R_EFeAsO中的超导电性和R_ECoAsO的磁性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文旨在研究四元ZrCuSiAs-型化合物RETMAsO (RE=Sm, Gd, Ce; TM=Fe, Co)中的超导电性和磁性质,以更加深入、全面地理解该体系的电子行为与超导电性和磁性质的关联,并在此基础上探索新的超导及磁性材料。文中主要涉及REFeAsO体系中RE位、Fe位及O位的元素掺杂对材料晶体结构、微观形貌以及超导电性的影响。此外,详细研究了铁基超导材料相关体系RECoAsO (RE=Sm, Gd, Ce)化合物中丰富的磁性质以及Fe和F掺杂对SmCoAsO磁性质的影响。
     第一章对铁基超导体研究的背景和意义、发展现状以及本论文的主要研究目的和内容进行了综述。
     第二章重点介绍了本论文中所涉及的各种制备及表征手段。
     第三章着重研究了5d过渡金属元素Ir在SmFeAsO和GdFeAsO体系中掺杂导致的超导电性,两者的超导电性基本相似,但是两种材料对掺杂量的敏感程度明显不同。SmFe1-xIrxAsO体系对掺杂量较为敏感,但GdFe1-xIrxAsO体系超导范围比SmFe1-xIrxAsO宽。除此之外,GdFe1-xIrxAsO体系最高超导转变温度(Tc=18.9 K)高于SmFe1-xIrxAsO体系(Tc=17.3 K)。这一行为与在F掺杂REFeAsO体系中最高超导转变温度行为不同。这说明O位电子掺杂与Fe位电子掺杂导致超导电性的机制可能有所不同。
     论文第四章中利用纳米尺寸的REF3作为所制备样品中F的来源,开发出一种低温制备REFeAsO1-xFx超导材料的方法。利用常规固相反应法及低温方法分别制备了SmFeAsO1-xFx和GdFeAsO1-xFx两个铁基超导体系,并比较其性能的差异。随着掺F量的增加,体系的晶格参数逐渐减小,超导转变温度升高。当掺杂量达到一定程度时,系统掺杂趋于饱和,出现相边界。实验证实,低温方法制备的样品晶格常数的减小和超导转变温度的升高程度均大于常规制备方法同组分的样品,制备所得样品的纯度及最高超导转变温度也有相应的提高,说明新的低温制备方法比常规固相反应法更具高效性及实用性。
     第五章选用不同的金属材料作为包套材料,利用原位粉末套管法成功研制了SmFeAsO0.8F0.2超导线材,并研究了不同的包套材料对线芯的影响,及其所制得线材的性能。研究发现,Cu包套材料在高温下扩散进入线芯直接破坏其成相,所制备线材线芯材料不具有超导电性。而以Ta为包套材料的SmFeAsO0.8F0.2超导线材超导转变温度可达52.5 K,并且在30K以下温度范围内表现出较大的颗粒内临界电流密度。而且在Jc-H曲线中观察到了峰效应,说明铁基超导线材料具有较大的应用前景。
     第六章主要研究了SmFeAsO0.8F0.2和SmFeAsO中的掺杂效应。用离子半径较小的稀上元素Y部分取代SmFeAsO中的Sm,造成了晶格收缩和自旋密度波转变温度的降低,但未诱导出超导电性;由于负化学压力效应,Y掺杂对SmFeAsO0.8F0.2的超导转变具有抑制作用。由此可知,晶格收缩或化学压力只是影响超导电性,不会直接导致超导电性。Zn在SmFeAsO0.8F0.2中Fe位的掺杂导致其晶格发生了膨胀,Tc被强烈的抑制,并且随Zn掺入量的增加,体系由超导体转变为半导体。
     第七章主要研究了RECoAsO (RE=Sm, Gd, Ce)的磁性及输运性质。输运测量表明,三种化合物都属于金属导体,而且室温电阻较小。在不同温度和外加磁场下,SmCoAsO和GdCoAsO均表现出极为丰富的磁性质,包括巡游铁磁性、反铁磁性、混磁性,顺磁性及亚铁磁性等。另外,在反铁磁转变温度以下观察到了变磁性相变,此相变主要源自于倾斜(canting)的自旋结构。而CeCoAsO却表现为硬铁磁性,而且在低温下发生了连续的铁磁转变。
     第八章主要研究了Co位Fe掺杂和O位F掺杂对SmCoAsO磁性质和输运性质的影响。Fe掺杂体系中存在铁磁和反铁磁两相共存的现象,Fe的掺杂使体系的反铁磁性受到抑制,铁磁性加强。在SmCoAsO1-xFx体系中,F掺杂加强了两个Co子晶格间的相互作用,稳定了高温铁磁态,使Tc增加。通过以上研究表明SmCoAsO的磁性质主要源自于Co-As层或Co子晶格的相互作用。输运性质研究表明,SmCo1-xFexAsO和SmCoAsO1-xFx两体系表现为相似的特征,电阻率随温度的降低而减小,具有金属导体特征。另外,在SmCoi1-xFexAsO体系中可能存在变磁性量子临界终点。
In this dissertation, the superconductivity and magnetism of the quaternary -ZrCuSiAs type compounds RETMAsO (RE=Sm, Gd, Ce; TM=Fe, Co) have been investigated, in order to understand the correlations between the electronic behaviors and the superconductivity and magnetism more comprehensively. On the basis of these researches, exploration of the new superconductors has also been on progress. The main contents involved are presented as follows:effects of chemical doping at RE, Fe and O sites on the crystal structure, microstructure and the superconductivity of REFeAsO; the magnetism of RECoAsO (RE= Sm, Gd, Ce) compounds and the effect of Fe doping at Co site on the magnetic properties of SmCoAsO.
     In Chapter 1, the research background, importance, development of the iron-based superconductors, as well as the main purpose and content in this dissertation has been introduced.
     In Chapter 2, related preparation and measurement method of the samples has been clarified in detail.
     In Chapter 3,5d-transition metal Ir doping-induced superconductivity in the SmFeAsO and GdFeAsO systems has been investigated. The changes of the electrical properties for these two systems proved to be consistent with each other. However, the superconductivity depending on the Ir doping content shows different behavior in SmFeAsO and GdFeAsO system. SmFe1-xIrxAsO system is more sensitive to the Ir doping level whereas the GdFe1-xIrxAsO system shows superconductivity in a wider range of doping concentration. The highest superconducting transition in GdFe1-xIrxAsO system reaches 18.9 K which is higher than 17.3 K for SmFe1-xIrxAsO system. This highest Tc behavior is opposite to that in the F-doped REFeAsO systems, indicating a different superconducting mechanism between the doping at Fe site and O site. More investigation is needed to clarify the differences.
     A new low-temperature preparation process, in which the nano-scaled REF3 has been used as the starting materials, has been developed for REFeAsO1-xFx superconductors in Chapter 4.A series of SmFeAsO1-xFx and GdFeAsO1-xFx samples have been synthesized using both of the traditional solid state method and the present low temperature method. With increasing F content, the lattice constants shrunk and the superconducting transition temperature increased in both systems. A gradually saturation of the lattice constant and transition temperature are observed, leading to the appearance of the phase booundary. It is evident that the samples, prepared using low-temperature method, possess relatively larger shrinkage of the lattice constants and increase of Tc, higher top Tc and phase purities than the ones with the same doping level prepared by the traditional solid state method, suggesting that the low-temperature preparing process is more effective and practical in synthesizing the F-doped REFeAsO superconductors.
     In Chapter 5, Different sheathed (Cu/Nb and Ta) SmFeAsO0.8F0.2 wires have been fabricated by an in situ powder-in-tube method. The main investigations have been focused on the properties of the wires with different sheaths. Cu was observed diffusing into the cores under high temperature, leading to a fuzzy boundary between the sheath and the core. This diffusion destroyed the superconducting phase of SmFeAsO0.8F0.2-However, superconductivity at Tc=52.5 K. has been detected in the Ta-sheathed SmFeAsO0.8F0.2core. High intragrain Jc up to 2×106 A cm-2, a severe weak-link effect and a peak effect with a strongly temperature-dependent peak field Hpear has been observed in the Jc-H curves over the range 10-40 K, indicating that the iron-based superconductors might become another kind of competitive material for application.
     Effects of chemical doping on the superconductivity of SmFeAsO0.8F0.2 and SmFeAsO have been discussed in Chapter 6. Y doping at Sm site in SmFeAsO induced the shrinkage of the lattice parameters and the decrease of the TSDW without superconducting transition. The superconductivity of Sm1-xYxFeAsO0.8F0.2 is suppressed by Y doping for the negative pressure effect. It is concluded that the shrinkage of the lattice parameters and chemical pressure effect would just affect superconductivity but not induce superconductivity. The lattice parameters of SmFeAsO0.8F0.2 have been stretched by Zn doping at Fe site whereas the Tc has been sharply suppressed. With increasing Zn doping contents, the SmFe1-xZnxAsO0.8F0.2 compounds changes from superconductor to semiconductor.
