八个树种叶片水分特性和茎导水特性的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京植物园里引种栽培的植物水杉(Metasequoia glyptostroboides H.)、银杏(Ginkgo biloba L.)、雪松(Cedrus deodara G.)、毛白杨(Populus tomentosa C.)、家榆(Ulmus pumila L.)、大果榆(Ulums macrocarpa H.)、垂柳(Salix babylonica L.)和紫藤(Wisteria sinensis S.)为研究对象,通过PV曲线、水力导度和解剖学的方法对8种植物的叶片水分参数、气孔特征、茎的导水特性和木质部解剖结构进行对比分析研究。结果表明:
     1.从PV曲线上获得的叶片水分参数看,同一树种不同月份水分特征有着明显的差异。不同类型植物种的变化规律不一致,这与树木对环境条件(光照、水分、气温等)的适应性及其滞后作用有关。裸子植物在速生期(7月-9月)都表现出较高的饱和渗透势(ψs)和失膨点水势(ψw)值;旱生乔木毛白杨则在速生期表现较低的ψs和ψw值。其他物种变化规律均不明显。
     2.通过对叶片水分参数的均值以及各树种气孔的比较研究,可以将8种植物分为4种不同生态类型:(1)较高ψs和ψw,较低气孔密度和较小气孔的裸子植物水杉、银杏和雪松;(2)较低ψs和ψw,较大的细胞弹性模数,较低气孔密度和较小气孔的旱生乔木毛白杨;(3)较高ψs和ψw,较高气孔密度和较大气孔的家榆、大果榆和垂柳;(4)较低ψs和ψw,较高气孔密度和较小气孔的藤本植物紫藤。
     3.8个树种茎的导水特性有显著的差异,裸子植物的管胞密度大,但导水性最差,而藤本植物紫藤导管直径最大,表现出最强的导水特性。旱生、中旱生乔木位于二者之间。
     4.树种胡伯尔值与其他三个水力结构参数呈负相关,说明植物在水分运输和扩散方面要与自身的结构和功能保持对应性和协调一致性。导管或管胞的直径与最大导水率、比导率和叶比导率呈现正相关,说明直径较大的导管更利于水分的传输。
The purposes of the thesis were to study the leaf water traits, stomatal characteristics,xylem anatomy and hydraulic conductivity and compare differences in water transportation of eight species combination of these parameters using PV curve, hydraulic conductivity and anatomy.The species, Metasequoia glyptostroboides、Ginkgo biloba、Cedrus deodara、Populus tomentosa、Ulmus pumila、Ulums macrocarpa、Salix babylonica and Wisteria sinensis were chosen as materials. These plants were introduced into Beijing Botanical Garden from their original habitats of China in 1960s’and have cultivated for almost 50 years. So the variance in water transportation mainly depend on their genetically differences, rather than the environment factors. The main results were as follows:
     1. Water parameters from the PV curve showed the variations during growth stage in the same species, and the inconsistent changes in different species. The trends related to adaptability and hysteresis of different species on the environmental conditions (light, moisture, temperature, etc.) Gymnosperms have shown a high saturation osmotic potential (ψs) and water potential at turgor loss point (ψw) in the fast-growing period (July-september). In contrast, the lower values ofψs andψw were recorded in Populus. No significant variation of other species.
     2. Eight kinds of plants will be divided into four different ecological types based on the analysis of leaf water parameters and stomatal characteristics of each species: (1)Metasequoia glyptostroboides、Ginkgo biloba and Cedrus deodara of gymnosperms showed higher values inψs andψw, lower stomatal density and smaller stoma;(2)Populus of xerophytic trees was lowerψs andψw, larger cell elastic modulus, lower stomatal density and smaller stoma;(3)Ulmus pumila、Ulums macrocarpa and Salix babylonica had higherψs andψw, greater stomatal density and larger stoma;(4)Wisteria sinensis of liana displayed lowerψs andψw, higher stomatal density and smaller stoma.
     3. Hydraulic conductivity of stem showed significant differences in eight species. Wisteria sinensis of liana had the largest conduit diameter and the strongest hydraulic conductivity, while the gymnosperms have the largest tracheid density, but the worst hydraulic conductivity among eight species. Hydraulic conductivity of other species fluctuated between the types.
