斑马鱼Danio Rerio卵黄蛋白原的免疫功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵黄蛋白原(Vitellogenin,Vg)是卵黄蛋白(Yolk protein)的前体,它特异存在于卵生雌性动物中。脊椎动物肝脏在雌激素的刺激下产生Vg,随后Vg被分泌到血液中并随血液循环系统进入卵巢,被卵巢吸收后分解成卵黄脂磷蛋白(lipovitellin)和卵黄高磷蛋白(phosvitin),为胚胎和幼体生长发育提供能量与营养物质。Vg通常情况下只存在于雌性动物中,但是在17β-雌二醇(17-β-estradiol,E2)的诱导下,雄性成体以及未性成熟的幼体也可以表达Vg。另一方面,在抗雌激素如它莫西芬(Tamoxifen, TMX)的诱导下,雌性动物的Vg表达会被抑制。目前,越来越多的研究表明,Vg除了可以为胚胎发育提供营养以外,还具有其它生物学功能。其中,免疫防御是比较受关注的一项功能。体外实验已经证明Vg具有识别病原相关分子模式的功能,并且具有凝血活性和抑菌活性。然而关于Vg在体内是否具有免疫防御的作用,目前还知之甚少。因此,本文从以下几个方面探讨了Vg在体内的免疫防御作用:一、研究病原相关模式分子是否能够诱导雄性斑马鱼表达Vg以及所表达的Vg是否具有抑菌活性;二、研究当斑马鱼受到病原菌侵害时,Vg是否能够对斑马鱼起到一定的保护作用。
     论文第一部分的研究表明,Vg是一种急性时相蛋白。在脂多糖(Lipopolysaccharides, LPS)和脂磷壁酸(lipoteichoic acid,LTA)的诱导下,雄性斑马鱼能够迅速表达Vg,表达模式类似于急性时相蛋白;并且诱导表达的Vg能够与细菌结合并具有抑菌活性。本文用腹腔注射法向雄性斑马鱼注射LPS和LTA,然后在注射后0h、0.5h、1h、2h、3h、5h、9h和12h分别提取斑马鱼总RNA和血清。通过荧光实时定量PCR(Real-time PCR)和酶联免疫吸附实验(ELISA)检测雄性斑马鱼Vg在mRNA和蛋白水平的表达情况。实验结果表明:注射LPS后,Vg1基因立即开始大量表达,在0.5h达到正常雄鱼的104.1倍,在2h达到峰值,为正常雄鱼Vg1基因表达量的193.2倍,并在此后所检测的12小时内维持在较高的表达水平。在注射LTA0.5h以后,雄鱼Vg1基因表达量达到正常雄鱼的45倍,此后的表达水平与对照组相当。对照组注射生理盐水后,Vg1基因表达量变化不大。在蛋白水平,Vg的表达量也有显著上升,注射LPS0.5小时后,血清Vg表达量即开始显著上升,为对照组的1.3倍;注射LTA 5h后,Vg表达量开始显著上升,9h时血清中的Vg为对照组的1.2倍。由此可以看出,病原相关分子模式LPS和LTA能够有效诱导斑马鱼Vg表达。因此,斑马鱼Vg的表达模式具有急性时相反应的特点,是一种急性时相蛋白。本文应用Western blotting检测了Vg是否能够与细菌结合。将LPS诱导0.5h的雄鱼血清分别与大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)共同孵育,然后洗脱细菌上结合的蛋白,用洗脱下的蛋白进行western blotting,抗体为兔抗斑马鱼Vg多克隆抗体。结果表明,Vg与大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)都能结合。本文用LPS诱导0.5h的雄性斑马鱼血清(Vg含量高)进行抑菌实验,结果表明:它对大肠杆菌(E.coli)和金黄色葡萄球菌(S.aureus)抑菌能力分别比对照组高6.8%和6.6%;经过加热灭活补体后,对两种菌的抑菌能力比对照组分别高18.3%和11.4%;经过加热灭活补体,然后又加入不同量的Vg抗体以沉淀血清中的Vg,随着Vg抗体量的加大,血清的抑菌活性逐渐降低,在加入过量Vg抗体后,其抑菌活性与对照组无显著差异,与加入抗体之前的血清相比,对两种菌的抑菌活性分别降低18.6%和11.7%。由此可见,Vg的抑菌活性是显著的,而且其对革兰氏阴性菌的抑制率高于对革兰氏阳性菌的抑制率。
     论文第二部分首先探索了E2和TMX合适的诱导浓度及诱导时间,目的是既能显著调控Vg表达量又不对斑马鱼造成损伤。结果表明:20 nM E2诱导斑马鱼20天后,Vg表达量显著上升,其肝实质细胞形态仍然保持正常,肝脏基本未受影响;500 nM TMX诱导斑马鱼20天后,Vg表达量显著下降,肝实质细胞形态也基本保持正常,肝脏功能未受影响。然后我们又研究了E2和TMX对斑马鱼免疫球蛋白IgM(Immunoglobulin M)和白细胞密度的影响,结果表明:E2和TMX都能够提高斑马鱼血清中IgM的水平,但是两者对IgM的诱导作用差别不大;E2和TMX对白细胞密度都无显著影响。最后我们用鳗弧菌V. auguillarum对20 nM E2和500 nM TMX诱导20天的斑马鱼以及正常斑马鱼进行攻毒,实验结果表明:E2诱导的雌鱼的存活率显著高于正常雌鱼和TMX诱导的雌鱼;E2诱导的雄鱼的存活率与正常雄鱼相仿,但是显著高于TMX诱导的雄鱼。说明当斑马鱼受到病原菌入侵时,Vg对斑马鱼可能具有一定的保护作用,能够提高斑马鱼的存活率。然而关于Vg的作用机制,还有待于进一步研究。
     综上所述,本文发现斑马鱼Vg是一种急性时相蛋白,病原相关分子模式LPS和LTA能够诱导雄性斑马鱼表达Vg,其表达模式具有急性时相反应的特点;而且所表达的Vg具有抑菌作用。另外,实验表明,当斑马鱼受到病原菌入侵时,Vg对提高斑马鱼存活率可能具有一定作用。
Vitellogenin (Vg), a phospholipoglycoprotein, is the precursor of major egg-yolk proteins in all oviparous species from invertebrates to vertebrates. All forms of fish Vgs are synthesized by the liver of females in response to the endogenous estrogen, 17-β-estradiol (E2), secreted into bloodstream and transported to ovary, where they are internalized by growing oocytes via receptor-mediated endocytosis and proteolytically cleaved to form the egg-yolk proteins that are later used as the nutrients by developing embryos and larvae. Normally, Vgs are undetectable in male and immature female fish; however, their synthesis can be induced by exogenous E2. On the other hand, synthesis of both Vg mRNA and proteins can be inhibited by tamoxifen (TMX), a E2 antagonist. Recent studies have shown that in addition to being involved in egg-yolk protein formation, Vg appears to have evolved pleiotropic functions. A novel function of Vg is linked with immune defense. In the protochordate amphioxus (Branchiostoma belcheri) as well as the bony fish rosy barb (Puntius conchonius), Vgs have been demonstrated to possess both hemagglutinating and antibacterial activities. In vitro experiments have shown that fish Vg acts as a multivalent pattern recognition receptor with an opsonic activity. However, the potential immunologic role of vitellogenin in vivo remains obscure. This study demonstrated that serum Vg in zebrafish D. rerio is an acute phase protein with bacterial-binding and inhibiting activities. It also bolsters the notion that factors normally involved in control of female reproduction are linked with immunity in organisms that rely on Vg for oocyte development. This study also indicated that Vg may enhance the survival rates of D. rerio following challenge with V. anguillarum.