     In Chapter 7, the magnetic and transport properties of RECoAsO (RE=Sm, Gd,Ce) have been investigated. All of the compounds present to be metallic behavior with low resistivity at room temperature. Under various temperatures and magnetic fields, multiple magnetic properties including ferromagnetism, antiferromagnetism, paramagnetism and ferrimagnetism etc., have been observed. Furthermore, metamagnetic transition caused by the spin canting has also been detected below the antiferromagnetic transition temperature in SmCoAsO and GdCoAsO. However, CeCoAsO shows different magnetism. It presents to be hard ferromagnetism with successive ferromagnetic transition under low temperature.
     In Chapter 8, effects of Fe doping on the magnetic and transport properties of SmCoAsO have been investigated. The ferromagnetism and antiferromagnetism coexists in the SmCo1-xFexAsO system. With Co partially replaced by Fe, the antiferromagnetism was suppressed whereas the ferromagnetism was enhanced. The F doping in SmCoAsO enhanced the interactions between two Co sublattices, stabilized ferromagnetic state under high temperature, inducing the increase of Tc. The investigations above revealed that the magnetism in SmCoAsO is originated from the interactions between the Co-As layers or Co the sublattices. The transport properties indicated that both of the SmCo1-xFexAsO and SmCoAsO1-xFx systems possess metalic characteristics.
引文
[1]. H. K. Onnes, Further experiments with Liquid Helium G. On the electrical resistance of Pure Metals, etc. VI. On the Sudden Change in the Rate at which the Resistance of Mercury Disappears, Comm. Phys. Lab. Univ. Leiden,1911,124c
    [2]. W. Meissner and R. Ochsenfeld, Ein neuer Effekt bei Eintritt der Supraleitfahigkeit, Naturwiss., 1933,21(44):787-788
    [3]. J. D. Patterson and B. C. Bailey, Solid-State Physics, Springer-Verlag Berlin Heidelberg,2007: 459-507
    [4]. H. K. Onnes, Comm. Phys. Lab. Univ. Leiden,1914,140b,140c
    [5]. Christian Enss and Siegfried Hunklinger, Low-Temperature Physics, Springer-Verlag Berlin Heidelberg,2005:343-448
    [6]. K. H. Bennemann and J. B. Ketterson, Superconductivity, Springer-Verlag Berlin Heidelberg,2008: 1-24
    [7]. Teruo Matsushita, Flux Pinning in Superconductors, Springer-Verlag Berlin Heidelberg,2007:1-40
    [8].张其瑞,高温超导电性,浙江大学出版社,1992:3-56
    [9]. A.V. Narlikar, Frontiers in Superconducting Materials, Springer-Verlag Berlin Heidelberg,2005: 1-69
    [10]. Ivan A. Parinov, Microstructure and Properties of High-Temperature Superconductors, Springer-Verlag Berlin Heidelberg,2007:1-52
    [11]. P. Komarek, Advances in large scale applications of superconductors, Supercond. Sci. Technol., 2000,13(5):456-459
    [12]. Jen(?) S(?)lyom, Fundamentals of the Physics of Solids, Attila Pir(?)th, Springer-Verlag Berlin Heidelberg,2009:449-515
    [13]. J.G. Bednorz and K.A. Muller, Possible high Tc superconductivity in the Ba-La-Cu-O system, Z. Phys. B,1986,64(2):189-193
    [14]. J.G. Bednorz, et al., Susceptibility Measurements Support High-Tc Superconductivity in the Ba-La-Cu-0 System, Europhys. Lett.,1987,3 (3):379-385
    [15]. S. Uchida, et al., High Tc superconductivity of La-Ba-Cu oxides, Jpn. J. Appl. Phys.,1987,26(1): L1-2
    [16]. C. W. Chu, et al. Evidence for superconductivity above 40K in the La-Ba-Cu-O compound system, Phys. Rev. Lett.,1987,58(4):405-407
    [17]. M. K. Wu, et al., Superconductivity at 93K in a new mixed phase Y-Ba-Cu-O compound at ambient pressure, Phys. Rev. Lett.,1987,58(9):908-910
    [18].赵忠贤,etal.,Ba-Y-Cu氧化物液氮温区的超导电性,科学通报,1987,32(6):412-414
    [19]. C. Michel, et al. Superconductivity in the Bi-Sr-Cu-O System, Z. Phys. B,1987,68(4):421-423
    [20]. H. Maeda, et al., A New High-Tc Oxide Superconductor without a Rare Earth Element, Jpn. J. Appl. Phys.,1988,27(2):L209-L210
    [21]. S. M. Green, et al. Zero resistance at 107K in the (Bi, Pb)-Ca-Sr-Cu oxide system, Phys. Rev. B, 1988,38(7):5016-5019
    [22]. Z. Z. Sheng and A. M. Hermann, Bulk superconductivity at 120K in the Tl-Ca/Ba-Cu-O system, Nature,1988,332(6160):138-139
    [23]. A. Schilling, et al., Superconductivity above 130 K in the Hg-Ba-Ca-Cu-O system, Nature,1993, 363(6424):56-58
    [24]. C. W. Chu, et al., Superconductivity above 150 K in HgBa2Ca2Cu3O8+δat high pressures Nature, 1993,365(6444):323-325
    [25]. L. Gao, et al., Superconductivity up to 164K in HgBa2Cam-1CumO2m-2-δ(m=1,2, and 3) under quasihydrostatic pressures, Phys. Rev. B,1994,50(6):4260-4263
    [26]. M. Monteverde, et al., Fluorinated Hg-1223 under pressure:the ultimate Tc of the cuprates? Physica C,2004,408-410:23-24
    [27]. H. Hosono, Two classes of superconductors discovered in our material research:Iron-based high temperature superconductor and electride superconductor, Physica C,2009,469(9-12):314-325
    [28]. H. Yanagi, et al., Antiferromagnetic bipolar semiconductor LaMnPO with ZrCuSiAs-type structure, J. Appl. Phys.,2009,105(9):093916
    [29]. K. Kayanuma, et al., Epitaxial film growth and optoelectrical properties of layered semiconductors, LaMnXO (X=P,As, and Sb), J. Appl. Phys.,2009,105(7):073903
    [30]. Y. Kamihara, et al., Iron-Based Layered Superconductor:LaOFeP, J.Am. Chem. Soc.,2006, 128(31):10012-10013
    [31]. Y. Kamihara, et al., Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc= 26 K, J. Am. Chem. Soc.,2008,130(11):3296-3297
    [32]. H.Yanagi, et al., Itinerant ferromagnetism in the layered crystals LaCoOX(X=P,As), Phys. Rev. B, 2008,77(22):224431
    [33]. T. Watanabe, et al., Nickel-Based Oxyphosphide Superconductor with a Layered Crystal Structure, LaNiOP, Inorg. Chem.,2007,46(19):7719-7721
    [34]. T. Watanabe, et al., Nickel-based layered superconductor, LaNiOAs, J. Solid State Chem.,2008, 181(8):2117-2120
    [35]. K. Kayanuma, et al., Apparent bipolarity and Seebeck sign inversion in a layered semiconductor: LaZnOP, Phys. Rev. B,2007,76(19):195325
    [36]. K. Kayanuma, et al., Heteroepitaxial growth of layered semiconductors, LaZnOPn (Pn=P and As), Thin Solid Films,2008,516(17):5800-5804
    [37]. Y. Kamihara, et al., Electromagnetic properties and electronic structure of the iron-based layered superconductor LaFePO, Phys. Rev. B,2008,77(21):214515
    [38]. H. Hosono, Layered Iron Pnictide Superconductors:discovery and current status, J. Phys. Soc. Jpn., 2008,77(Suppl. C):1-8
    [39]. Y. Kohama, et al. Ferromagnetic spin fluctuation in LaFeAsO1-xFx, Phys. Rev. B,2008,78(2): 020512
    [40]. J. Dong, et al., Competing Orders and Spin-Density-Wave Instability in La(O1-xFx)FeAs, Europhys. Lett.,2008,83(2):27006
    [41]. Y. Nakai, et al., Evolution from Itinerant Antiferromagnet to Unconventional Superconductor with Fluorine Doping in LaFeAs(O1-xFx) Revealed by 75 As and La Nuclear Magnetic Resonance, J. Phys. Soc. Jpn.,2008,77(7):073701
    [42]. M. A. McGuire, et al., Phase transitions in LaFeAsO:Structural, magnetic, elastic, and transport properties, heat capacity and Mossbauer spectra, Phys. Rev. B,2008,78(9):094517
    [43]. C. de la Cruz, et al., Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems, Nature,2008,453(7197):899-902