     4. Huber value and hydraulic architecture parameters of the other three was found to be negative correlation, which indicated that maintaining coordination and coherence of structure and function in water transportation and disperse of plants. Diameter of conduit or tracheid was positively correlated with maximum hydraulic conductivity, specific conductivity and leaf specific conductivity. It suggested that the larger diameter of conduit was helpful of water transportation.
引文
1武维华,植物生理学[M],北京:科学出版社,2003,38-40
    2 Smith A M. Xylem transport and the negative pressure sustainable by water[J].Ann Bot,1994,Vol.74:647-651
    3 Hales S. Vegetable Staticks[M].London: W & J Inneys and T Woodward.1727,8-15
    4 Dixon HH,Joly J. On the ascent of sap[M].Philosophical Transactions of the Royal Society London,Series B,1894,Vol.186:563-576
    5 Bailing A,Zimmermann U. Comparative measurements of the xylem pressure of Nicotiana plants by means of the pressure bomb and pressure probe[J].Planta , 1990 ,Vol.182:325-338
    6 Tyree M T. The Cohesion-Tension theory of sap ascent:current controversies. Journal of Experimental Botany[J],1997,Vol.48:1753-1765
    7 Tyree M T. The ascent of water [J]. Nature,2003,Vol.26:423
    8 Taiz L,Zeiger E. Plant Physiology,4thedn[M].Massachusetts: Sinauer Associates,2006,2-9
    9潘瑞炽.植物生理学(第五版)[M].北京:高等教育出版社,2004,13-14
    10 Renner O.Zum Nachweis negativer Drucke im Gef'?sswasser bewurzelter holzgew?chse [J].Flora,1925,Vol.119:402-408
    11 Scholander P F, Hammel H T, Bradstreet EA, Hemmingsen EA. Sap pressure in vascular plants[J].Science,1965, Vol.148:339-346
    12 Zimmermann U,Meinzer F C,Benkert R, Zhu J J, Schneider H, Goldstein G, Kuchenbrod E,Haase A. Xylem water transport:is the available evidence consistent with the cohesion theory?[J] Plant cell and Environment,1994a,Vol.17:1169-1181
    13 Schneider H,Wistuba N,Reich R et al. Minimal and noninvasive characterization of the flow-force pattern of higher plants[J].In: Terazawa M,ed. Tree sap II. Sapporo,Japan: Hokkaido University Press,2000,77-91
    14 Passioura J B Munns R. Hydraulic resistance of plants.Ⅱ.Effects of rooting medium and time of day,in barley and lupin[J].Australian Journal of Plant Physiology,1984,Vol.11:341-350
    15 Dixon M A,Tyree M T. A new temperature corrected stem hygrometer and its calibration against the pressure bomb[J].Plant Cell and Environment,1984,Vol.7:693-697
    16 Canny M J. A new theory for the ascent of sap-cohesion supported by tissue pressure[J]. Annals of Botany,1995,Vol.75:343-357
    17 Milbum J A. Sap ascent in vascular plants:challengers to the Cohesion Theory ignore the significance of immature xylem and the recycling of Münch water[J].Annals ofBotany,1996,Vol.78:399-407
    18 Steudle E. The cohesion-tension mechanism and the acquisition of water by plant roots[J].Annual Review Plant Physiology Plant Molecular Biology,2001,Vol.52:847-875
    19 Zimmermann U,Schneider H, Wegner L H and Haase A. Water ascent in tall trees:does evolution of land plants rely on a highly metastable state?[J].New Physiologist,2004,Vol.162:575-615