     This paper examined whether the injection of pathogen-associated molecular patterns (LPS and LTA) to male D. rerio could trigger Vg synthesis in vivo. Male D. rerio were injected with LPS, LTA or 0.9% NaCl solution (control) and were sampled at 0h, 0.5h, 1h, 2h, 3h, 5h, 9h and 12h post injection (hpi) for total RNAs and serums. Real-time PCR showed that LPS could trigger Vg1 gene expression in vivo immediately after injection. Vg1 gene expression of LPS-induced male D. rerio was about 104.1-fold of the control at 0.5 hpi, reached the peak of about 193.2-fold at 2 hpi and kept in high levels at the following time points. Vg1 gene expression induced by LTA increased to 45-fold at 0.5 hpi but quickly decreased to the control level at the following time points. The results of ELISA showed that serum Vg levels increased significantly to 1.3-fold of the control at 0.5 hpi after injection with LPS while it increased to 1.2-fold at 9 hpi after injection with LTA. It revealed that LPS as well as LTA could significantly trigger Vg synthesis in vivo in both mRNA and protein levels in male D. rerio. The response of Vg induced by PAMPs revealed that Vg was an acute phase protein. We applied Western blotting to detect whether Vg can bind to E.coli and S.aureus. The serum of LPS-induced male D. rerio at 0.5 hpi was incubated with E.coli and S.aureus respectively. Then the protein binding to bacteria were eluted carefully. The elution was carried out for western blotting with rabbit anti-Vg polyconal antibody. The results showed that Vg was capable of binding to both E.coli and S.aureus. Inhibition of bacterial growth by serum Vg induced by LPS was also detected. The sera from control and LPS-injected male D. rerio all exhibited conspicuous antibacterial activities against E. coli and S. aureus, with the antibacterial activities of the sera collected at 0.5 hpi from LPS-injected fish being significantly higher than those from saline-injected fish. When the complement activities of the sera were inactivated by heating, their antibacterial activities against E. coli and S. aureus were remarkably reduced. However, some antibacterial activities remained in all the heated sera. In particular, after heating, the antibacterial activities of the sera collected at 0.5 hpi from LPS-injected fish were still significantly higher than control, suggesting the presence of additional antibacterial molecules in these sera. Notably, the antibacterial activities of the heated sera against E. coli and S. aureus were significantly inhibited by the pre-incubation of the sera with anti-zebrafish Vg antibody, but not by the pre-incubation with anti-actin antibody; and this inhibitory effect showed a clear dose-dependence. Moreover, consistent with higher Vg levels in the sera collected at 0.5 hpi, the antibacterial activities in these sera, after heating, were also greater than control. These data together implicated that Vg was an important factor responsible for the antibacterial activities in the sera.
     In the second part, prior experiments were firstly applied to determine the appropriate concentrations and time of the exposure. The results showed that Vg synthesis in D. rerio exposed to 20 nM E2 at 20 dpe (days after exposure) was significantly up-regulated while it was significantly down-regulated by 500 nM TMX at 20dpe. However, histological examination revealed that exposure to 20 nM E2 and 500 nM TMX cause only slight hepatocytic changes in D. rerio. Western blotting showed that both E2 and TMX were able to significantly trigger IgM synthesis in D. rerio. However, no marked difference of IgM levels was detected between E2- and TMX-exposed fish. We also found that exposures to E2 and TMX had little influence on the density of leucocytes in zebrafish blood. Finally, after exposure to 20 nM E2 or 500 nM TMX, for consecutive 20 days, the exposed fish as well as normal fish were injected intraperitonealy with Vibrio auguillarum (V . auguillarum) and the survival rates were calculated at different time points, respectively. The results showed that the survival rates of the E2-exposed females were significantly higher than those of normal females and TMX-exposed females. In males, E2-exposed group exhibited significantly higher survival rates than TMX-exposed group but similar to those of normal group. The results indicated that Vg may improve the survival rates of D. rerio following challenge with V. auguillarum.
     In summary, this paper revealed that Vg in zebrafish D. rerio is an acute phase protein with bacterial-binding and inhibiting activities. The PAMPs (LPS and LTA) can induce Vg synthesis in vivo in male D. rerio, and the response of Vg revealed an acute-phase response. Serum Vg induced by PAMPs showed antibacterial activities to both E.coli and S.aureus. In vivo experiments also showed that, Vg may improve the survival rates of D. rerio following challenge with V. auguillarum.
引文
Agui, N., Shimada, T., Izumi, S., Tomino, S. Hormonal control of vitellogenin mRNA levels in the male and female housefly, Musca domestica. J-Insect-Physiol. Exeter : Pergamon Press, 1991, 37(5): 383-390.
    Ahmed S.A. The immune system as a potential target for environmental estrogens (endocrine disrupters): a new emerging field. Toxicology, 2000, 150: 191-206.
    Aida, K., P.V. Ngan and T. Hibiya. Physiological studies of gonadal maturation of fishes. I. Sexual differences in composition of serum protein of ayu in relation to gonadal maturation. Bull. Jpn. Soc. Sci. Fish, 1973, 39: 1107–1115.
    Akihiro, T., Byung H.K. Effects of estradiol-17βtreatment on in vitro and vivo synthesis of two distinct vitellogenin in tilapia. Com. Biochem. Physiol, 2001, 129A: 641-651.
    Allen, Y., P. Matthiessen, A.P. Scott, S. Haworth, S. Feist and J.E. Thain. The extent of oestrogenic contamination in the UK estuarine and marine environments– further surveys of flounder. Sci. Total Environ. 1999a, 233: 5–20.
    Allen, Y., A. Scott, P. Matthiessen, S. Haworth, J. Thain and S. Feist. Survery of estrogenic activity in United Kingdom estuarine and coastal waters and its effects on gonadal development of the flounder Platichthys flesus. Environ. Toxicol. Chem. 1999b, 18: 1791–1800.
    Amirante, G.A. Immunochemical studies on rainbow trout lipovitellin. Acta Embryol. Morphol. Exp. (Suppl.) 1972, 373–383.
    Ando S., Yanagida K. Susceptibility to oxidation of copper-induced serum lipoproteins from Japanese eel: Protective effect of vitellogenin on the oxidation of very low density lipoprotein. Comp Biochem Physiol C-Toxicology & Pharmacology, 1999, 123: 1–7.
    Ando, S. Hantano, M. Distribution of carotenoids in the eggs from four species of samonid. Com. Biochem. Physiol, 1991, 99B: 341-344.
    Ansar, A.S., Hissong, B., Verthelyi, D., Donner, K., Becker, K., Karpuzoglu-Sahin, E. Gender and risk of autoimmune disease. Environ Health Perspect, 1999, 107: 681–686.
    Ansar, A.S., Penhale, W.J., Talal, N. Sex hormones, immune responses and autoimmune diseases. Am J Pathol, 1985, 121: 531–559.
    Arukwe, A., Knudsen, F.R., Goksoyr, A. Fish zona radiate protein: a sensitive biomarker for environment estrogens. Environ. Health. Perspect, 1997, 105: 418-422.
    Arukwe, A. and A. Goks?yr. Eggshell and egg yolk proteins in fish: hepatic proteins for the next generation:oogenetic, population, and evolutionary implications of endocrine disruption. Comp. Hepatol. 2003, 2: 1–21.
    Astrofsky KM, Schrenzel MD, Bullis RA, Smolowitz RM, Fox JG. Diagnosis and management of atypical Mycobacterium spp. infections in established laboratory zebrafish (Brachydanio rerio) facilities. Comparative Medicine, 2000, 50(6): 666-672.
    Azuma, M., Irie, T., Seki, T. Retinals and reiols induced by estrogen in the blood serum of Xenopus laevis. J .Exp. Biol, 1993, 178: 89-96.
    Babin, P. J. Binding of thyroxine and 3,5,3 -triodothyrine to trout serum lipoproteins. Am.J.Physiol, 1992, 262: 712-720.
    Baerga, S.C., Morals, M.H. Vitellogenin diversity in tropical lizards (Anolis pulchelus): indentification and partial characterization. Comp. Biochem. Physiol.1991, 100: 347-359.
    Baert, J.L., Santiere, P. Purification an characterization of oocyte vitellin from Perimersis cultrifera. Eur. J. Biochem., 1984, 142: 527-532.
    Baert, JL., Britel, M. Yolk protein in leech: identification and characterization of vitellin and vitellogenin. Eur. J. Biochem., 1991, 201: 191-198.
    Bailey RE. The effect of estradiol on serum calcium, phosphorus, and protein of goldfish. J Exp Zool., 1957, 136(3): 455-469.
    Baker, M.E. Is vitellogenin an ancestor of apolipoprotein B-100 of human low-density lipoprotein and human lipoprotein lipase? J. Biochem.1988, 255: 1057-1060.
    Balinsky, B. I., Devis, R.J. Origin and differentiation of cytoplasmic structures in the oocytes of Xenopus laevis. Acta Embry. Morph. Exp., 1963, 6: 5-108.
    Banaszak, L, Sharrock, W., Timmmin. P., Structure and function of lipoprotein: lipovitellin. Annu. Rev. Biophysics. Chem., 1991, 20: 221-246.
    Bast, R.E., Gibson, A.R. Characterization of reptilian vitellogenin: subunit composition and molecular weights of vitellogenin from the colurid snake Thamnophis sirtalis. Comp. Biochem. Physiol., 1985, 80B: 409-418.
    Beato, M. Transcriptional control by nucleus receptors. FASEB J., 1991, 5: 2044-2051.
    Berry, M., Metzger, D., Chambon, P. Role of the two activating domains of oestrogen receptor in the cell-type and promoter-context dependent agonistic activity of the anti-oestrogen 4-hydroxy tamoxifen. EMBO. J., 1990, 9: 2811-2818.
    Bidwell, C.A., Carsion, D.M. Characterization of vitellogenin from white sturgeon, Acipenser transmontanus. J. Mol. Evol., 1995, 41: 104-112.