    [44]. T. Nomura, et al., Crystallographic phase transition and high-Tc superconductivity in LaFeAsO:F, Supercond. Sci. Technol.,2008,21(12):125028
    [45]. H. Takahashi, et al., Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs, 2008, Nature,453(7193):376-378
    [46]. G. F. Chen, et al., Superconducting Properties of the Fe-Based Layered Superconductor LaFeAsO0.9F0.1-δ, Phys. Rev. Lett.,2008,101(5):057007
    [47]. X. Y. Zhu, et al., Upper critical field, Hall effect and magnetoresistance in the iron-based layered superconductor LaO0.9F0.1-δFeAs. Supercond. Sci. Tech.,2008,21(10):105001
    [48]. A. S. Sefat, et al., Electronic correlations in the superconductor LaFeAsO0.89F0.11 with low carrier density, Phys. Rev. B,2008,77(17):174503
    [49]. H. H. Wen, et al., Superconductivity at 25 K in hole-doped (La1-xSrx)OFeAs. Europhys. Lett.,2008, 82(17):17009
    [50]. X. H. Chen, et al., Superconductivity at 43 K in SmFeAsO1-xFx, Nature,2008,453(7196):761-762
    [51]. G. F. Chen, et al., Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO1-xFxFeAs. Phys. Rev. Lett.,2008,100(24):247002
    [52]. Z. A. Ren, et al., Superconductivity in the Iron-Based F-Doped Layered Quaternary Compound Nd[O1-xFx]FeAs, Europhys. Lett.,2008,82(5):57002
    [53]. Z. A. Ren, et al., Superconductivity at 52 K in iron-based F-doped layered quaternary compound Pr[O1-xFx]FeAs, Mat. Res. Innov.,2008,12(3):105-106
    [54]. Z. A. Ren, et al., Superconductivity at 55 K in iron-based F-doped layered quaternary compound Sm[O1-xFx]FeAs, Chin. Phys. Lett.,2008,25(6):2215-2216
    [55]. Z. A. Ren, et al., Superconductivity and phase diagram in iron-based arsenic-oxides ReFeAsO1-δ (Re=rare-earth metal) without fluorine doping, Europhys. Lett.,2008,83(1):17002
    [56]. J. Yang, et al., High-Tc superconductivity in some heavy rare-earth iron-arsenide REFeAsO1-δ(RE = Ho, Y, Dy and Tb) compounds,2008, arXiv:0809.3582
    [57]. C. Wang, et al., Thorium-doping-induced superconductivity up to 56 K in Gd1-xThxFeAsO, Europhys. Lett.,2008,83(6):67006
    [58]. L. J. Li, et al., Superconductivity above 50 K in Tb1-xThxFeAsO, Phys. Rev. B,2008,78(13): 132506
    [59]. J-W. G. Bos, et al., High pressure synthesis of late rare earth RFeAs(O,F) superconductors (R=Tb and Dy), Chem. Commun.,2008, (31):3634-3635
    [60]. Z. Wei, et al., Superconductivity at 57.3 K in La-Doped Iron-Based Layered Compound Sm0.95La0.05O0.85F0.15FeAs, J Supercond. Nov. Magn.,2008,21(4):213-215
    [61].马廷灿等,铁基超导材料的制备研究进展,科学通报,2009,54(5):557-568
    [62]. V. Johnson and W. Jeitschko, ZrCuSiAs:A "filled" PbFCl type, J. Solid State Chem.,1974,11(2): 161-166
    [63]. B.I. Zimmer, et al., The rare earth transition metal phosphide oxides LnFePO, LnRuPO and LnCoPO with ZrCuSiAs type structure, J. Alloys Comp.,1995,229(2):238-242
    [64]. P. Quebe, et al., Quaternary rare earth transition metal arsenide oxides R7AsO(T=Fe, Ru, Co) with ZrCuSiAs type structure, J. Alloys Comp.,2000,302(1-2):70-74
    [65]. M. Rotter, et al., Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2, Phys. Rev. B,2008,78(2):020503
    [66]. Z. Li, et al, Strong-coupling superconductivity in the nickel-based oxypnictide LaNiAsO1-xFx, Phys. Rev. B,2008,78(6):060504
    [67], H. Okada, et al., Superconductivity under High Pressure in LaFeAsO, J. Phys. Soc. Jpn.,2008, 77(11):113712
    [68]. A. S. Sefat, et al., Superconductivity in LaFe1-xCoxAsO, Phys. Rev. B,2008,78(10):104505
    [69]. Y. L. Chen, et al., Ir Doping-Induced Superconductivity in the SmFeAsO System, J.Am. Chem. Soc.,2009,131(30):10338-10339
    [70]. C. Wang, et al., Superconductivity in LaFeAs1-xPxO:Effect of chemical pressures and bond covalency, Europhys. Lett.,2009,86(4):47002
    [71]. S. Matsuishi, et al., Superconductivity Induced by Co-Doping in Quaternary Fluoroarsenide CaFeAsF, J. Am. Chem. Soc.,2008,130(44):14428-14429
    [72]. S. Matsuishi, et al., Effect of 3d transition metal doping on the superconductivity in quaternary fluoroarsenide CaFeAsF, New. J. Phys.,2009,11(2):025012
    [73]. P. Cheng, et al., High-Tc superconductivity induced by doping rare earth elements into CaFeAsF, Europhys. Lett.,2009,85(6):67003
    [74]. S. Matsuishi, et al., Cobalt-substitution-induced superconductivity in a new compound with ZrCuSiAs-type structure, SrFeAsF, J. Phys. Soc. Jpn.,2008,77(11):113709
    [75]. M. Tegel, et al., Synthesis, crystal structure and spin-density-wave anomaly of the iron arsenide-fluoride SrFeAsF, Europhys. Lett.,2008,84(6):67007
    [76]. F. Han, et al., SrFeAsF as a parent compound for iron pnictide superconductors, Phys. Rev. B, 2008,78(18):180503
    [77]. X. Y. Zhu, et al., Superconductivity in fluoride-arsenide Sr1-xLaxFeAsF compounds, Europhys. Lett.,2009,85(17):17011
    [78]. G. Wu, et al., Superconductivity at 56 K in Samarium-doped SrFeAsF, J. Phys.:Condens. Matter, 2009,21(14):142203
    [79]. M. Azuma, et al., Superconductivity at 110 K. in the infinite-layer compound (Sr1-xCax)1-vCuO2 Nature,1992,356(6372):775-776
    [80]. M. Francois, et al., De nouvelles series de germaniures, isotypes de U4Re7Si6, ThCr2Si2 et CaBe2Ge2, dans les systemes ternaires R-T-Ge ouR est un element des terres rares et T=Ru, Os, Rh, Ir:supraconductivite de LaIr2Ge2, J. Less-Common Met.,1985,113(2):231-237
    [81]. W. Jeitschko, et al., Superconducting LaRu2P2 and other alkaline earth and rare earth metal ruthenium and osmium phosphides and arsenides with ThCr2Si2 structure, J. Solid State Chem., 1987,69(1):93-100
    [82]. M. Hirjak, et al., Influence of composition on the structural and superconducting properties of the two polymorphic forms of iridium-or silicon-substituted YIr2Si2, J. Less-Common Met.,1985, 105(1):139-148
    [83]. T. Mine, et al., Nickel-based phosphide superconductor with infinite-layer structure, BaNi2P2, Solid State Commun.,2008,147(3):111-113
    [84]. M. Rotter, et al., Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2, Phys. Rev. Lett., 2008,101(10):107006
    [85]. G. F. Chen, et al., Superconductivity in hole-doped (Sr1-xKx)Fe2As2, Chin. Phys. Lett.,2008,25(9): 3403-3405
    [86]. K. Sasmal, et al., Superconducting Fe-based compounds (A1-xSrx)Fe2As2 with A=K and Cs with transition temperatures up to 37 K, Phys. Rev. Lett.,2008,101(10):107007
    [87]. Z. Ren, et al., Antiferromagnetic transition in EuFe2As2:A possible parent compound for superconductors, Phys. Rev. B,2008,78(5):052501
    [88]. H. S. Jeevan, et al., Electrical resistivity and specific heat of single-crystalline EuFe2As2:A magnetic homologue of SrFe2As2, Phys. Rev. B,2008,78(5):052502
    [89]. G. Wu, et al, Different resistivity response to spin-density wave and superconductivity at 20 K in Ca1-xNaxFe2As2, J Phys.:Cond. Matter,2008,20(42):422201
    [90]. F. Ronning, et al, Superconductivity and the effects of pressure and structure in single-crystalline SrNi2P2, Phys. Rev. B,2009,79(13):134507
    [91]. N. Berry, et al, Superconductivity without Fe or Ni in the phosphides BaIr2P2 and BaRh2P2, Phys. Rev. B,2009,79(18):180502
    [92]. M. S. Torikachvili, et al., Pressure induced superconductivity in CaFe2As2, Phys. Rev. Lett.,2008, 101(5):057006