    20 Wei C,Tyree M T,Steudle E.Direct measurement of xylem pressure in leaves of intact maize plants.A test of the cohesion-tension theory taking hydraulic architecture into consideration[J].Plant Physiol 1999,Vol.121:1191-1205
    21 Briggs L J. Limiting negative pressure of water[J]. Journal of Applied Physics 1950,Vol.21:721-722
    22 Smith A M. Negative pressure generated by octopus suckers: A study of the tensile strength of water in nature[J]. Journal of Experimental Biology,1991,Vol.157: 257-271
    23 Holbrook M N,Burns M J,Field C B. Negative xylem pressures in plants: a test of the balancing pressure technique[J]. Science,1995,Vol.270:1193-1194
    24 Pockman W T,Sperry J S. O'Leary JW. Sustained and significant negative pressure in xylem[J]. Nature,1995,Vol.378:715-716
    25 Wei C,Steudle E,Tyree M T. Water ascent in plants: Do ongoing controversies have a sound basis?[J]. Trends in Plant Science,1999a,Vol.4:372-375
    26 Wei C,Tyree M T,Steudle E. Direct measurement of xylem pressure in leaves of intact maize plants. A test of the Cohesion-Tension theory taking hydraulic architecture into consideration[J].Plant Physiology,1999b,Vol.121:1191-1205
    27 Stiller V,Sperry J S. Canny′s Compensating Pressure Theory fails a test[J]. American Journal of Botany,1999,Vol.86(8):1082-1086
    28 Benkert R,Balling A,Zimmermann U. Direct measurements of the pressure and flow in the xylem vessels of Nicotiana tabacum and their dependence on flow resistance and transpiration rate[J]. Botanica Acta,1991,Vol.104:423-432
    29 Tyree M T. The forgotten component of plant water potential: a reply Tissue pressures are not additive in the way M. J. Canny suggests[J]. Plant Biology,1999,Vol.1:598-601
    30 Tyree M T , Zimmermann M H. Xylem Structure and the Ascent of Sap 2nd edn [M].Springer-Verlag,Berlin,2002,278
    31 Maurel C,Reizer J,Schroeder J I,et al. The vacuolar membrance proteinγ- TIP creates water specific channels in Xenopus Oocytes[J]. EM BOJ,1993,Vol.12(6):2241-2247
    32 Maurel C. Aquaporins and water permeability of plant membranes[J]. Annual Review ofPlant Physiology and Plant Molecular Biology,1997,Vol.48:399-429
    33 Higuchi T,Suga S,Tsuchiya T,Hisada H,Morishima S,Okada Y,Maeshima M. Molecular cloning,water channel activity and tissue specific expression of two isoforms of Radish vacuolar aquaporin[J]. Plant and Cell Physiology,1998,Vol.39:905-913
    34 Kaldenhoff R,K?lling A,Meyers J Karmann U,Ruppel G,Richter G. The blue light-responsive AthH2 gene of Arabidopsis thaliana is primarily expressed in expanding as well as in differentiating cells and encodes a putative channel protein of the plasmalemma[J]. The Plant Journal,1995,Vol.7:87-95
    35 Kaldenhoff R,K?lling A, Richter G . Regulation of the Arabidopsis thaliana aquaporin gene AthH2 (PIP1b)[J]. Journal of Photochemistry and Photobiology Series B,1996, Vol.36:351-354
    36 Sarda X,Tousch D,Ferrare K,Legrand E,Dupuis J M,Casse-Delbart F,Lamaze T. Two TIP-like genes encoding aquaporins are expressed in sunflower guard cells[J]. The Plant Journal,1997,Vol.12:1103-1111
    37 Sun M H,Xu W,Zhu Y F,Su W,Tang Z C. Asimple method for in situ hybridization to RNA in guard cells of Vicia faba L:the expression of aquaporins in guard cells[J]. Plant Molecular Biology Reporter,2001,Vol.19:129-135