    Bigai J., Pzytycz B.Lymphoid organs of Gasterosteus aculeatus. J. Fish Biol., 1987,31: 233-234.
    Bon, E., Barbe, U. Serum vitellogein levels during the annual reproductive cycle of the female rainbow trout (Oncorhynchus mykiss): establishment and validation of an ELISA. Comp. Biochem. Physiol., 1997, 117B: 75-84.
    Bowman, C.J., Kroll, K.J., Hemmer, M.J., et al. Estrogen-induced vitellogenin mRNA and protein in sheepshead minnow. Gen. Comp. Endocrinol., 2000, 120: 300-313.
    Bownes, M., Shirras, A., Blair, M., Collins, J., Coulson, A. Evidence that insect embryogenesis is regulated by ecdysteroids released from yolk proteins. Proc. Natl. Acad. Sci. USA, 1988, 85: 1554–1557.
    Brion F, Tyler C.R., Palazzi X., Laillet B., Porcher J.M., Garric J., Flammarion P. Impacts of 17 beta-estradiol, including environmentally relevant concentrations, on reproduction after exposure duringmembryo-larval-, juvenile- and adult-life stages in zebrafish (Danio rerio). Aquatic Toxicology, 2004, 68(3): 193-217.
    Brooks, J.M. The major yolk protein in sea urchins is a transferring-like, iron binding protein. Dev. Biol., 2002, 245(1): 1-12.
    Byrne, B.M., Gruber, M., Ab, G. The evolution of egg yolk protein, Prog. Biophys. Mol. Biol., 1989, 53: 33-69.
    Campbell, C.M, Idler, D.R., Characterization of an estradiol-induced protein from rainbow trout as vitellogenin by the cross reactivity to ovarian yolk fractions. Biol .Reprod., 1980, 22: 605-617.
    Celius, T., Matthews, J.B., Giesy, J.P., Zacharewski, T.R. Quantification of rainbow trout(Oncorhynchus mykiss) zona radiata and vitellogenin mRNA levels using real-time PCR after in vivo treatment with estradiol-17βorα-zearalenol. J. Steroid. Biochem. Mol., 2000, 75: 109-119.
    Chang, C.F., Jeng, S.R.. Isolation and characterization of the female-specific protein in maturefemale hemolymph of the prawn. Comp. Biochem. Physiol., 1995, 112B: 257-263.
    Chen, J.S., Sappington, T.W., Raikhel, A.S. Extensive sequence conservation among insect, nematode, and vertebrate vitellogenins reveals ancient common ancestry . J. Mol. Evol., 1997, 44: 440-451.
    Chen, J.Y., Chen, J.C., Wu, J.I., 2003. Molecular cloning and functional analysis of high density lipoprotein binding protein. Comp Biochem Physiol B., 36, 117-130.
    Chinzei, Y. Vitellogenin titer in haemolymph of locusta migratoris in normal adults, after ovariectomy and in reponse to methoprene. J. Insect Physiol., 1985, 31: 441-445.
    Copeland, P.A. Vitellogenin levels in male and female rainbow trout at various stages the reproductive cycle. Comp. Biochem. Physiol., 1986, 83: 487-493.
    Copeland, P.A., Thomas, P. The measurement of serum vitellogenin levels in a marine teleost, the spotted seatrout (Cynoscion nebulosus) by homologous radioimmunoassay. Comp. Biochem. Physiol., 1988, 91B: 17-23.
    Cutolo, M., Straub, R. Polymyalgia rheumatica: evidence for a hypothalamic -pituitary-adrenal axis-driven disease. Clin Exp Rheumatol., 2000, 18: 655-658.
    Cutolo, M., Villaggio, B., Craviotto, C., Pizzorni, C., Seriolo, B., Sulli, A. Sex hormones and rheumatoid arthritis. Autoimmun Rev., 2002, 1: 284-289.
    Danilova, N., Bussmann, J., Jekosch, K., Steiner, L.A. The immunoglobulin heavy-chain locus in zebrafish: identification and expression of a previously unknown isotype, immunoglobulin Z. Nat. Immunol., 2005, 6: 295–302.
    Davis JM, Clay H, Lewis JL, Ghori N, Herbomel P, Ramakrishnan L. Real-time visualization of mycobacterium-macrophage interactions leading to initiation of granuloma formation in
    zebrafish embryos. Immunity, 2002, 17: 693-702. Deitsch, K.W., Chen, J.S., Raikhel, A.S. Indirect control of yolk protein genes by 20-hydroxyecdysone in the fat body of the mosquito, Aedes aegypti. Insect Biochem. Mol. Biol., 1995, 25: 449-454.
    Denisen, N. Comparison of organization and fine structure of a chicken and a Xenopus laevis Vitellogenin gene. J.Biochem., 1987, 262: 15377-15385.
    Denslow, N.D., Chow, M.M., Folmar, L.C., et al. Development of antibodies to teleost vitellogenins. Potential biomarkers for environmental estrogens. In: Bengston, D.A.,Henshel. D.S. (Eds), Environmental Toxicology and Risk Assessment, STP 1306, 5. Philadelphia, PA: ASTM International, 1996. 23-36.
    Denslow, N.D., Lee, H.S., Bowman, C.J. et al. Multiple responses in gene expression in fish treated with estrogen. Comp. Biochem. Physiol., 2001, 129B: 277-282.
    Denslow, N.D., Lee, H.S., Bowman, C.J., Hemmer, M.J., Folmar, L.C. Multiple responses in gene expression in fish treated with estrogen. Comp. Biochem. Physiol. Mol. Biol., 2001, 129: 277– 282.
    Dhadialla, T.S., Hays A.R. and Raikhel, A.S. Characterization of the solubilized mosquito vitellogenin receptor. Insect Biochem. Molec. Biol., 1992, 22: 803–816.
    Ding, P.L. Hee and T.J. Lam, Two forms of vitellogenin in the serum and gonads of male Oreochromis aureus. Comp. Biochem. Physiol., 1989, 93B:363–370.
    Doeing, D.C., Borowicz, J.L., Crockett, E.T., 2003. Gender dimorphism in differential peripheral blood leucocyte counts in mice using cardiac, tail, foot, and saphenous vein puncture methods. BMC Clinical Pathology. 3.
    Dumont, J.N. Oogenesis in Xenopus laevis (Daudin). VI. The route of injected tracer transport in the follicle and developing oocyte. J. Exp. Zool., 1978, 204(2):193-217.
    Edwards, D.A., Gooch, K.J., Zhang, I., McKinley, G.H., Langer, R. The nucleation of receptor mediated endocytosis. Proc. Natl. Acad. Sci. USA, 1996, 93: 1786–1791.
    Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science, l988, 240: 889-895.
    Evans, RM., et al. Developmental regulation of the estrogen receptor and the estrogen response of the five yolk protein genes in avian liver. Proc. Natl. Acad.Sci. USA, 1987, 84: 8493- 8497.
    Felber, B.K., Maurhofer, S., Jaggi, R.B., Wyler, T., Wahli, W., Ryffe,l G.U., Weber, R. Isolation and translation in vitro of four related vitellogenin mRNAs of estrogen-stimulated Xenopus laevis. Eur. J. Biochem., 1980, 105, 17–24.
    Fenske, M., Aerle, R.V., Brack, S., Tyler, C.R., Segner, H. Development and validation of a homologous zebrafish Danio rerio Hamilton_Buchanan/vitellogenin enzyme-linked immunosorbent assay ELISA and its application for studies on estrogenic chemicals. Comp. Biochem. Phys. C., 2001, 129: 217-232.
    Ferenz, H.J. Yolk protein accumulation in Locusta migratoria oocytes. Int. J. Insect Morphol.Embryol., 1991, 22: 295-314.
    Flouriot, G., Pakdel, F., Ducouret, B., et al. Differential regulation of two genes implicated in fish reproduction: vitellogenin estrogen rceptor genes. Mol. Reprod. Dev., 1997, 48: 317-323.
    Flouriot, G., Pakdel, F., et al. Transcriptional and post-transcriptional regulation of rainbow trout estrogen receptor and vitellogenin gene expression. Mol. Cell. Endocrinol., 1996, 124: 173-183.
    Folmar, L.C., N.D. Denslow, V. Rao, M. Chow, D.A. Crain, J. Enblom, J. Marcino and L.J. Guillette, Jr. Vitellogenin induction and reduced serum testosterone concentrations in feral male carp (Cyprinus carpio) captured near a major metropolitan sewage treatment plant. Environ. Health Perspect. 1996, 104: 1096–1101.
    Folmar, L.C., Hemmer, M. et al. Comparative estrogencity of estradiol , ethynyl estradiol and diethylstilbestrol: an in vivo, male sheepshead minnow, vitellogenin bioassay. Aquatic Toxicology, 2000, 49: 77-88.