    [93]. T. Park, et al., Pressure-induced superconductivity in CaFe2As2, J Phys.:Cond. Matter,2008, 20(32):322204
    [94]. P. L. Alireza, et al., Superconductivity up to 29 K in SrFe2As2 and BaFe2As2 at high pressures, J Phys.:Cond. Matter,2009,21(1):012208
    [95]. A. Leithe-Jasper, et al., Superconducting State in SrFe2-xCoxAs2 by Internal Doping of the Iron Arsenide Layers, Phys. Rev. Lett.,2008,101(20):207004
    [96]. L. J. Li, et al., Superconductivity induced by Ni doping in BaFe2As2 single crystals, New J. Phys., 2009,11(2):025008
    [97]. Z. Ren, et al., Superconductivity Induced by Phosphorus Doping and Its Coexistence with Ferromagnetism in EuFe2(As0.7Po.3)2, Phys. Rev. Lett.,2009,102(13); 137002
    [98]. F. Han, et al., Superconductivity and phase diagrams of the 4d-and 5d-metal-doped iron arsenides SrFe2-xMxAs2 (M=Rh, Ir, Pd), Phys. Rev. B,2009,80(2):024506
    [99]. S. R. Saha, et al., Superconductivity at 23 K in Pt doped BaFe2As2 single crystals, J. Phys.: Condens. Matter,2010,22(7):072204
    [100]. N. Ni, et al., Anisotropic thermodynamic and transport properties of single crystalline (Ba1-xKx)Fe2As2 (x=0 and 0.45), Phys. Rev. B,2008,78(1):014507
    [101]. X. F. Wang, et al., Anisotropy in the Electrical Resistivity and Susceptibility of Superconducting BaFe2As2 Single Crystals, Phys. Rev. Lett.,2009,102(11):117005
    [102]. G. F. Chen, et al., Transport and anisotropy in single-crystalline SrFe2As2 and A0.6K0.4Fe2As2 (A= Sr, Ba) superconductors, Phys Rev B,2008,78(22):224512
    [103]. J. K. Dong, et al., Thermal conductivity of overdoped BaFe1.73Co0.27As2 single crystal:Evidence for nodeless multiple superconducting gaps and interband interactions, Phys. Rev. B,2010,81(9): 094520
    [104]. M. A. Tanatar, et al., Doping Dependence of Heat Transport in the Iron-Arsenide Superconductor Ba(Fe1-xCox)2As2:From Isotropic to a Strongly k-Dependent Gap Structure, Phys. Rev. Lett.,2010, 104(6):067002
    [105]. X. C. Wang, et al., The superconductivity at 18 K in LiFeAs system, Solid State Commun.,2008, 148(11-12):538-540
    [106]. M. J. Pitcher, et al., Structure and superconductivity of LiFeAs, Chem. Commun.,2008, (45): 5918-5920
    [107]. J. H. Tapp, et al., LiFeAs:An intrinsic FeAs-based superconductor with Tc=18 K, Phys. Rev. B, 2008,78(6):060505
    [108]. D. R. Parker, et al., Structure, antiferromagnetism and superconductivity of the layered iron arsenide NaFeAs, Chem. Commun.,2009, (16):2189-2191
    [109]. G. F. Chen, et al., Multiple Phase Transitions in Single-Crystalline Na1-δFeAs, Phys. Rev. Lett., 2009,102(22):227004
    [110]. S. J. Zhang, et al., Effect of pressure on the iron arsenide superconductor LixFeAs (x=0.8,1.0,1.1), Phys. Rev. B.,2009,80(1):014506
    [111]. M. Gooch, et al., Pressure shift of the superconducting Tc of LiFeAs, Europhys. Lett.,2009,85(2): 27005
    [112]. M. Mito, et al., Response of superconductivity and crystal structure of LiFeAs to hydrostatic pressure, J. Am. Chem. Soc.,2009,131(8),2986-2992
    [113]. S. J. Zhang, et al., Superconductivity at 31 K in "111"-type iron arsenide superconductor Na1-xFeAs induced by pressure, Europhys. Lett.,2009,88(4):47008
    [114]D. R. Parker, et al., Control of the Competition between a Magnetic Phase and a Superconducting Phase in Cobalt-Doped and Nickel-Doped NaFeAs Using Electron Count, Phys. Rev. Lett.,2010, 104(5):057007
    [115]. F. C. Hsu, et al., Superconductivity in the PbO-type structure α-FeSe, Proc. Natl. Acad. Sci. USA, 2008,105(38):14262-14264
    [116]. T. M. McQueen, et al., Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe, Phys. Rev. B,2009,79(1):014522
    [117]. Y. Mizuguchi, et al., Superconductivity at 27 K in tetragonal FeSe under high pressure, Appl. Phys. Lett,2008,93(15):152505
    [118]. S. Margadonna, et al., Pressure evolution of the low-temperature crystal structure and bonding of the superconductor FeSe (Tc=37 K), Phys. Rev. B,2009,80(6):064506
    [119]. M. H. Fang, et al., Superconductivity close to magnetic instability in Fe(Se1-xTex)0.82, Phys. Rev. B, 2008,78(22):224503
    [120]. K. W. Yeh, et al., Tellurium substitution effect on superconductivity of the a-phase iron selenide, Europhys. Lett.,2008,84(3):37002
    [121]. Y. Mizuguchi, et al., Superconductivity in S-substituted FeTe, Appl. Phys. Lett.,2009,94(1): 012503
    [122]. Y. Mizuguchi, et al., Substitution effects on FeSe superconductor, J. Phys. Soc. Jpn.,2009,78(7): 074712
    [123]. W. Bao, et al, Tunable (δπ, δπ)-Type Antiferromagnetic Order in a-Fe(Te,Se) Superconductors, Phys. Rev. Lett.,2009,102(24):247001
    [124]. H. Ogino, et al., Superconductivity at 17 K in (Fe2P2)(Sr4Sc2O6):a new superconducting layered pnictide oxide with a thick perovskite oxide layer, Supercond. Sci. Technol.,2009,22(7):075008
    [125]. H. Ogino, et al., New iron-based arsenide oxides (Fe2As2)(Sr4M2O6)(M= Sc, Cr), Supercond. Sci. Technol.,2009,22(8):085001
    [126]. M. Tegel, et al., The Layered Iron Arsenide Oxides Sr2CrO3FeAs and Ba2ScO3FeAs, Z. Anorg. Allg. Chem.,2009,635(13-14):2242-2248
    [127]. Y. L. Xie, et al., Structure and physical properties of the new layered oxypnictides Sr4Sc2O6M2As2 (M=Fe and Co), Europhys. Lett.,2009,86(5):57007
    [128]. G. F. Chen, et al., Possible high temperature superconductivity in a Ti-doped A-Sc-Fe-As-O(A= Ca, Sr) system, Supercond. Sci. Technol.2009,22(7):072001
    [129]. X. Y. Zhu, et al., Superconductivity in Ti-doped iron-arsenide compound Sr4Cr0.8Ti1.2O6Fe2As2, Sci. China Ser. G,2009,52(12):1876-1878
    [130]. X. Y. Zhu, et al., Transition of stoichiometric Sr2VO3FeAs to a superconducting state at 37.2 K, Phys. Rev. B,2009,79(22):220512
    [131]. S. Sato, et al., Superconductivity in a new iron pnictide oxide (Fe2As2)(Sr4(Mg, Ti)2O6), Supercond. Sci. Technol.,2010,23(4):045001
    [132]. H. Kotegawa, et al., Contrasting Pressure Effects in Sr2VFeAsO3 and Sr2ScFePO3, J. Phys. Soc. Jpn.,2009,78(12):123707
    [133]. T. Klimczuk, et al., Superconductivity at 2.2 K in the layered oxypnictide La3Ni4P4O2, Phys. Rev. B,2009,79(1):012505
    [134]. F. Ronning, et al., Ni2X2 (X=pnictide, chalcogenide, or B) based superconductors, Physica C, 2009,469(9-12):396-403
    [135]. K. Ishida, et al., To What Extent Iron-Pnictide New Superconductors Have Been Clarified:A Progress Report, J. Phys. Soc. Jpn.,2009,78(6):062001
    [136]. Z. A. Ren and Z. X. Zhao, Research and Prospects of Iron-Based Superconductors, Adv. Mater., 2009,21(45):4584-4592
    [137]. D. J. Singh and M.-H. Du, Density Functional Study of LaFeAsO1-xFx:A Low Carrier Density Superconductor Near Itinerant Magnetism, Phys. Rev. Lett.,2008,100(23):237003
    [138]. I. I. Mazin, et al., Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1-xFx, Phys. Rev. Lett.,2008,101(5):057003
    [139]. T. Yildirim, Origin of the 150-K Anomaly in LaFeAsO:Competing Antiferromagnetic Interactions, Frustration, and a Structural Phase Transition, Phys. Rev. Lett.,2008,101(5):057010
    [140]. Q. Si and E. Abrahams, Strong correlations and magnetic frustration in the high Tc iron pnictides, Phys. Rev. Lett.,2008,101(7):076401