    38 Huang R F,Zhu M J,Kang Y,Chen J,Wang X C. Identification of plasma membrane aquaporin in guard cells in Vicia faba and its role in stomatal movements[J]. Acta Botanica Sinica,2002,Vol.44:42-48
    39杨惠敏,李燕,王根轩.蚕豆气孔运动中水通道和离子通道的作用和地位的探讨[J].植物生态学报,2002,26:656-660
    40 Yang H M,Zhang X Y,Wang G X. Effects of heavy metals on stomatal movements in broad bean[J].Russian Journal of Plant Physiology,2004b,Vol.51:464-468
    41 Li Y,Wang G X,Xin M,Yang H M,Wu X J,Li T. The parameters of guard cell calcium oscillation encode stomatal oscillation and closure in Vicia faba[J].Plant Science,2004,Vol.166:415-421
    42 Holbrook N M,Zwieniecki M A. Embolism repair and xylem tension: do we need a miracle? [J]. Plant Physiol,1999,Vol.120:7-10
    43 Ewers F W,Fisher J B,Fichtner K. Water flux and xylem structure in vines[J]. In: Biology of Vines(Ed. By F.E.Putz &H Mooney),Cambridge University Pres,1991,Vol.23:119-152
    44 Zimmermann M H. Xylem structure and the ascent of sap[M]. Sringer,Berlin.1983,5-23
    45 Baas P. Some functions and adaptive aspects of vessel member morphology[J].I EidenBot Ser,1976,Vol.3:157-181
    46 Carlquist S. Ecological strategies of xylem evolution[M].Univ-California Press,Berkley.1975,56-59
    47 Carlquist S. Wood anatomy of Onagraceae , with notes on alternative modes of photosynthetic movement in dicotyledon woods[J].Ann Missouri Bot Gard,1975b,Vol.62:386-424
    48 Pahsin A J,deZeeuw M J. Textbook of woody technology,4th edn[M]. McGraw-Hill,New York.1980,21-33
    49 Bonsen K J M,Kycera L J. Vessel occlusions in plants: morphological,functional and evolutionary aspects[J]. IA WA Bull.n.s. 1990,Vol.11:393-399
    50 Zimmermann U,Schneider H,Wegner LI-I,Wagner H J,Szimtenings M,Haase A,Bentrup FW. What are the driving forces for water lifting in the xylem conduit?[J],Physiologia Plantarum,2002,Vol.114:327-335
    51 Zimmermann M H. Hydraulic architecture of some diffuse-porous trees[J],Canadian journal of Botany,1978,Vol.56:2286-2295
    52李吉跃.油松侧柏苗木抗旱特性初探.北京林业大学学报[J],1988,10(2):23-30
    53李吉跃.PV技术在油松侧柏苗木抗旱性研究中的应用.北京林业大学学报[J],1989,11(1):3-11
    54李吉跃.太行山主要造林树种耐旱特性的研究(Ⅰ)-(Ⅵ)[J].北京林业大学学报,1991,增刊(1-2):1-24;230-280
    55李吉跃,张建国,姜金璞.北方主要造林树种耐旱机理及其分类模型的研究(Ⅰ)[J].北京林业大学学报,1993,15(3):1-9
    56张建国,李吉跃,姜金璞.京西山区人工林水分参数的研究(Ⅰ)-(Ⅲ)[J].北京林业大学学报,1994,16(1):1-12;16(2):1-9;16(4):46-54
    57李吉跃,张建国,姜金璞.侧柏种源耐旱特性及其机理研究[J].林业科学,1997,33(4):1-13
    58张硕新,H. Richter.浆果紫杉木质部恢复状况的研究[J].西北林学院学报. 1996,11(l):5-8
    59申卫军,张硕新,刘立科.几种木本植物木质部栓塞的日变化[J].西北林学院学报,1999,14(l):22-27
    60申卫军,张硕新,金燕.几种木本植物木质部栓塞的季节变化[J].西北林学院学报,1999,14(l):28-32
    61申卫军,张硕新.木本植物木质部栓塞研究进展[J].西北林学院学报,1999,14(1)33-41
    62刘晓燕,李吉跃,翟洪波.从树木水力结构特征探讨植物耐旱性[J].北京林业大学学报,2002,48-54
    63翟洪波,李吉跃,聂力水.油松的水力结构特征[J].林业科学,2003,39(2):14-20
    64 Yang S D,Tyree M T. Hydraulic architecture of Acer saccharum and A .rubrum: comparisonof branches to whole trees and the contribution of leaves to hydraulic resistance[J].J Exp Bot,1994,Vol.45:179-186
    65 Kramer P J. Water relations of plants [M]. Academic Press LNC,New York,1983,9-12
    66 Tyree M T,Ewers F W. The hydraulic architecture of trees and other woody plants[J].New Phytologist,1991,Vol.19:345-360