    Folmar, L.C., N.D. Denslow, K. Kroll, E.F. Orlando, J. Enblom, J. Marcino, C. Metcalfe and L.J. Guillette, Jr.. Altered serum sex steroids and vitellogenin induction in walleye (Stizostedion vitreum) collected near aMetropolitan sewage treatment plant. Arch. Environ. Contam. Toxicol. 2001, 40: 392–398.
    Fossi, M.C., S. Casini, S. Ancora, A. Moscatelli, A. Ausili and G. Notarbartolo-di-Sciara. Do endocrine disrupting chemicals threaten Mediterranean swordfish? Preliminary results of vitellogenin and zona radiata proteins in Xiphias gladius. Mar. Environ. Res. 2001, 52: 447–483.
    Frazier-Jessen, M.R., Mott, F.J., Witte, P.L., Kovacs, E.J. Estrogen suppression of connective tissue deposition in a murine model of peritoneal adhesion formation. J. Immunol., 1996, 156: 3036–3042.
    Fuda H, Soyano K, Yamazaki F, Hara A. Serum immunoglobulin M during early development of masu salmon (Oncorhynchus masou). Comp Biochem Physiol, 1991, 99A: 637-643.
    Fuda, H., Soyano, K., Yamazaki, F., Hara, A. Serum immunoglobulin M (IgM) during early development of masu salmon (Oncorhynchus masou). Comp. Biochem. Physiol. A Comp Physiol., 1991, 99(4):637-43.
    Gavaud, J. Vitellogenesis in the lizard Lacerta vivipara Jacquin: Purification and characterizationof serum vitellogenin. Gen. Comp. Endocrinol., 1986, 63: 1-10.
    Ghosh, P., Thomas, P. Binding of metals to red drum vitellogenin and incorporation into oocytes. Marine Enviromental Research, 1995, 39:165-168.
    Goodbred, S.L., R.J. Gillion, T.S. Gross, N.P. Denslow, W.L. Bryant and T.R. Schoeb. Reconnaissance of 17b-estradiol, 11-ketotestosterone, vitellogenin, and gonad histopathology in common carp of United States streams: potential for contaminant-induced endocrine disruption. US Geological Survey Report, 1997, pp. 1–47.
    Goodwin, A.E., Grizzle, J.M., Bradley, J.T., Estridge, B.h. Monoclonal antibody-based immunoassay of vitellogenin in the blood of male channel catfish (Ictalurus punctatus). Comp. Biochem. Physiol. B. , 1992, 101(3): 441–446.
    Goulas, A., Triplett, E.L., Taborsky, G. Oligophosphopeptides of varied structural complexity derived from the egg phosphoprotein, phosvitin. J. Protein Chem., 1996, 15: 1-9.
    Grossman, C.J. Interactions between the gonadal steroids and the immune system. Science, 1985, 227: 257–261.
    Han. Dalho, Steven, D.M., Tachibana, H., Yamada, K. Effects of Estrogenic Compounds on Immunoglobulin Production by Mouse Splenocytes. Biol. Pharm. Bull. 2002, 25: 1263-1267.
    Hashimoto, S., H. Bessho, A. Hara, M. Nakamura, T. Iguchi and K. Fujita. Elevated serum vitellogenin levels and gonadal abnormalities in wild male flounder (Pleuronectes yokohamae) from Tokyo Bay, Japan. Mar. Environ. 2000, Res. 49: 37–53.
    Hara, A., Yamauchi, K., Hirai, H. Studies on female-specific serum protein and egg yolk protein in Japanese eel (Anguilla japonica). Comp. Biochem. Physiol., 1980, 65B: 315-320.
    Hara, A., Hirai, H. Comparative studies on immunochemical properties of female-specific serum protein and yolk proteins in rainbow trout (Salmo gairdneri). Comp. Biochem. Physio., 1978, 48B: 389-399.
    Harries JE, Sheahan DA, Jobling SP, Tylor T, Zaman N. Oestrogenic activity in five United Kingdom rivers detected by measurement of vitellogenesis in caged male trout . Environ Toxicol Chem, 1997, 16: 534-542.
    Hawkins, M. B., Thornton, J.W., Crews, D., Skipper, J.K., Dotte, A., Thomas, P. Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts. Proc.Natl. Acad. Sci. USA, 2000, 97(20): 10751-10756.
    Hemmer, M. et al. Vitellogenin mRNA regulation and serum clearance in male sheepshead minnows, (Cyprinodon variegates) after cessation of exposure to 17β-estrodiol and p-nonylphenol. Aquatic. Toxicology, 2002, 58: 99-112.
    Hiramatsu N, Hara A. A relationship between vitellogenin and its related egg yolk proteins in Sakhalin taimen (Hucho perryi). Comp Biochem Physiol., 1996, 115A: 243-251.
    Hiramatsu, N., Matsubara, T., Weber, G.M., Sullivan, C.V., Hara, A. Vitellogenesis in aquatic animals. Fish. Sci., 2002a, 68: 694–699.
    Hiramatsu, N., N. Ichikawa, H. Fukada, T. Fujita, C.V. Sullivan and A. Hara. Identification and characterization of proteases involved in specific proteolysis of vitellogenin and yolk proteins in salmonids. J. Exp. Zool. 2002b, 292: 11–25.
    Hiramatsu, N., Cheek A.O., Sullivan, C.V., Matsubara, T., Hara, A. Vitellogenesis and endocrine disruption. In: Biochemistry and Molecular Biology of Fishes, Vol 6: Environ Toxicol (Mommsen TP, Moon TW, eds). Amsterdam:Elsevier, 2005. 431–471.
    Holbech, H., Andersen, L., Petersen, G.I., Korsgaard, B., Pedersen, K.L., Bjerregaard, P.. Development of an ELISA for vitellogenin in whole body homogenate of zebrafish (Danio rerio). Comp. Biochem. Physiol., 2001, 130C: 119-131.
    Hosono, M., Ishikawa, K., Mineki, R. et al. Tandem repeat structure of rhamnose-binding lectin from catfish (Silurus asotus) eggs. Bichem. Biophys. Acta., 1999, 1472: 668-675.
    Hyllner, S.J., Silversand, C., Haux, C. Formation of the vitelline envelope precedes the active uptake of vitellogenin during oocyte development in the rainbow trout, Oncorhynchus mykiss. Mol. Reprod. Dev., 1994, 39: 166-175.
    Idler, D.R. Gonadotropin stimulation of estrogen and yolk precursor synthesis in juvenile rainbow trout. Gen Comp Endol., 1980, 41: 384-391.
    Ignar-Trowbridge D.M., Nelson, K.G., Bidwell MC, Curtis SW, Washburn TF, McLachlan JA, Korach KS. Coupling of dual signaling pathways: epidermal growth factor action involves the estrogen receptor. Proc Natl Acad Sci U S A., 1992, 89(10):4658-4662.
    Ignar-Trowbridge, D.M., Pimentel, M., Teng, C.T., Korach, K.S., McLachlan, J.A. Cross talk between peptide growth factors and estrogen receptor signaling. systems. Environ. Health Perspect. 1995.103, 35_38.
    Jain, N. C. Neutrophil leukocytes and inflammation of the bovine mammary gland. Theriogenology, 1976, 6: 153.
    Janssen, P.A.H., J.G.D. Lambert, A.D. Vethaak and H.J.Th. Goos. Environmental pollution caused elevated concentrations of oestradiol and vitellogenin in the female flounder, Platichthys flesus (L.). Aquat. Toxicol. 1997, 39: 195–214.
    Jobling, S. and J.P. Sumpter. Detergent components in sewage effluent are weakly oestrogenic to fish: an in vitro study using rainbow trout (Oncorhynchus mykiss) hepatocytes. Aquat. Toxicol. 1993, 27: 361–372.
    Jobling, S., M. Nolan, C.R. Tyler, G. Brighty and J.P. Sumpter. Widespread sexual disruption in wild fish.Environ. Sci. Technol. 1998, 32: 2498–2506.
    Jobling, S., N. Beresford, M. Nolan, T. Rodgers-Gray, G. Brighty, J. Sumpter and C. Tyler. Altered sexualmaturation and gamete production in wild roach (Rutilus rutilus) living in rivers that receive treated sewageeffluents. Biol. Reprod. 2002a, 66: 272–281.
    Jobling, S., S. Coey, J. Whitmore, D. Kime, K. VanLook, B. McAllister, N. Beresford, A. Henshaw, G. Brighty, C. Tyler and J. Sumpter. Wild intersex roach (Rutilus rutilus) have reduced fertility. Biol. Reprod. 2002b, 67: 515–524.
    Jolles, P., Jolles, J. What’s new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem., 1984, 63: 165-189.
    Jurd RD Specialisation in the teleost and anuran immune response: comparative critique. In: Manning MJ, Tatner MF (eds) Fish immunology. Academic Press, London, 1985, pp 9–28.