    [141]. S. Kitao, et al., Spin Ordering in LaFeAsO and Its Suppression in Superconductor LaFeAsO0.89F0.11 Probed by Mossbauer Spectroscopy, J. Phys. Soc. Jpn.,2008,77(10) 103706
    [142]. H.-H. Klauss, et al., Commensurate Spin DensityWave in LaFeAsO:A Local Probe Study, Phys. Rev. Lett.,2008,101(7):077005
    [143]. A. Kondrat, et al., Synthesis and physical properties of LaO1-xFxFeAs, Eur. Phys. J. B,2009,70(4): 461-468
    [144]. R. H. Liu, et al., Anomalous Transport Properties and Phase Diagram of the FeAs-Based SmFeAsO1-xFx Superconductors, Phys. Rev. Lett.,2008,101(8):087001
    [145]. F. Hunte, et al., Two-band superconductivity in LaFeAsO0.89F0.11 at very high magnetic fields, nature,2008,453(7197):903-905
    [146]. C. Senatore, et al., Upper critical fields well above 100 T for the superconductor SmFeAsO0.85F0.15 with Tc=46 K, Phys. Rev. B,2008,78(5):054514
    [147]. H. Luetkens, et al., The electronic phase diagram of the LaO1-xFxFeAs superconductor, Nature Mater.,2009,8(4):305-309
    [148]. J. Zhao, et al., Structural and magnetic phase diagram of CeFeAsO1-xFx and its relation to high-temperature superconductivity, Nature Mater.,2008,7(12):953-959
    [149]. A. J. Drew, et al., Coexistence of static magnetism and superconductivity in SmFeAsO1-xFx as revealed by muon spin rotation, Nature Mater.,2009,8(4):310-314
    [150]. R. Klingeler, et al., Local antiferromagnetic correlations in the iron pnictide superconductors LaFeAsO1-xFx and Ca(Fe1-xCox)2As2 as seen via normal-state susceptibility, Phys. Rev. B,2010, 81(2):024506
    [151]. K. Ahilan, et al.,19F NMR investigation of the iron pnictide superconductor LaFeAsO0.89F0.11, Phys. Rev. B,2008,78(10):100501
    [152]. H.-J. Grafe, et al.,75 As NMR Studies of Superconducting LaFeAsO0.9F0.1, Phys. Rev. Lett.,2008, 101(4):047003
    [153]. Y. Nakai, et al, Systematic 75 As NMR study of the dependence of low-lying excitations on F doping in the iron oxypnictide LaFeAsO1-xFx, Phys. Rev. B,2009,79(21):212506
    [154]. M. Takigawa, et al., Cu and O NMR studies of the magnetic properties of YBa2Cu3O6.63 (Tc=62 K), Phys. Rev. B,1991,43(1):247-257
    [155]. N. Terasaki, et al., Spin Fluctuations and Unconventional Superconductivity in the Fe-Based Oxypnictide Superconductor LaFeAsO0.7 Probed by 57Fe-NMR, J. Phys. Soc. Jpn.,2009,78(1): 013701
    [156]. T. Mertelj, et al., Distinct Pseudogap and Quasiparticle Relaxation Dynamics in the Superconducting State of Nearly Optimally Doped SmFeAsO0.8F0.2 Single Crystals, Phys. Rev. Lett.,2009,102(11):117002
    [157]. W. E. Pickett, et al., Fermi Surfaces, Fermi Liquids, and High-Temperature Superconductors, Science,1992,255(5040):46-54
    [158]. S. Lebegue, Electronic structure and properties of the Fermi surface of the superconductor LaOFeP, Phys. Rev. B,2007,75(3):035110
    [159]. K. Nakamura, et al., Ab initio derivation of low-energy model for iron-based superconductors LaFeAsO and LaFePO, J. Phys. Soc. Jpn.,2008,77(9):093711
    [160]. F. Ma and Z. Y. Lu, Iron-based layered compound LaFeAsO is an antiferromagnetic semimetal, Phys. Rev. B,2008,78(3):033111
    [161]. L. Boeri, et al., Is LaFeAsO1-xFx an Electron-Phonon Superconductor? Phys. Rev. Lett.,2008, 101(2):026403
    [162]. R.H. Liu, et al., A large iron isotope effect in SmFeAsO1-xFx and Bai1-xKxFe2As2, Nature,2009, 459(7243):64-67
    [163]. Y. W. Ma, et al., Simple One-Step Synthesis and Superconducting Properties of SmFeAsO1-xFx Chin. Phys. Lett.,2009,26(3):037401
    [164]. Y. P. Qi, et al., Superconductivity in Co-doped SmFeAsO, Supercond. Sci. Tech.,2008,21(11): 115016
    [165]. Y. L. Chen, et al., Low temperature preparation and superconductivity of F-doped SmFeAsO,2009, ISS2009, Physica C,2010
    [166]. A. H. Fang, et al., Low-Temperature Rapid Synthesis and Superconductivity of Fe-Based Oxypnictide Superconductors, J. Am. Chem. Soc.,2010,132(10):3260-3261
    [167]. N. D. Zhigadlo, et al., Single crystals of superconducting SmFeAsO1-xFx grown at high pressure, J. Phys.:Condens. Matter,2008,20(34):342202
    [168]. Y. Jia, et al., Critical fields and anisotropy of NdFeAsO0.82F0.18 single crystals, Appl. Phys. Lett., 2008,93(3):032503
    [169]. K. Hashimoto, et al., Microwave Penetration Depth and Quasiparticle Conductivity of PrFeAsO1-y Single Crystals:Evidence for a Full-Gap Superconductor, Phys. Rev. Lett.,2009,102(1):017002
    [170]. H-S Lee, et al., High-pressure growth of fluorine-free SmFeAsO1-x superconducting single crystals, Supercond. Sci. Technol.,2009,22(7):075023
    [171]. R. Prozorov, et al., Intrinsic magnetic properties of the superconductor NdFeAsO0.9F0.1 from local and global measurements, New J. Phys.,2009,11(3):035004
    [172]. C. Martin, et al., Nonexponential London Penetration Depth of FeAs-Based Superconducting RFeAsO0.9F0.1 (R=La, Nd) Single Crystals, Phys. Rev. Lett.,2009,102(24):247002
    [173]. A Jesche, et al., Rare earth magnetism in CeFeAsO:a single crystal study, New J. Phys.,2009, 11(10):103050
    [174]. C. Krellner, and C. Geibel, Single crystal growth and anisotropy of CeRuPO, J. Crys. Growth,2008, 310(7-9):1875-1880
    [175]. J.-Q. Yan, et al., Flux growth at ambient pressure of millimeter-sized single crystals of LaFeAsO, LaFeAsO1-xFx and LaFe1-xCoxAsO, Appl. Phys. Lett.,2009,95(22):222504
    [176]. H. Hiramatsu, et al., Heteroepitaxial growth and optoelectronic properties of layered iron oxyarsenide, LaFeAsO, Appl. Phys. Lett.,2008,93(16):162504
    [177]. E. Backen, et al., Growth and anisotropy of La(O, F)FeAs thin films deposited by pulsed laser deposition, Supercond. Sci. Technol.,2008,21(12):122001
    [178]. M. Kidszun, et al., Epitaxial LaFeAsO1-xFx thin films grown by pulsed laser deposition, Supercond. Sci. Technol.,2010,23(2):022002
    [179]. S. Haindl, et al., High Upper Critical Fields and Evidence of Weak-Link Behavior in Superconducting LaFeAsO1-xFx Thin Films, Phys. Rev. Lett.,2010,104(7):077001
    [180]. T. Kawaguchi, et al., Epitaxial Growth of NdFeAsO Thin Films by Molecular Beam Epitaxy, Appl. Phys. Express,2009,2(9):093002
    [181]. Y. L. Chen, et al., Peak effect and superconducting properties of SmFeAsO0.8F0.2 wires, Supercond. Sci. Technol.,2008,21(11):115014
    [182]. Z. S. Gao, et al., Preparation of LaFeAsO0.9F0.1 wires by the powder-in-tube method, Supercond. Sci. Technol.,2008,21(10):105024
    [183]. Z. S. Gao, et al., Superconducting properties of granular SmFeAsO1-xFx wires with Tc=52 K prepared by the powder-in-tube method, Supercond. Sci. Technol.,2008,21(11):112001
    [184]. Y. P. Qi, et al., Superconductivity of powder-in-tube Sr0.6K0.4Fe2As2 wires, Physica C,2009, 469(9-12):717-720
    [185]. Y. P. Qi, et al., Transport critical currents in the iron pnictide superconducting wires prepared by the ex situ PIT method, Supercond. Sci. Technol.,2010,23(5):055009
    [186]. A. Umezawa, et al., Enhanced critical magnetization currents due to fast neutron irradiation in single-crystal Yba2Cu307-δ, Phys. Rev. B,1987,36(13):7151
