in Algebra, 2006, 34(7):2547-2558.
    [NR] Nirov KS, Razumov AV. W-algebras for non-abelian Toda systems. Journal ofGeometry and Physics, 2003, 48(4):505-545.
    [Ar] Arakawa T. Representation theory of W-algebras. Inventiones Mathematicae,2007, 169(2):219-320.
    [DT] De Boer J, Tjin T. Quantization and Representation-Theory of Finite W-Algebras. Communications in Mathematical Physics, 1993, 158(3):485-516.
    [KJ] Kac VG, Liberati JI. Unitary quasi-finite representations of W∞. Letters in Math-ematical Physics, 2000, 53(1):11-27.
    [SX] Su YC, Xin B. Classification of quasifinite W∞-modules. Israel Journal of Math-ematics, 2006, 151:223-236.
    [FKR] Frenkel E, Kac VG, Radul A, Wang WQ. W1+∞and W(GlN) with CentralCharge-N. Communications in Mathematical Physics, 1995, 170(2):337-357.
    [KT] Kac VG, Todorov IT. Affine orbifolds and rational conformal field theory exten-sions of W1+∞. Communications in Mathematical Physics, 1997, 190(1):57-111.
    [KWY] Kac VG, Wang WQ, Yan CH. Quasifinite representations of classical Lie sub-algebras of W1+∞. Advances in Mathematics, 1998, 139(1):56-140.
    [BJK] Brundan J, Goodwin SM, Kleshchev A. Highest Weight Theory for Finite W-Algebras. International Mathematics Research Notices, 2008.
    [ES] Etingof P, Schedler T. Traces on Finite W-Algebras. Transformation Groups,2010, 15(4):843-850.
    [G] Goodwin SM. A note on Verma modules for finite W-algebras. Journal of Alge-bra, 2010, 324(8):2058-2063.
    [P2] Premet A. Commutative quotients of finite W-algebras. Advances in Mathemat-ics, 2010, 225(1):269-306.
    [DK] De Sole A, Kac VG. Finite vs affine W-algebras. Japanese Journal of Mathe-matics, 2006, 1(1):137-261.
    [B2] Blumenhagen R. Covariant Construction of N = 1 Super W-Algebras. NuclearPhysics B, 1992, 381(3):641-669.
    [IK] Inami T, Kanno H. N = 2 Super W-Algebras and Generalized N = 2Super Kdv Hierarchies Based on Lie-Superalgebras. Journal of Physics a-Mathematical and General, 1992, 25(13):3729-3736.
    [H2] Huang W. Superconrormal covariantization of superpreudodifferental operatorson superspace and classical N = 2 W-superalgebras, J. Math. Phys., 35(5)(1994), 2570–2582.
    [PRS] Pope CN, Romans LJ, Shen X. Conditions for anomaly-free-W and Super-Walgebra, Physics Letters B, 1991, 254(3-4):401–410.
    [H3] Henkel M. Schr(o|¨)¨dinger invariance and strongly anisotropic critical systems,Journal of Statistical Physics, 1994, 75:1023–1029.
    [DZ] Dokovic DZ, Zhao KM. Derivations, isomorphisms, and second cohomology ofgeneralized Witt algebras. Transactions of the American Mathematical Society,1998, 350(2):643-664.
    [HW] Hu NH, Wang XL. Quantizations of generalized-Witt algebra and of Jacobson-Witt algebra in the modular case. Journal of Algebra, 2007, 312(2):902-929.
    [M4] Mazorchuk V. Verma modules over generalized Witt algebras. Compositio Math-ematica, 1999, 115(1):21-35.
    [WSS1] Wu YZ, Song GA, Su YC. Lie bialgebras of generalized Witt type, II. Com-munications in Algebra, 2007, 35(6):1992-2007.
    [HWZ] Hu J, Wang XD, Zhao KM. Verma modules over generalized Virasoro algebrasV ir[G]. Journal of Pure and Applied Algebra, 2003, 177(1):61-69.
    [SZ1] Su YC, Zhao KM. Generalized Virasoro and super-Virasoro algebras and mod-ules of the intermediate series, Journal ALgebra, 2002, 252:1–19.
    [S6] Su YC. Derivations of generalized Weyl algebras. Science in China Series a-Mathematics, 2003, 46(3):346-354.
    [YS] Yue XQ, Su YC. Lie bialgebra structures on Lie algebras of generalized Weyltype. Communications in Algebra, 2008, 36(4):1537-1549.
    [LZ1] Lu RC, Zhao KM. Classification of Irreducible Weight Modules over theTwisted Heisenberg-Virasoro Algebra. Communications in Contemporary Math-ematics, 2010, 12(2):183-205.
    [SJS] Shen R, Jiang QF, Su YC. Verma modules over the generalized Heisenberg-Virasoro algebra. Communications in Algebra, 2008, 36(4):1464-1473.
    [LT] Lin WQ, Tan SB. Nonzero level Harish-Chandra modules over the Virasoro-likealgebra. Journal of Pure and Applied Algebra, 2006, 204(1):90-105.
    [WSS2] Wu YZ, Song GA, Su YC. Lie bialgebras of generalized Virasoro-like type.Acta Mathematica Sinica-English Series, 2006, 22(6):1915-1922.
    [JP] Jiang W, Pei YF. On the structure of Verma modules over the W-algebra W(2, 2).Journal of Mathematical Physics, 2010, 51(2):022303
    [GJP] Gao SL, Jiang CB, Pei YF. Low-dimensional cohomology groups of the Liealgebra W(a,b). Communication in Algebra, 2011, 2(39):397–423.
    [SXY] Su YC, Xu Y, Yue XQ. Indecomposable modules of the immediate series overW(a,b) algebras, Arxiv:1103.3850
    [BM] Benkart GM, Mood RV, Derivations central extensions and affine Lie algebras,Algebras, Groups Geometries, 1986, 3:456–492.
    [P1] Pianzola A, Automorphisms of toroidal Lie algebras and the their central quo-tients, Journal of Algebra and its Applications , 2002, 1(1):131–121.
    [LS2] Li JB, Su YC, The derivation algebra and automorphism group of the twistedSchr(o|¨)¨dinger-Virasoro algebra, ArXiv:0801.2207.
    [ZH] Zhang XF, Hu XL, Derivations of the deformation Schr(o|¨)¨dinger-Virasoro al-gebras, Journal of Xuzhou normal University (Natural Science Edition), 2009,27(1):25–29 (in Chinese).
    [F1] Farnsteiner R. Derivations and central extensions of finitely generated graded Liealgebra, Journal of Algebra, 1998, 118:33–45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700