    Kumar. V., Green, S., Stack, G., Berry, M., Jin, J.R. Chambon P Functional domains of the human estrogen receptor. Cell, l987, 51(6):94l-51.
    Kanda N., Tamaki K. Estrogen enhances immunoglobulin production by human PBMCs. J. Allergy. Clin. Immunol., 1999, 103: 282–288.
    Karasaki, S. Studies on amphibian yolk 5 Electron microscopic observation on the utilization of yolk plates during embryogenesis. J. Ultrastruct. Res. 1963, 9: 225-247.
    Kaulenas, M.S. In: G.A. Kerkut and L.I. Gilbert, Editors. Molecular Biology: Protein SynthesisComprehensive Insect Physiology Biochemistry and Pharmacology vol. 10, Pergamon, New York (1985), pp. 255–305.
    Kausch, U., Alberti, M., Haindl, S., Budczies, J., Hock, B. Biomarkers for exposure to estrogenic compounds: gene expression analysis in zebrafish (Danio rerio). Environ Toxicol., 2008, 23: 15-24.
    Keegan BR, Feldman JL, Lee DH, Koos DS, Ho RK, Stainier DY, Yelon D. The elongation factors Pandora/Spt6 and Foggy/Spt5 promote transcription in the zebrafish embryo. Development, 2002, 129: 1623-1632.
    Kim, H.P., Lee, S.D. Purification and characterization of vitellin-2 from the ovary of American cockroach Periplaneta americana. Comp. Biochem. Physiol.1994, 108B: 135-145.
    Kime, D.E., J.P. Nash and A.P. Scott. Vitellogenesis as a biomarker of reproductive disruption by xenobiotics. Aquaculture. 1999, 177: 345–352.
    Kobayashi K, Tomonaga S. The second immunoglobulin class is commonly present in cartilaginous fish belonging to the order Rajiformes. Mol Immunol., 1998, 25: 115-120.
    Komatsu, M., Ando, S. A novel LDL with large amounts of phospholipid found in the egg yolk of crustacea sand crayfish ibacus ciliatus: its function as vitellogenin-degrading proteinase. Biochem.Biophys.Commun., 1992, 186: 498-502.
    Komatsu, M.; Hayashi, S. Proteinase activity of vitellogenin from crustacean sand crayfish Ibacus ciliatus as a latent from Fisheries Science. 1994, 60: 753-757.
    Komatsu, M.; Matsumoto, W. Hayashi.Hayashi, S. Protease activity appeared after trypsin treatment of the purified vitellogenin from eel Anguilla japomica. Comp.Biochem. Physiol. 1996, 113B: 561-571.
    Krauel, K.K. and Ridgway, G.J. Immunoelectrophoretic studies of red salmon (Oncorhynchus nerka) serum. Int. Arch. Allergy 23: 246–253, 1963.
    Kwon, H.C., Choi, S.H., Kim, Y.U., Son, S.O., Kwon, J.Y. Androgen action on hepatic vitellogenin synthesis in the eel, Anguilla japonica is suppressed by an androgen receptor antagonist. J Steroid Biochem Mol Biol. 2005, 96(2):175-8
    LaFleur, G.J., Byrne, B.M., Kanungo, J. Fundulus heteroclitus vitellogenin: the deduced primary structure of a piscine precursor to noncrystalline, liquid-phase yolk protein. J. Mol. Evol. 1995, 41: 505-521.
    LaFleur, G.J., Byrne, Jr., B.M. Kanungo, J., Nelson, L.D., Greenberg, R.M., Wallace, R.A. Fundulus heteroclitus vitellogenin: the deduced primary structure of a piscine precursor tononcrystalline, liquidphase yolk protein. J. Mol. Evol., 1995, 41: 505–521.
    Lange, I.G., Hartel, A., Meyer, H.H.D. Evolution of oestrogen functions in vertebrates. J Steroid Biochem.,2003, 83: 219–226.
    Laskowski, M. U¨ber das vorkommen des serumvitellins im blute der wirebeltiere. Biochem. Z. 284: 318–3321, 1936.
    Law, W.Y., Chen, W.H., Song, Y.L., Dufour, S., Chang, C.F. Differential in vitro suppressive effects of steroids on leukocyte phagocytosis in two teleosts, tilapia and common carp., Gen. Comp. Endocrinol. 2001, 2: 163–172.
    Lazier, C.B, Langley, S., Ramsey, N.B., Wright, J.M. Androgen inhibition of vitellogenin gene expression in tilapia (Oreochromis niloticus). Gen Comp Endocrinol. 1996, 104: 321-9.
    Lazier, C.B., Mommsen, T.P. Hepatic estrogen receptors and serum estrogen binding activity in the Atlantic salmon. Gen. Comp. Endocrinol. 1985, 57: 234-245.
    Le Guellec, K., Lawless, K., Valotaire, Y., Kress, M., and Tennis- wood, M. Vitellogenin gene expression in male rainbow trout (Salmo gairdnerii). Gen. Comp. Endocrinol. 1988, 71: 359-371.
    Li, Z.J, Zhang, S.C, Liu, Q.H Vitellogenin functions as a multivalent pattern recognition receptor with an opsonic activity. PLoS ONE. 2008, 3, e1940.
    Lim, E.H., Ding, J.L., Lam, T.J. Estradiol-induced vitellogenin gene expression in a teleost fish, Oreochromis aureus. Gen. Comp. Endocrinol., 1991, 82: 206- 214.
    Lin B, Chen S, Cao Z, Lin Y, Mo D, Zhang H, Gu J, Dong M, Liu Z, Xu A. Acute phase response in zebrafish upon Aeromonas salmonicida and Staphylococcus aureus infection: striking similarities and obvious differences with mammals. Molecular Immunology. 2006. 44(4):295-301.
    Logan SK, Wensink PC. Ovarian follicle cell enhancers from the Drosophila yolk protein genes: different segments of one enhancer have different cell-type specificities that interact to give normal expression. Genes Dev. 1990, 4(4): 613-623.
    Loomis, A.K., Thomas P. Effects of estrogens and xenoestrogens on androgen production by Atlantic croaker testes in vitro: evidence for a non-genomic action mediated by an estrogen membrane receptor. Biol. Reprod. 2000, 62: 995-1004.
    Louise, G.P., Cheek, A.O., Denslow, N.D., Heppell, S.A., Mclachlan, J.A., LeBlanc, G.A., Sullivan,C.V., Fathead minnow (Pimephales promelas) vitellogenin: purification characterization and quantitative immunoassay for the detection of estrogenic compounds. Comp. Biochem. Physiol. 1999, 123C:113-125.
    Lzumi,S. Yano, K. Yamamoto, Y. ,Takahashi , S.Y. Yolk proteins from insect eggs: structure, biosynthesis and programmed degradation during embryogenesis. J. Insect Physiol. 1994, 40: 735–746.
    MacLachlan, I., Nimpt, J. et al. Anian riboflavin binding protein binds to lipoprotein receptors in association with vitellogenin. J. Biol. Chem., 1994, 269: 24127-24132.
    Mader, S., Chambon, P., White, J.H. Defining a minimal estrogen receptor DNA binding domain. Nucl. Acids. Res., 1993, 21: 1125-1132.
    Mader, S., Chambon, P., White, J.H. Defining a minimal estrogen receptor DNA binding domain. Nucl. Acids Res. 1993, 21: 1125-1132.
    Magnadóttir, B. Comparison of immunoglobulin (IgM) from four fish species. Icel Agr Sci., 1998, 12: 47–59.
    Maňanós E, Núnez J, Zauny S, Carrillo M, Le Menn F. Sea bass (Dicentrachus lablax L.) vitellogenin. II Val i dation of an enzyme-linked immunosorbent assay (ELISA). Comp Biochem Physiol. 1994, 107B: 217-223.
    Matthiessen, P., Y.T. Allen, C.R. Allchin, S.W. Feist, M.F. Kirby, R.J. Law, A.P. Scott, J.E. Thain and K.V. Thomas. Oestrogenic endocrine disruption in flounder (Platichthys flesus L.) from United Kingdom estuarine and marine waters. Sci. Ser. Tech. Rep., CEFAS, Lowestoft. 1998, 107: 1–48.
    Matsubara, T., Ohkubo, N., Andoh, T., Sullivan, C.V., Hara, A., Two forms of vitellogenin, yielding two distinct lipovitellins, play different roles during oocyte maturation and early development of barfin flounder, Verasper moseri, a marine teleost that Spawns pelagic eggs. Developmental Biology., 1999, 213: 18-32.
    May, F.E., Knowland, J. Estrogen receptor levels and vitellogein synthesis during development of Xenopus laevis. Nature, 1981, 292: 853-855.
    Meeker N. D., Trede N. S. Immunology and zebrafish: Spawning new models of human disease. Dev Comp Immunol., 2008, 32: 745-57.