    [187]. Y. Fukuzumi, et al., Universal Superconductor-Insulator Transition and Tc Depression in Zn-Substituted High-Tc Cuprates in the Underdoped Regime, Phys. Rev. Lett.,1996,76(4): 684-687
    [188]. B. Nachumi, et al., Muon Spin Relaxation Studies of Zn-Substitution Effects in High-Tc Cuprate Superconductors, Phys. Rev. Lett.,1996,77(27):5421-5424
    [189]. G. Xiao, et al., High-temperature superconductivity in tetragonal perovskite structures:Is oxygen-vacancy order important? Phys. Rev. Lett.,1988,60(14):1446-1449
    [190]. J. M. Tarascon, et al.,3d-metal doping of the high-temperature superconducting perovskites La-Sr-Cu-0 and Y-Ba-Cu-O, Phys. Rev. B,1987,36(16):8393-8400
    [191]. H. Harashina, et al., Cu-site doping effects, transport and magnetic properties of high-Tc oxides and their hole concentration dependence, Physica C 1993,212(1-2):142-150
    [192]. Y. K. Li, et al., Effect of Zn doping on magnetic order and superconductivity in LaFeAsO, New J. Phys.,2009,11(5):053008
    [193]. A. Kawabata, et al., Superconductivity of LaFe1-yCoyAs1-xFx, J. Phys. Soc. Jpn.,2008,77(10): 103704
    [194]. G. Xu, et al., Doping-dependent phase diagram of LaOMAs (M=V-Cu) and electron-type superconductivity near ferromagnetic instability, Europhys. Lett.,2008,82(6):67002
    [195]. A. S. Sefat, et al., Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals, Phys. Rev. Lett., 2008,101(11):117004
    [196]. Y. P. Qi, et al., Superconductivity in Co-doped SmFeAsO, Supercond. Sci. Technol.,2008,21(11): 115016
    [197]. C. Wang, et al., Effects of cobalt doping and phase diagrams of LFe1-xCoxAsO (L=La and Sm), Phys. Rev. B,2009,79(5):054521
    [198]. G. H. Cao, et al., Narrow superconducting window in LaFe1-xNixAsO, Phys. Rev. B,2009,79(17): 174505
    [199]. Y. K. Li, et al., Superconductivity induced by Ni doping in SmFe1-xNixAsO, J. Phys.:Condens. Matter,2009,21(35):355702
    [200]. S. R. Saha, et al., Evolution of bulk superconductivity in SrFe2As2 with Ni substitution, Phys. Rev. B,2009,79(22):224519
    [201]. N. Kumar, et al., Anisotropic magnetic and superconducting properties of CaFe2-xCoxAs2 (x=0, 0.06) single crystals,2009, Phys. Rev. B,79(1):012504
    [202]. A. Leithe-Jasper, et al., Superconducting State in SrFe2-xCoxAs2 by Internal Doping of the Iron Arsenide Layers, Phys. Rev. Lett.,2008,101(20):207004
    [203]. S. Muir, et al., Synthesis of LaRhAsO and superconductivity within the LaFe1-xRhxAsO system, Mater. Res. Bull.,2010,45(4):392-395
    [204]. D. Berardan, et al., Electronic phase diagram of NdFe1-xRhxAsO, Phys. Rev. B,2010,81(9): 094506
    [205]. Y. P. Qi, et al., Superconductivity in SmFe1-x,MxAsO (M=Co, Rh, Ir),Europhys. Lett.,2010,89(6): 67007
    [206]. N. Ni, et al., Phase diagrams of Ba(Fe1-xMx)2As2 single crystals (M=Rh and Pd),Phys. Rev. B, 2009,80(2):024511
    [207]. W. Schnelle, et al., Substitution-induced superconductivity in SrFe2-xRuxAs2 (0    [208]. C. H. Lee, et al., Effect of Structural Parameters on Superconductivity in Fluorine-Free LnFeAsO1-v (Ln=La, Nd), J. Phys. Soc. Jpn.,2008,77(8):083704
    [209]. Y. J. Cui, et al., Magnetic properties and superconductivity in GdFeAsO1-xFx, J Supercond Nov Magn., (2009), DOI 10.1007/s10948-010-0699-7
    [210]. N. R. Werthamer, et al., Temperature and purity dependence of the superconducting critical field, Hc2.Ⅲ.electron spin and spin-orbit effects, Phys. Rev.,1966,147(1):295-302
    [211]. G. F. Chen, et al., Element substitution effect in transition metal oxypnictide Re(O1-xFx)TAs (Re=rare earth, T=transition metal), Chin. Phys. Lett.,2008,25(6):2235-2238
    [212]. P. Cheng, et al., Superconductivity at 36 K in gadolinium-arsenide oxides GdO1-xFxFeAs, Sci. China,Ser.G,2008,51(6):719-722
    [213]. K. Kadowaki, et al., Superconductivity and Magnetism in REFeAsO1-xFx (RE=Rare Earth Elements), Journal of Physics:Conference Series,2009,150(5):052088
    [214]. Z. Yamani and M. Akhavan, Electrical and magnetic properties of supwrconduction-insulating Pr-doped GdBa2Cu3O7-v, Phys. Rev. B 1997,56(13):7894-7897
    [215]. J. Yang, et al., The role of F-doping and oxygen vacancies on the superconductivity in SmFeAsO compounds, Supercond. Sci. Technol.,2009,22(2):025004
    [216]. B. Lorenz, et al., Effect of pressure on the superconducting and spin-density-wave states of SmFeAsO1-xFx, Phys. Rev. B,2008,78(1):012505
    [217]. H. Hiramatsu, et al., Heteroepitaxial film growth of layered compounds with the ZrCuSiAs-type and ThCr2Si2-type structures:From Cu-based semiconductors to Fe-based superconductors, Physica C,2009,469(9-12):657-666
    [218]. A. Umezawa, et al., Enhanced critical magnetization currents due to fast neutron irradiation in single-crystal Yba2Cu3O7-δ, Phys. Rev. B,1987,36(13):7151
    [219]. Y. Zhao, et al., High critical current density of MgB2 bulk superconductor doped with Ti and sintered at ambient pressure, Appl. Phys. Lett.,2001,79(8):1154-1156
    [220]. M. Muralidhar and M. Murakami, Effect of matrix composition on the flux pinning in a (Nd, Eu, Gd)Ba2Cu3Oy superconductor, Phys. Rev. B,2000,62(21):13911-13914
    [221]. Y. Feng, et al., Fishtail effect, magnetic properties and critical current density of Gd-added PMP YBCO, Physica C,1998,297(1-2):75-84
    [222]. M. Zehetmayer, et al., Fishtail effect in neutron-irradiated superconducting MgB2 single crystals, Phys. Rev. B,2004,69(5):054510
    [223]. C. Senatore, et al., Upper critical fields well above 100 T for the superconductor SmFeAsO0.85F0.15 with Tc=46 K, Phys. Rev. B,2008 78(5):054514
    [224]. S. A. Baily, et al., Smectic Vortex Phase in Optimally Doped YBa2Cu3O7 Thin Films, Phys. Rev. Lett.,2008,100(2):027004
    [225]. S. Blanchard, et al., Anomalous Magnetic Field Dependence of the Thermodynamic Transition Line in the Isotropic Superconductor (K, Ba)BiO3, Phys. Rev. Lett.,2002,88(17):177201
    [226]. Y. Zhao, et al., The interpretation of improved flux pinning behaviour and second magnetization peaks observed in overdoped Cu-rich Bi2Sr2CaCu2O8+x single crystals, Supercond. Sci. Technol., 2004,17(2):S83-S87
    [227]. L.I. Glazman and A. E. Koshelev, Thermal fluctuations and phase transitions in the vortex state of a layered superconductor, Phys. Rev. B,1991,43(4):2835-2843
    [228]. S. Shibata, et al., Disappearance of Peak Effect in Critical Current Density of NdBa2Cu3O7-δ Single Crystals Grown under Very Low Oxygen Partial Pressures, Jpn. J. Appl. Phys.,1999,38(10B): L1169-L1171
    [229]. M. Nakamura, et al., Heat treatment and anomalous peak effect in Jc-H curve at 77 K for NdBa2Cu3O7-δ single-crystal superconductor, Physica C,1996,259(3-4):295-303
    [230]. W Yi, et al., High pressure study on LaFeAs(O1-xFx) and LaFeAsOδ with different Tc,arXiv: cond-mat/0809.4702,2008 (unpublished)
    [231]. R. C. Che, et al., Superconductivity in (La1-xCex)(O0.9F0.1)FeAs and (La1-xPbx,)OFeAs, Europhys. Lett.,2008,83(6):66005
    [232]. W Yi, et al., Superconductivity in the mixed rare earth iron oxyarsenide La1-xSmxFeAsO0.85, Supercond. Sci. Technol.,2008,21(12):125022
    [233]. P. M. Shirage, et al., Superconductivity at 43 K at ambient pressure in the iron-based layered compound La1-xYxFeAsOy, Phys. Rev. B,2008,78(17):172503