    67 Sperry J S,Tyree M T,Donnelly J R. Vulnerability of xylem to embolism in a mangrove vs. an inland species of Rhizophoraceace[J].plant physiology,1988,Vol.74:276-283
    68 Sperry J S,Tyree M T. Mechanism of waters tress-induced xylem embolism[J].plant Physiology,1988,Vol.88:581-587
    69 Tyree M T,Sperry J S. Do woody Plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress? Answer from a model[J]. Plant Physiology, 1988,Vol.88:574-580
    70 Cochard H,Tyree M T. Xylem dysfunction in Quercus : vessel sizes,tyloses,cavitation and seasonal changes in embolism[J].Tree Physiol,1990,Vol.(6):393-407
    71 Cochard H. Vulnerability of several conifers to air embolism[J].Tree Physiology,1992,Vol.11:73-83
    72 Cochard H,Crulzlat P,Tyree M T.Use of positive pressures to establish vulnerability curves:further support for the air-seeding hypothesis and possible problems for pressure-volume analysis[J].Plant Physiology,1992,Vol.100:205-209
    73 Tyree M T,Sperry J S. The vulnerability of xylem to cavitation and embolism[J].Annual Review Plant Physiology Plant Molecular Biology,1989,40:19-38
    74张硕新,申卫军,张远迎.6种木本植物木质部栓塞生理生态效应的研究[J].生态学报,2000,20(5):788-794
    75张远迎.几个抗旱树种木质部栓塞脆弱性模型的探讨[J].西北林学院学报,1998,13(3):28-30
    76樊大勇,谢宗强.2004.木质部导管空穴化研究中的几个热点问题[J].植物生态学报,28(1):126-132
    77 M.G.R.坎内尔.树木生理与遗传改良[M].北京:中国林业出版社,1983,181-204
    78 Zhai H B,Li J Y,Wei X X. Discussing the pipe model through hydraulic architecture of Pinus tabulaeformis seedlings[J].Journal of Beijing Forestry University,2002,Vol.24:22-25
    79 Sperry J S,Donnelly J R,Tyree M T.A method for measuring hydraulic conductivity and embolism in xylem[J].Plant,Cell and Environment,1988,Vol.11:35-40
    80 Cruiziat P,Cochard H,Ameglio T. Hydraulic architecture of trees:main concepts and results[J].Annals of Forest Science,2002,Vol.59:723-752
    81王六英.小麦族6种根茎型牧草叶表皮气孔特性与抗旱性的研究[J].干旱区资源与环境,2001,12(增刊):28-29
    82李正理,李荣敖.我国甘肃九种旱生植物同化枝解剖结构观察[J].植物学报,1981,23(3):181-185
    83 Sperry J S,Hacke U G.Analysis of circular bordered pit function.I.Angiosperm vessels with homogenous pit membranes[J].American Journal of Botany,2004,Vol.91:369-385
    84 Hacke U G,Sperry J S,Pittermann J.Analysis of circular bordered pit function.Ⅱ.Gymnosperm tracheids with torus-margo pit membranes[J].American Journal of Botany,2004,Vol.91:386-400
    85 Liu W T,Wenkert W,Allen L H et al. Soil-plant-water relations in a New York vineyard: Resistance to water movement[J]. Jour Ame Soc Hor Sci,1978,Vol.103:226-230
    86 Tyree M T,Synderman D A, Wilmot T R et al. Water relations and hydraulic architecture of a tropical tree(Schefflera morototoni):Data,models and a comparison to two temperate species(Acer saccharum and Thuja accidentalis)[J] Plant Physiol,1991, Vol.23:54-59
    87 Gartner B L. Stem hydraulic properties of vines vs. Shrubs of western poison oak, Toxicodendron diversilobum[J]. Oecologia,1991,Vol.87:180-189
    88 Ewers F W,Fisher J B,Fichtner K. Water flux and xylem structure in vines[D]. In: Biology of Vines (Ed. By F .E. Putz & H Mooney),Cambridge University Press,1991,Vol.13:119-152

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700