    Menudier A, Rougier FP, Bosgiraud C. Comparative virulence between different strains of Listeriain zebrafish (Brachydanio rerio) and mice. Pathologie-Biologie 1996, 44:783-9.
    Mewes KR, Latz M, Golla H, Fischer A. Vitellogenin from female and estradiol-stimulated male river Lampreys (Lampetra fluviatilis L). J .Exp. Zool. 2002, 292: 52-72.
    Miracle, A., Ankley, G., Lattier, David. Expression of two vitellogenin genes (vg1 and vg3) in fathead minnow (Pimephales promelas) liver in response to exposure to steroidal estrogens and androgens. Ecotox Environ Safe., 2006, 3: 337-342.
    Montorzi, M., Falchuk, K.H.,Vallee, B.L. Vitellogenin and lipovitellin: zinc proteins of Xenopus laevis oocytes. Biochem. 1995, 34: 10851-10858.
    Montorzi, M., Falchuk, K.H.,Vallee, B.L., Xenopus laevis vitellogenin is a zinc protein. Biochem. Biophys. Res. Commun. 1994, 200: 1407-1413.
    Morales, M.H., Pagan, S.M., Gomez, Y. Immunodissection of yolk lipovitellin (LV1) demonstrates the existence of different Lv1-domains and suggests a complex family of vitellogenin genes in the lizard (Anolis pulchellus). Comp. Biochem. Physiol. 2002, 131B: 339-348.
    Moyer TR, Hunnicutt DW. Susceptibility of zebra fish Danio rerio to infection by Flavobacterium columnare and F. johnsoniae. Diseases of Aquatic Organisms, 2007, 76:39-44.
    Nakamura A, Yasuda K, Adachi H, Sakurai Y, Ishii N, Goto S. Vitellogenin-6 is a major carbonylated protein in aged nematode, Caenorhabditis elegans. Biochem Biophys Res Comm, 1999, 264: 580-583.
    Neely, M.N., Pfeifer, J.D., Caparon1 M, Streptococcus-Zebrafish Model of Bacterial Pathogenesis. Infect Immun. 2002, 70: 3904-3914.
    Nelson, C.M., Ihle, K.E., Fondrk, M.K., Page, R.E., Amdam, G.V. The gene vitellogenin has multiple coordinating effects on social organization. PLoS Biol. 2007, 5: 0673-0677.
    Nilsson N., Carlsten H. Estrogen induces suppression of natural killer cell cytotoxicity and augmentation of polyclonal B cell activation. Cell Immunol. 1994, 158: 131-139.
    Norberg B. Atlantic halibut vitellogenin: Induction, isolation, and partial characterization. Fish. Physiol. Biochem. 1995, 14: 1-13.
    Norberg B., Haux, C. Induction , isolation and a characterization of the lipid content of serum vitellogenin from two Salmo species: rainbow trout and sea trout . Comp. Biochem. Physiol. 1985, 81B: 869-876.
    Ohkubo, N., K. Mochida, S. Adachi, A. Hara, K. Hotta, Y. Nakamura and T. Matsubara.Development of enzyme-linked immunosorbent assays (ELISAs) for two forms of vitellogenin in Japanese common goby (Acanthogobius flavimanus). Gen. Comp. Endocrinol. 2003a, 131: 353–364.
    Ohkubo, N., K. Mochida, S. Adachi, A. Hara, K. Hotta, Y. Nakamura and T. Matsubara. Estrogenic activityin coastal areas around Japan evaluated by measuring male serum vitellogenins in Japanese common goby (Acanthogobius flavimanus). Fish. Sci. 2003b, 69: 1133–1143.
    O’Malley, B.W., Schrader, W.T., Mani, S., Smith. C., Weigel, N.L., Conneely, O.M., Clark, J.H. An alternative ligand-independent pathway for activation of steroid receptors. Rec. Prog. Horm. Res. 1995, 50: 333-347.
    O’Toole R., Von Hofsten J, Rosqvist R, Olsson PE, Wolf-Watz H. Visualisation of zebrafish infection by GFP-labelled Vibrio anguillarum. Microbial Pathogenesis. 2004, 37:41-6.
    Okuno, A., Yang, W.J., et al. Deduced primary structure of vitellogenin in the giant freshwater prawn, Macrobrachium rosenbergii, and yolk processing during ovarian maturation. J. Exp. Zool. 2002, 292: 417-429.
    Olsen, N.J., Kovacs, W.J. Gonadal steroids and immunity. Endocr. Rev. 1996, 17: 369-384.
    Paavonen, T., Anderson, L.C., Adlercreutz, H., Sex hormone regulation of in vitro immune response. Estradiol enhance human B-cell maturation via inhibition of suppressor T-cells in pokeweed mitogen-stimulated cuiltures. J Exp Med. 1981, 154:1935–1941.
    Pacoli, C.Q., Grizzle J.M., Bradley J.T. Seasonal levels of serum vitellogein and oocyte growth in the channel fish Ictalurus punctatus. Aquaculture, 1990, 90: 353-367.
    Paech, K., Webb, P., Kuiper, G.G.J.M. et al. Differential ligand activation of estrogen receptors ER αand ERβat AP1 sites. Science, 1997, 277: 1508-1510.
    Pait, A.S. and Nelson, J.O. Endocrine Disruption in Fish: An Assessment of Recent Research and Results,NOAA Technical Memo. NOS NCCOS CCMA 149, Silver Spring, MD, NOAA, NOS, Center for Coastal Monitoring and Assessment, 2002, 55pp.
    Pakdel, F. Feon, S.,Le Gac, F. et al. In vivo estrogen induction of hepatic estrogen receptor mRNA and correlation with vitellogenin mRNA in rainbow trout. Mol. Cell. Endocrinol. 1991, 75: 205-212.
    Pakdel, F., LeGac, P., Le Goff and Valotaire, Y. Full length sequence and in vitro expression of rainbow trout estrogen receptor cDNA. Mol. Cell. Endocrinol. 1990, 71: 195-204.
    Palmer, B.D., Selcer, K.W. Vitellogenin as a biomarker for xenobiotic estrogens: a review. In: Environmental Toxicology and Risk Assessment: Biomarkers and Risk Assessment, ASTM STP 1306,Vol. 5, edited by D.A. Bengtson and D.S. Henshel. 1996, pp. 3–21
    Pan, M.L., Bell, W.J., Telfer, W.H. Vitellogenic blood protein synthesis by insect fat body. Science. N.Y. 1969, 165: 393-394.
    Pateraki, L.E., Stratakis, E. Characterization of vitellogenin and vitellin from land crab Potamon potamios: identification of a precursor polypeptide in the molecular. J. Exp. Zool. 1997, 279: 597-608.
    Pateraki, L.E., Stratakis, E. Synthesis and organization of vitellogenin and vitellin molecular from the land crab Potamon potamios Comp. Biochem. Physiol. 2000, 125B: 53-61.
    Peeva, E., Venkatesh, J., Diamond, B. Tamoxifen blocks estrogen-induced B cell maturation but not survival. J Immunol., 2005, 175: 1415–1423.
    Pelissero, C., G. Flouriot, J.L. Foucher, B. Bennetau, J. Dunogues, F. Le Gac and J.P. Sumpter. Vitellogeninsynthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals. J. Steroid Biochem. Mol. Biol. 1993, 44: 263–272.
    Pressley ME, Phelan 3rd PE, Witten PE, Mellon MT, Kim CH. Pathogenesis and inflammatory response to Edwardsiella tarda infection in the zebrafish. Developmental and Comparative Immunology, 2005, 29:501-513.
    Prouty MG, Correa NE, Barker LP, Jagadeeswaran P, Klose KE. Zebrafish mycobacterium marinum model for mycobacterial pathogenesis. FEMS Microbiology Letters, 2003, 225: 177-182.
    Purdom CE, Hardiman PA, Bye VJ, Eno NC, Tyler CR, Sumpter JP. Estrogenic effects of effluents from sewage treatment works. Chem Ecol, 1994, 8: 275-285.
    Raikhel, A.S., Dhadialla, T.S. Accumulation of yolk proteins in insect oocytes. Annu.Rev. Entomol. 1992, 37: 217-251.
    Raikhel, A.S., Kokoza,V.A., Zhu, J.S. Molecular biology of mosquito vitellogeninesis: from basic studies to genetic engineering of antipathogen immunity. Insect. Biochem. Mol. Bio. 2002, 32: 1275-1286.
    Reith, M., Munholland, J., Kelly, J., Finn, R.N. and Fyhn, H.J. Lipovitellins derived from two forms of vitellogenin are differentially processed during oocyte maturation in haddock(Melanogrammus aeglefinus). J. Exp. Zool., 2001, 291: 58–67.