    [234]. M. Tropeano, et al., Effect of chemical pressure on spin density wave and superconductivity in undoped and 15% F-doped La1-yYyFeAsO compounds, Phys. Rev. B,2009,79(17):174523
    [235]. S. C. Lee, et al., Distinct Transport Behaviors of LaFe1-yCoyAsO1-xFx (x=0.11) between the Superconducting and Nonsuperconducting Metallic y Regions Divided by y-0.05, J. Phys. Soc. Jpn.,2008,78(4):043703
    [236]. A. Kawabata, et al., Studies of the superconductivity of LaFe1-yCoyAsO1-xFx(x=0.11)-impurity effect and NMR Knight shift, J. Phys. Soc. Jpn.,2008,77(SC):147-148
    [237]. S. C. Lee, et al., Effects of Ru Doping on the Transport Behaviors and Superconducting Transition Temperature of NdFeAsO0.89F0.11, J. Phys. Soc. Jpn.,2010,79(2):023702
    [238]. M. Tropeano, et al., Isoelectronic Ru substitution at Fe-site in Sm(Fe1-xRux)As(O0.85F0.15) compound and its effects on structural, superconducting and normal state properties, arXiv: cond-mat/1004.1978 2010, (unpublished)
    [239]. M. R. Presland, et al., General trends in oxygen stoichiometry effects on Tc in Bi and Tl superconductors, Physica C,1991,176(1-3):95-105
    [240]. A. T. Nientiedt, and W. Jeitschko, Equiatomic Quaternary Rare Earth Element Zinc Pnictide Oxides RZnPO and RZnAsO, Inorg. Chem.,1998,37(3):386-389
    [241]. Y. Takano, et al., Electrical and magnetic properties of LnOZnPn (Ln=rare earths;Pn=P, As, Sb), J. Alloys Compd.2008,451(1-2):467-469
    [242]. V. V. Bannikov, et al., Electronic band structures and intra-atomic interactions in layered quaternary oxyarsenides LaZnAsO and YZnAsO, arXiv:cond-mat/0810.2606,2008, (unpublished)
    [243]. H. Lincke, et al., Dimorphic CeZnPO and PrZnPO, Z. Anorg. Allg. Chem.,2006,632(10): 1804-1808
    [244]. H. Lincke, et al, Magnetic, Optical, and Electronic Properties of the Phosphide Oxides REZnPO (RE=Y, La-Nd, Sm, Gd, Dy, Ho), Z. Anorg. Allg. Chem.,2008,634(8):1339-1348
    [245]. I. Schellenberg, et al., Structural and 121Sb Mossbauer Spectroscopic Investigations of the Antimonide Oxides REMnSbO (RE= La, Ce, Pr, Nd, Sm, Gd, Tb) and REZnSbO (RE=La, Ce, Pr), Z. Naturforsch.,2008,63B(12):834-840
    [246]. A. Zaoui, et al., Electronic structure of new RENiAsO (RE=Rare Earth Elements) compounds:Ab initio spin-density functional theory, Superlattices Microstruct.,2009,46(4):533-540
    [247]. G. T. Wang, et al.,The first-principles studying LaOMnSe:A possible parent compound of superconductor, Phys. Lett. A,2009,374(2); 351-354
    [248]. I.R. Shein, et al., Electronic and magnetic properties of new quaternary oxybismuthides LaOMBi (where M= V, Cr,..., Ni, Cu) from first principles, Phys. Lett. A,2008,372(36):5838-5840
    [249]. H. Yanagi, et al., Electrical and magnetic properties of quaternary compounds LnMnPO (Ln=Nd, Sm, Gd) with ZrCuSiAs-type structure, Mater. Sci. Eng., B,2010, in press
    [250]. V. V. Bannikov, et al., Electronic properties and chemical bonding in quaternary arsenide oxides LaZnAsO and YZnAsO, Mater. Chem. Phys.,2009,116(1):129-133
    [251]. A. T. Nientiedt, et al., Quaternary equiatomic manganese pnictide oxides AMnPO (A=La-Nd, Sm, Gd-Dy), AMnAsO (A=Y, La-Nd, Sm, Gd-Dy, U), and AMnSbO (A=La-Nd, Sm, Gd) with ZrCuSiAs type structure, Z. Naturforsch.,1997,52b(5):560-564
    [252]. P. Wollesen, et al., Quaternary equiatomic compounds LnZnSbO (Ln=La-Nd, Sm) with ZrCuSiAs-type structure, Z. Naturforsch.,1997,52b(12):1467-1470
    [253]. W. Jeitschko, et al., ZrCuSiAs-type phosphide oxides:TbRuPO, DyRuPO, the series LnOsPO (Ln =La, Ce, Pr, Nd, Sm),and ThAgPO, Z. Naturforsch.,2008,63B(8):934-940
    [254]. R. Pottgen, et al., Materials with ZrCuSiAs-type structure, Z. Naturforsch.,2008,63B(10): 1135-1148
    [255]. M. Palazzi, et al., Un nouveau conducteur ionique (LaO)AgS, J. Solid State Chem.1980,35(2): 150-155
    [256]. M. Palazzi and S. Jaulmes, Structure du conducteur ionique (LaO)AgS, Acta Crystallogr. B,1981, 37(2):1337-1339
    [257]. D. O. Charkin, et al., Novel lanthanoid-cadmium oxide pnictides with the tetragonal LaOAgS structure,1999 J. Alloys Compd.292(1-2):118-123
    [258]. H. Kabbour, et al., Rational design of new inorganic compounds with the ZrSiCuAs structure type using 2D building blocks, J. Mater. Chem.,2005,15(34):3525-3531
    [259]. H. Kabbour, et al., P-type transparent conductors Sr1-xNaxFCuS and SrF1-xOxCuS:design, synthesis and physical properties, J. Mater. Chem.,2006,16(42):4165-4169
    [260]. M. L. Liu, et al., Syntheses, crystal and electronic structure, and some optical and transport properties of LnCuOTe (Ln=La, Ce, Nd), J. Solid State Chem.,2007,180(1):62-69
    [261]. G. H. Chan, et al., Syntheses, Structures, Physical Properties, and Theoretical Studies of CeMxOS (M=Cu, Ag; x= 0.8) and CeAgOS,Inorg. Chem.,2006,45(20):8264-8272
    [262]. E. Motomitsu, et al., Bipolar Room Temperature Ferromagnetic Semiconductor LaMnOP, Jpn. J. Appl. Phys.,2005,44(2):L1344-L1347
    [263]. V. L. Kozhevnikov, et al., New superconductor with a layered crystal structure:Nickel oxybismuthide LaO1-δNiBi, JETP Letters,2008,87(11):649-651
    [264]. J. Y. Ge, et al., Superconductivity in nickel-based bismuthide GdONiBi and hole doped Gd0.9Sr0.1ONiBi, Journal of Shandong university,2009,39(1):106-109
    [265]. D. Kaczorowski, et al., Crystal structure and complex magnetic behaviour of a novel uranium oxyphosphide UCuPO, J. Alloys Compd.,1994,216(1):117-121
    [266]. C. Krellner, et al., CeRuPO:A rare example of a ferromagnetic Kondo lattice, Phys. Rev. B,2007, 76(1.0):104418
    [267]. E. M. Bruning, et al., CeFePO:A Heavy Fermion Metal with Ferromagnetic Correlations, Phys. Rev. Lett.,2008,101(11):117206
    [268]. R. Welter, et al., Magnetic study of the ThCr2Si2-type RIr2Si2 (R=Pr, Nd) compounds:Magnetic structure of NdIr2Si2 from powder neutron diffraction, J. Alloys Compd.,2003,353(1-2):48-52
    [269]. H. Yanagi, et al.,Itinerant ferromagnetism in the layered crystals LaCoOX(X=P,As), Phys. Rev. B, 2008,77(22):224431
    [270]. M. Tegel, et al., Synthesis, crystal structure and superconductivity of LaNiPO, Solid State Sciences, 2008,10(2):193-197
    [271]. W. B. Zhang, et al., Electronic structure and Fermi surface character of LaNiPO from first principles, Phys. Rev. B,2008,77(21):214513
    [272]. A. Subedi, et al., Electron-phonon superconductivity in LaNiPO, Phys. Rev. B,2008,78(6): 060506
    [273]. L. Fang, et al., Synthesis and characterization of the hole-doped nickel-based superconductor La1-xSrxNiAsO, Phys. Rev. B,2008,78(10):104528
    [274]. F. Ronning, et al. The first order phase transition and superconductivity in BaNi2As2 single crystals, J. Phys.:Condens. Matter,2008,20(34):342203
    [275]. N. Kurita, et al., Low-Temperature Magnetothermal Transport Investigation of a Ni-Based Superconductor BaNi2As2:Evidence for Fully Gapped Superconductivity, Phys. Rev. Lett.,2009, 102(14):147004
    [276]. Y. Tomioka, et al., A resistive transition between the normal and superconducting state of BaNi2P2 single crystals, J. Phys. Soc. Jpn.,2008,77(SC):136-137