    Riegel AT, Jordan VC, Bain RR, Schoenberg DR. Effects of antiestrogens on the induction of vitellogenin and its mRNA in Xenopus laevis J Steroid Biochem. 1986, 24(6):1141-9.
    Riegel, A.T.,Aitken, S.C., Martin, M.B., Schoenberg, D.R. Differential induction of hepatic estrogen receptor and vitellogenin gene transcription in Xenopus laevis, Endocrinology, 1987, 120: 1283–1290.
    Roepke, R.R. and J.S. Hughes. Phosphorus partition in the blood of laying hens. J. Biol. Chem. 108: 79–83, 1935.
    Rojo I, de Ilarduya OM, Estonba A, Pardo MA. Innate immune gene expression in individual zebrafish after Listonella anguillarum inoculation. Fish & Shellfish Immunology, 2007, 23:1285-1293.
    Roubal, W.T., Lomax, D.P., Maryjean, L., Lyndal, L.J. Purification and partial characterization of English Sole (Pleuronectes vetulus) vitellogenin. Comp. Biochem. Physiol. 1997, 118B: 613-622.
    Ryffel, F.U.,Wahli, W., Weber, R. Quantitation of vitellogenin messenger RNA in the liver of male Xenopus during primary and secondary stimulation by estrogen. Cell. 1977, 11: 213-221.
    Sappington, T.W. and Raikhel, A.S. Receptor-mediated endocytosis of yolk proteins by insect oocytes, in: Ohnishi E., Sonobe H. and Takahashi S. Y. (Eds.). Recent Advances in Insect Biochemistry and Molecular Biology. Nagoya, Japan: Nagoya University Press, 1995: 235–257.
    Sappington, T.W., Kokoza, V.A., Cho, W.-L., Raikhel, A.S., Molecular characterization of the mosquito vitellogenin receptor reveals unexpected high homology to the Drosophila yolk protein receptor. Proc. Natl. Acad. Sci. USA., 1996, 93: 8934–8939.
    Sappington, T.W., Raikhel, A .S. Molecular characteristics of insect vitellogenins and vitellogenin receptors. Insect Biochemistry and Molecular Biology. 1998, 28: 277-300.
    Scott, L.B., Leahy, P.S., Decker, G.L. Vitellogenin and yolk glycoproteins during larval development of the sea urchin embryo. Dev. Biol., 1990, 132: 91-102.
    Seehuus, S.C., Norberg, K., Gimsa, U., Krekling, T., Amdam, G.V. Reproductive protein protects functionally sterile honey bee workers from oxidative stress. PNAS. 2006, 103: 962-967.
    Sharrock, W.J. Yolk proteins of Caenorhabditis elegans. Develop. Biol. 1983, 96: 182-188.
    Shi, X.D, Zhang, S.C., Pang, Q.X. Vitellogenin is a novel player in defense reactions. Fish Shellfish Immunol. 2006, 20: 769-772.
    Shimizu, M., Fujiwara, Y., Fukada, H., Hara, A. Purification an identification of a second form of vitellogenin from ascites of Medaka (Oryzias latipes) treated with estrogen. J. Exp. Zool. 2002, 293: 726-735.
    Silva, R., Fischer, A.H., Burch, J.B. The major and minor chicken vitellogenin genes are each adjacent to partially deleted pseudogene copies of the other. Mol. Cell. Biol. 1989, 9, 3557–3562.
    Snigirevskaya, E.S., Hays, A.R., Raikhel, A.S. Secretory and internalization pathways of mosquito yolk protein precursors. Cell Tiss. Res. 1997a, 290: 129–142.
    S?derh?ll, K. Defence reactions in a crustacean. Dev Comp Immunol 1997.21:137.
    Specker, J.L., Sullivan, C.V. Vitellogenesis in fishes: status and perspectives. In“Perspectives in Comparative Endocrinology”(Davey, K.G., Peter, R.E., Tobe, S.S., Eds.). National Research Council. Canada., Ottawa, 1994, pp.304-315.
    Spieth, J.M., Nettleton, E., et al. Vitellogenin motifs conserved in nematodes and vertebrates. J. Mol. Evol.1991, 32: 429-438.
    Sthoeger, Z., Bentwich, Z., Zinger, H., Mozes, E. The beneficial effect of the estrogen antagonist, tamoxifen, on experimental systemic lupus erythematosus. J. Rheumatol. 1994, 21: 2231–2238.
    Sthoeger, Z., Bentwich, Z., Zinger, H., Mozes, E. Beneficial effects of the antioestrogen tamoxifen on systemic lupus erythematosus of (NZBxNZW) F1 female mice are associated with specific reduction of IgG3 autoantibodies. Ann Rhem Dis., 2003, 62: 341–346.
    Straub, R.H. The Complex Role of Estrogens in Inflammation. Endocr Rev., 2007, 28(5): 521–574.
    Sullivan Con, Kim CH. Zebrafish as a model for infectious disease and immune function. Fish & Shellfish Immunology, 2008, 25: 341-350.
    Sumpter, J.P., Jobling, S. Vitellogenesis as a biomarker for estrogenic contamination of the aquatic environment. Environ. Health Perspect., 1995, 103: 173-178.
    Sumpter, J.P. Environmental control of fish reproduction: a different perspective. Fish Physiol. Biochem. 1997, 17: 25–31.
    Sun, X., Zhang, S. Purification and characterization of a putative vitellogenin from the ovary of amphioxus (Branchiostoma belcheri tsingtaunese). Comp Biochem Physiol B Biochem Mol Biol. 2001, 129(1):121-7.
    Tang, R., Dodd, A.W., Lai, D., McNabb, W.C., Love, D.R. Validation of zebrafish (Danio rerio) reference genes for quantitative real-time RT-PCR normalization. Acta Biochim Biophys Sin (Shanghai), 2007, 39: 384-390.
    Tata, J.R. The expression of the vitellogenin gene. Cell. 1976, 9(1):1-14. Third distinct estrogen receptor and reclassification.
    Thorpe, T.H. Hutchinson, M.J. Hetheridge, M. Scholze, J.P. Sumpter and C.R. Tyler, Assessing the biological potency of binary mixtures of environmental estrogens using vitellogenin induction in juvenile rainbow trout (Oncorhynchus mykiss), Environ. Sci. Technol. 2001, 2476–2481.
    Tong, Y., Shan, T., Poh, Y.K., Yan, T., Wang, H., Lam, S.H., Gong, Z.Y. Molecular cloning of zebrafish and medaka vitellogenin genes andcomparison of their expression in response to 17β-estradiol. Gene., 2004, 328: 25-36.
    Tora L, White J, Brou C, Tasset D, Webster N, Scheer E, Chambon P. The human estrogen receptor has two independent nonacidic transcription activation functions. Cell, 1989, 59: 477-487.
    Tremblay GB, Tremblay A, Labrie F, Giguère V. Dominant activity of activation function 1 (AF-1) and differential stoichiometric requirements for AF-1 and -2 in the estrogen receptor alpha-beta heterodimeric complex. Mol Cell Biol. 1999, 19(3):1919-1927.
    Trichet, V., Buisine, N. , Mouchel, N., Morán, P., Pendás, A. M. Le Pennec, J.P. and Wolff, J. Genomic analysis of the vitellogenin locus in rainbow trout (Oncorhynchus mykiss) reveals a complex history of gene amplification and retroposon activity, Mol. Gen. Genet., 2000, 263: 828–837.
    Tsang, W.S., Quackenbush, L.S., Chow, BK.C., Tiu, S.HK. Organization of the shrimp vitellogenin gene: evidence of multiple genes and tissue specific expression by the ovary and hepatopancreas. Gene. 2003, 303: 99-109.
    Turner, R.T. The binding of estrogen to liver nuclei from Japanese quail. Gen Comp Endocrinol, 1984, 54(3): 457-462.
    Uhlenhuth, P. and T. Kodama. Studien u¨ber die Geschlechtsdifferenzierung. Kokka Igakkai Zassi324–335: 385–405 or Nippon Eiseigaku-Zasshi, 1914,10: 13–34.
    Utarabhand, P., Bunlipatanon, P., Serum vitellogenin of grouper (Epinephelus malabaricus): isolation and properties. Comp. Biochem. Physiol. 1996, 115C: 101-110.
    Utter, F.M. and Ridgeway, G.J. A serologically detected serum factor associated with maturity in the English sole, Parophrys vetulus and Pacific halibut, Hippoglossus stenolepis. US Fish Wildl. Serv. Fish. Bull.,1967, 66: 47–48.
    Vaillant C, Le Guellec C, Pakdel F, Valotaire Y. Vitellogenin gene expression in primary culture of male rainbow trout hepatocytes. Gen Comp Endocrinol. 1988, 70(2): 284-290.
    Van Bohemen, C.G., Lamber, J., Peute, J. Annual changes in serum and liver in relation to vitellogesis in the female rainbow trout , Salmo gairdneri. Gen CompEndocrinol, 1981, 44: 94-107.
    Van der Sar AM, Musters RJ, van Eeden FJ, Appelmelk BJ, Vandenbroucke-Grauls CM, Bitter W. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cellular Microbiology 2003, 5:601-611.
    Van Der Ven,L.T.M., Van Den Brandhof,E., Vos, J.H. Wester, P.W., Effects Of the estrogen agonist 17β-Estradiol and antagonist tamoxifen in a partial life-cycle assay with zebrafish (Danio rerio). Environ Toxicol Chem. 2007, 26: 92-99.
    Vanstone, W.E. and F.C.W. Ho. Serum proteins of coho salmon, Oncorhynchus kisutch, as separated by zone electrophoresis. J. Fish. Res. Board Can., 1961, 18: 393–399.
    Vetillard, A., Bailhache, T. Effects of 4-n-Nonylphenol and Tamoxifen on Salmon Gonadotropin-Releasing Hormone, Estrogen Receptor, and Vitellogenin Gene Expression in Juvenile Rainbow Trout Toxicological Sciences, 2006, 92(2):537-544.
    Wahli W., Wyler, T., Weber, R., Ryffel, G.U. Size, complexity and abundance of a specific poly(A)-containing RNA of liver from male Xenopus induced to vitellogenin synthesis by estrogen. Eur J Biochem. 1976, 66(3):457–465.
    Wahli, W., Wyler, T., et al. Size, complexity and abundance of specific poly(A)-containing RNA of liver from Xenpus induced to vitellogenin synthesis by estrogen. Eur. J. Biochem. 1978, 66:457-465.
    Wahli, W., Dawid, I.B., Wyler, T., Jaggi, R.B., Weber, R., Ryffel, G.U. Vitellogenin in Xenopus laevis is encoded in a small family of genes. Cell. 1979, 16: 535–549.
    Wahli, W., Dawid, J.B. Vitellogenesis and the vitellogenin gene family. Science.1981, 212:298-304.
    Wahli, W. Evolution and expression of vitellogenin genes. Trends Genet. 1988, 4: 227–232.
    Wallace, R.A., Studies on amphibian yolk.IX Xenopus vitellogenin. Biochem.Biophys. Acta. 1970, 215: 2271-2279.
    Wallace, R.A., The vertebrate ovary: Comparative Biology and evolution (Jones, R.E.,ed), New York, Plenum Press, 1978, 469-502.
    Wallace, R.A., Hoch, K.L., Carnevali, O. Placement of small lipovitellin subunits within the vitellogenin precursor in Xenopus laevis. J..Mol. Biol. 1990, 213: 407-409.
    Wang, H., Yan T, Tan JTT, Gong Z. A zebrafish vitellogenin gene encodes a novel vitellogenin without a phosvitin domain and may represent a primitive vertebrate vitellogenin gene. Gene. 2000, 256: 303-310.
    Wang, R. and Belosevic, M. Estradiol increases susceptibility of goldfish to Trypanosoma danilewskyi. Dev. Comp. Immunol. 1994, 18: 377–387.
    Wang, SY., Smith DE., Williams D.L. Purification of avian vitellogeninⅢ: Comparasion with vitellogeninⅠandⅡ. Biochemistry. 1983, 22: 6206-6212.
    Watts, M., Pankhurst, N.W., Pryce, A., Sun, B., Vitellogenin isolation, purification and antigenic cross-reactivity in three teleost species. Comp. Biochem. Physiol. 2003, 134B: 467-476.
    Wester, P.W., van der Ven L.T.M., Vos. J.G. Comparative toxicological pathology in mammals and fish: some examples with endocrine disrupters. Toxicology, 2004, 205: 27–33.
    Westerfield, M. 1995 The zebrafish book: guide for the laboratory use of zebrafish (Danio rerio), 3rd edition. University of Oregon Press, Eugene.
    Wiley, H.S., Wallace, R.A. The structure of vitellogenin. Multiple vitellogenins in xenopus laevis give rise to multiple forms of the yolk proteins. J. Biol. Chem. 1981, 256: 8626-8634.
    Williams, T.D., Caunter, J.E., Lillicrap, A.D., Hutchinson, T.H., Gillings, E.G., Duffell, S. Evaluation of the reproductive effects of tamoxifen citrate in partial and full life-cycle studies using fathead minnows (Pimephales promelas). Environ Toxicol Chem. 2007, 26: 695-707.
    Wilson, M., Bengtén, E., Miller, N.W., Clem, L.W., Du Pasquier, L., Warr, G.W. A novel chimeric Ig heavy chain from a teleost fish shares similarities to IgD. Proc Natl Acad Sci USA.1997, 94(9): 4593-4597.
    Wu, W., Lin, B., Su, Y., Suen, J., Chian, B. Tamoxifen decreases renal inflammation and alleviates disease severity in autoimmune NZB/W F1 mice. Scand. J. Immunol., 2000a, 52: 393–400.
    Wu, W., Suen, J., Lin, B., Chiang, B. Tamoxifen alleviates diseaseseverity and decreases double negative T cells in autoimmune MRL-lpr/lpr mice. Immunology. 2000b, 100: 110-118.
    Wyatt, G. Gene regulation in insect reproduction. Invert Reprod Dev. 1991, 20:1–35.
    Yamashita, O., Indrasith, L.S. Degration of yolk proteins in sea urchin eggs and embryos. Cell Differ. 1988, 23: 191-200.
    Yano, I., Chinzei, Y. Ovary is the site of vitellogenin synthesis in Kuruma prawn, Penaeus japonicus. Comp. Biochem. Physiol. 1987, 86: 213-218.
    Yoder, J.A., Nielsen, M.E., Amemiya, C.T., Litman, G.W.Zebrafish as an immunological model system. Microbes Infec. 2002, 4: 1469–1478.
    Yu, JYL., Dickhoff, WW., Swanson P, Gorbman, A. Vitellogenesis and its hormonal regulation in the pacific hagfish, Eptatretus stouti L. Gen. Comp. Endocrinol 1981, 43: 492-502.
    Zhang, S.C., Sun, Y.N., Pang, Q.X., Shi, X.D., Hemagglutinating and antibacterial activities of vitellogenin. Fish Shellfish Immunol. 2005, 19: 93-95.
    昌永华,余来宁.《鱼类的生物化学与分子生物学第二卷-分子生物学前沿》。北京,中国农业出版社,2003,317-325。
    郭秀君.《微生物学》。济南,山东大学出版社,1994,304-306。
    利迪亚德,惠兰,范杰著;林慰慈,薛彬,魏雪涛译.《免疫学》.北京:科学出版社,28-29.
    李清禄.陈强.海水网箱养殖大黄鱼细菌性病原鉴定与感染治疗研究.应用与环境生物学报,2001.7(5):489
    刘昌盛,穆宇,杜久林.斑马鱼在生命科学研究中的应用。2007,生命科学,19,4.
    罗依惠,邵建忠,项黎新等.草鱼血清凝集素的研究.浙江大学学报(理学版),1999,26(2):69-74
    莫照兰,茅云翔,陈师勇,等一株牙鲆皮肤溃烂症病原菌的鉴定.微生物学报.2002 42(3):263,2695
    曲凌云,孙修勤,战文斌,张进兴.牙鲆抗淋巴囊肿病毒免疫球蛋白的纯化.高科技通讯, 2000, 9: 14-18
    宋振荣编著.《水产动物病理学》.厦门:集美大学出版社,2000,(中册)39~4
    邵建忠,项黎新。草鱼血清中一种新的凝集素免疫因子。海洋与湖沼,2001,32(5): 519-526。
    师晓栋。玫瑰无须鲃卵黄蛋白原和卵黄脂磷蛋白的纯化、鉴定、免疫分析和功能研究。2004,中国海洋大学,博士学位论文。
    孙成表,刘景兰.雌激素对缺血性脑卒中的保护作用.齐鲁医学杂志,2002,17(2):181—182
    吴小霞,周则卫.雌激素的研究进展.医药导报2008 27(10):
    肖慧.李军。徐怀恕。等.鲈鱼苗烂鳃、烂尾病病原的研究.青岛海洋大学学报,1999(29): 89
    姚光弼.肝脏损伤的机制中华消化杂志,1998,l8,4
    叶海燕,黄原。卵黄蛋白原在系统进化中的应用。陕西农业科学。2005,(5):67-70
    张士璀,孙旭彤,李红岩.卵黄蛋白原研究进展.海洋科学,2002,26(7):32-35
    张永安,聂品.鳜血清免疫球蛋白的分离纯化极其亚单位分子量的测定.水生生物学报,1998, 22(2): 192-194
    钟明超,黄浙.鲇鱼淋巴样器官的发育。水产学报,1995,19(3):262~327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700