    [277]. E. D. Bauer, et al., Superconductivity in SrNi2As2 single crystals, Phys. Rev. B,2008,78(17): 172504
    [278]. H. Ohta and K. Yoshimura, Anomalous magnetization in the layered itinerant ferromagnet LaCoAsO, Phys. Rev. B,2009,79(18):184407
    [279]. M. Majumder, et al., Crossover of the dimensionality of 3d spin fluctuations in LaCoPO, Phys. Rev. B,2009,80(21):212402
    [280]. H. Ohta and K. Yoshimura, Magnetic properties of LCoAsO (L=La-Gd), Phys. Rev. B,2009, 80(18):184409
    [281]. A. Marcinkova, et al., Superconductivity in NdFe1-xCoxAsO (0.05< x< 0.20) and rare-earth magnetic ordering in NdCoAsO, Phys. Rev. B,2010,81(6):064511
    [282]. M. A. McGuire, et al., Magnetic phase transitions in NdCoAsO, Phys. Rev. B,2010,81(10): 104405
    [283]. M. A. McGuire, et al., Influence of the rare-earth element on the effects of the structural and magnetic phase transitions in CeFeAsO, PrFeAsO and NdFeAsO, New J. Phys.,2009,11(2): 025011
    [284]. Y. K. Luo, et al., Phase diagram of CeFeAs1-xPxO obtained from electrical resistivity, magnetization, and specific heat measurements, Phys. Rev. B,2010,81(13):134422
    [285]. C. Krellner, et al., Interplay between 3d and 4f magnetism in CeCoPO, Physica B,2009,404(19): 3206-3209
    [286]. G. Cao, et al., Observation of itinerant ferromagnetism in layered Sr3Ru207 single crystals, Phys. Rev. B,1997,55(2):672-675
    [287]. S. Ikeda, et al., Weak ferromagnetism in two-dimensional bilayered Sr3-xCaxRu2O7, Phys. Rev. B, 1998,57(2):978-986
    [288].L. Neel, Magnetic properties of ferrites:ferrimagnetism and antiferromagnetism, Ann. Phys.,1948, 3:137-198
    [289].姜寿亭,李卫,凝聚态磁性物理,科学出版社,2003:70-100
    [290]. G. Xiao, et al., Magnetic-field-induced multiple electronic states in La0.5Ca0.5MnO3-δ, Phys. Rev. B, 1996,54(9):6073-6076
    [291]. R. S. Perry, et al., Metamagnetism and Critical Fluctuations in High Quality Single Crystals of the Bilayer Ruthenate Sr3Ru2O7, Phys. Rev. Lett.,2001,86(12):2661-2664
    [292]. J. L. Luo, et al., Metamagnetic Transition in Na0.85CoO2 Single Crystals,2004,93(18):187203
    [293]. O.Pe(?)a, et al., Magnetization reversal in Gd0.67Ca0.33MnO3:Comparison between epitaxial thin films and bulk, Appl. Surf. Sci.,2007,254(1):339-342
    [294]. G. J. Snyder, et al., Local structure, transport, and rare-earth magnetism in the ferrimagnetic perovskite Gd0.67Ca0.33MnO3, Phys. Rev. B,1997,55(10):6453-6459
    [295]. Y. Kimishima, et al., N-type ferrimagnetism of SmVO3, J. Magn. Magn. Mater.,2000,210(1-3): 244-250
    [296]. E. W. Gorter and J. A. Schulkes, Reversal of Spontaneous Magnetization as a Function of Temperatue in LiFeCr Spinels, Phys. Rev.,1953,90(3):487-488
    [297]. K. Yoshida, et al., Electronic crossover in the highly anisotropic normal state of Sr2RuO4 from pressure effects on electrical resistivity, Phys. Rev. B,1998,58(22):15062
    [298]. H. Maeter, et al., Interplay of rare earth and iron magnetism in RFeAsO (R= La, Ce, Pr, and Sm): Muon-spin relaxation study and symmetry analysis, Phys. Rev. B,2009,80(9):094524
    [299]. O. Pe(?)a, et al., Inter-network magnetic interactions in GdMexMn1-xO3 perovskites (Me=transition metal), J. Magn. Magn. Mater.,2007,310(1):159-168
    [300]. R. Gupta, et al., Field-and pressure-induced phase in Sr4Ru3O10:a spectroscopic investigation, Phys. Rev. Lett.,2006,96(6):067004
    [301]. W. J. Luo, et al., Cluster glass induced exchange biaslike effect in the perovskite cobaltites, Appl. Phys. Lett.,2007,90(16),162515
    [302]. J. Geshev, Comment on "Cluster glass induced exchange biaslike effect in the perovskite cobaltites" [Appl. Phys. Lett.90,162515 (2007)], Appl. Phys. Lett.,2008,93(17),176101
    [303]. W. J. Luo, et al, Response to "Comment on'Cluster glass induced exchange biaslike effect in the perovskite cobaltites'" [Appl. Phys. Lett.93,176101 (2008)], Appl. Phys. Lett.,2008,93(17), 176102
    [304]. A. Mumtaz, et al, Exchange bias and vertical shift in CoFe2O4 nanoparticles, J. Magn. Magn. Mater.,2007,313(2):266-272
    [305]. J. Geshev, Comment on:"Exchange bias and vertical shift in CoFe2O4 nanoparticles" [J. Magn. Magn. Mater.313 (2007) 266], J. Magn. Magn. Mater.,2008,320(3-4):600-602
    [306]. R. Ang, et al, Exchange bias in the layered cobaltite Sr1.5Pr0.5CoO4, J. Appl. Phys.,2008,104(2): 023914
    [307]. J. Geshev, Comment on "Exchange bias in the layered cobaltite Sr1.5Pr0.5CoO4" [J. Appl. Phys.104, 023914 (2008)], J. Appl. Phys.,2009,105(6):066108
    [308]. S. Majumdar and E.V. Sampathkumaran, Magnetic ordering and the Kondo elect in the alloys, Ce2Co1-xPdxSi3, J. Magn. Magn. Mater.,2001,223(3):247-252
    [309]. R. Ganfguly, et al., Influence of the size of dopant ion on ferromagnetic behavior of Ln0.7A0.3CoO3 system [Ln=La, Nd; and A=Ca, (Ca, Sr), Sr, (Sr, Ba), Ba], Physica B,1999,271(1-4):116-124
    [310]. P. S. Kumar, et al, Origin of the cluster-glass-like magnetic properties of the ferromagnetic system La0.5Sr0.5CoO3, J. Phys.:Condens. Matter,1998,10(29):L487-L493
    [311]. S. Chaudhary, et al., DC-magnetisation studies in the La1-xSrxCoO3 (x≤0.4) system, J.Alloys Compd.,2001,326(1-2):112-116
    [312].A. P. Sazonov, et al., Neutron diffraction study and magnetic properties of La1-xBaxCoO3 (x=0.2 and 0.3),J. Phys.:Condens. Matter,2009,21(15):156004
    [313]. P. S. Anil Kumarz, et al., Comparison of the irreversible thermomagnetic behaviour of some ferro-and ferrimagnetic systems, Bull. Mater. Sci.,2000,23(2):97-101
    [314]. P. A. Joy, et al., The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems, J. Phys.:Condens. Matter,1998,10(48):11049-11054
    [315]. R. Ganguly, et al., Electrical conductivity and magnetic behavior of La0.67Ca0.33MnO3 as influenced by substitution of Co, Physica B,1999,266(4):332-339
    [316]. D. N. H. Nam, et al., Coexistence of ferromagnetic and glassy behavior in the La0.5Sr0.5CoO3 perovskite compound, Phys. Rev. B,1999,59(6):4189-4194
    [317]. I. G. Deac, et al., Phase separation and low-field bulk magnetic properties of Pr0.7Ca0.3MnO3, Phys. Rev. B,2001,63(17):172408
    [318]. S. Ikeda, et al., Weak ferromagnetism in two-dimensional bilayered Sr3-xCaxRu2O7, Phys. Rev. B, 1998,57(2); 978-986
    [319]. A. Arrott, Criterion for ferromagnetism from observation of magnetic isotherms, Phys. Rev.,1957, 108(6):1394-1396
    [320]. S. K. Banerjee, on a generalised approach to first and second order magnetic transitions, Phys. Lett., 1964,12(1):16-17
    [321]. J. L. Luo, et al, Metamagnetic Transition in Na0.85CoO2 Single Crystals, Phys. Rev. Lett.,2004, 93(18):187203
    [322]. T. Wu, et al, Magnetic phase diagram of Eu1-xLaxFe2As2 single crystals, J. Magn. Magn. Mater., 2009,321(23):3870-3874
    [323]. R. A. Fisher, et al., The Magnetic Instability in the Heavy Fermion Compounds Ce1-xLaxRu2Si2, J. Low Temp. Phys.,1991,84(1-2):49-86
    [324]. H. v. Lohneysen, et al., Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Mod. Phys.,2007,79(3):1015-1075
    [325]. S. A. Grigera, et al., Magnetic Field-Tuned Quantum Criticality in the Metallic Ruthenate Sr3Ru2O7, Science,2001,294(5541):329-332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700