TGF-β1诱导人胎肺成纤维细胞分泌血管内皮生长因子以及布地奈德的调控作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的气道重构及肺纤维化形成是引起呼吸系统疾病致残率和死亡率上升的主要原因,亦是疾病防治的重点及难点。许多研究证实,炎症损伤及组织修复失衡是导致支气管肺部纤维化的主要成因,其中可能涉及血管新生及相应生长因子。本实验通过应用转化生长因子(transforming growth factor-β1,TGF-β1)刺激人胎肺成纤维细胞(human fetal lung fibroblast-1,HFL-1),检测血管内皮生长因子(vascular endothelial growth factor,VEGF)在其中的表达,以及观察布地奈德(Budesonide,Bud)对HFL-1分泌VEGF的干预作用。
     方法本实验采用细胞培养法,分三个部分:第一部分探讨TGF-β诱导HFL-1分泌VEGF的时间依赖效应,实验组加入0.25ng/ml TGF-β1刺激,分别在12、24、48、72小时收集细胞培养上清液,经酶联免疫分析法(enzyme immunoassay,EIa)检测VEGF含量,同时进行细胞计数;第二部分探讨TGF-β1诱导HFL-1分泌VEGF的浓度依赖效应,实验组加入不同浓度(0、0.025、0.05、0.25、0.5、2.5、5ng/mL)TGF-β1刺激,孵育72小时后收集细胞培养上清液,经EIA检测VEGF含量;第三部分探讨布地奈德对HFL-1分泌内源性和外源性VEGF的影响,实验组随机分为对照组、不同浓度(10~(-11)M、10~(-9)M、10~(-7)M)布地奈德干预组、0.5ng/mlTGF-β1+不同浓度(10~(-11)M、10~(-9)M、10~(-7)M)布地奈德干预组,孵育72小时后检测上清液VEGF含量。
     结果在第一部分实验中,随着细胞孵育时间延长,TGF-β1刺激组成纤维细胞生长加快,细胞生长密度增加;VEGF分泌水平也增加,在72小时点达到分泌高峰,并且各时间点VEGF相对含量均高于对照组,两组比较有统计学差异(P<0.05)。在第二部分实验中,低浓度TGF-β1(≤0.5ng/ml)上调VEGF的表达量与对照组比较差异无显著性(P>0.05);随着TGF-β1刺激浓度加大,VGEF含量也逐渐增加,当TGF-β1浓度为5ng/ml时,VEGF相对含量与空白对照组相比增加了近七倍,两组比较差异有统计学意义(P<0.01)。在第三部分实验中,低浓度(10~(-11)M)Bud刺激内源性VEGF分泌轻微增加,但与空白对照组比较无明显差异(P>0.05);而高浓度(10~(-7)M)Bud不仅能明显阻断内源性VEGF的表达,与空白对照组相比差异有统计学意义(P<0.01),还可明显下调TGF-β1诱导的VEGF分泌增加的效应,与同时相相同浓度单独TGF-β1刺激组比较,VEGF含量下降明显,二者比较具有统计学意义(P<0.01)。
     结论人胎肺成纤维细胞自身可分泌内源性VEGF,TGF-β1能够诱导HFL-1增殖及VEGF分泌增加,并具有时间和浓度依赖效应。提示成纤维细胞是支气管肺部纤维化病中主要的功能细胞,TGF-β1诱导VEGF分泌增加可能是纤维化形成新的重要原因之一。高浓度(10~(-9)M,10~(-7)M)布地奈德不仅能够抑制HFL-1自身分泌VEGF,还能阻断TGF-β1诱导VEGF水平上调的效应,而低浓度(10~(-11)M)布地奈德没有抑制VEGF分泌的作用。提示抑制VEGF生成及血管新生可能是布地奈德发挥抗纤维化作用中新的重要分子机制。
Objective
     Airway remodeling and lung fibrosis are the leading causes result in increasingly high mutilation and mortality in respiratory disease. Studies show that inflammatory tissue damage and inappropriate repair lead to bronch-lung fibrosis, in which angiogenesis relating growth factors maybe involved. In the current study, we examined the effect of budesonide on transforming growth factor-β1 (TGF-β1) induced vascular endothelial growth factor (VEGF) release by human fetal lung fibroblast (HFL-1).
     Methods
     By using cultured human fetal lung fibroblasts, we firstly examed the time-dependency of TGF-Bl induced VEGF production by human fetal lung fibroblasts. HFL-1 fibroblasts treated with 0.25ng/ml TGF-β1 were incubated for 12, 24, 48 and 72 hrs.The post-culture media were collected for enzyme immunoassay ( EIA) of VEGF. Cell counts were also done.
     Secondly, we examed the dose-dependency of TGF-Bl induced VEGF production by human fetal lung fibroblasts. HFL-1 fibroblasts were cultured with various concentrations of TGF-β1 for 72 hrs.The post-culture media were collected for EIA.
     Finally, we examed the effect of Budesonide on basal and TGF-β1 induced VEGF release by HFL-1 fibroblasts. HFL-1 fibroblasts were treated with various concentrations of budesonide in the absence and presence of 0.5ng/ml TGF-β1 for 72 hrs. Post-culture media were collected for the assay of VEGF at 72 hrs.
     Results
     HFL-1 fibroblasts increasingly release VEGF as incubation goes on. With the stimulation of TGF-β1, increased release of VEGF was noted at different time points.
     A significant increase in VEGF was observed in HFL-1 fibroblasts treated with 0. 5-5ng/ml of TGF-β1 ( P<0.05). A sevenfold increase in VEGF release was observed in cells treated with 5ng/ml TGF-β1 compared with control. However, cells treated with TGF-β1 below 0.5ng/ml had no stimulatory effect on VEGF release by HFL-1 fibroblasts.
     10~(-7)M of Budesonide significantly decreased VEGF release by HFL-1 cells. Furthermore, TGF-81 argumented release of VEGF was attenuated by Bud at 10~(-9)M and 10~(-7)M, which shows a dose-dependent manner.
     Conclusions
     HFL-1 fibroblasts release VEGF spontaneously. TGF-β1 increased the release of VEGF by HFL-1 fibroblasts in a time and dose-dependent manners. Budesonide inhibited basal VEGF release, and TGF-β1 enhanced VEGF production by HFL-1 fibroblast. Suppession of VEGF production may be a mechanism that budesonide modulates fibroblasts' function in pulmonary fibrosis.
引文
1. Iddens H, Sliverman M, Bush A. The role of Inflammation in airway diease. Am J Respir Crit Care Med, 2000; 162: 7-10
    2. Czurczak M, Jutel M. Bronchial smooth muscle cells in airway remodeling in asthma and COPD. Journal Article, 2005; 114(1): 688~694
    3. Jeffery D. Structural and inflammatory changes in COPD: a comparion with asthma. Eur Respir Rew, 1997; 7: 29~33
    4. Peter k, Jeffery Y. Remodeling in asthma and Chronic Obstructive Lung Diease. Am J. Respir Crit Care Med, 2001; 164: 28~38
    5. Vestbo J, Hogg JC. Convergence of the epidemiology and pathology of COPD. Thorax, 2006; 61: 86~88
    6. Belanger M, Carrier C, et al. Airway hyperresponsiveness and bronchial wall thickness in asthma with or without fixed airflow obstruction. Am J Respir Crit Care Med, 1995; 152: 865-871
    
    7. Blobe G C, Schiemann W P,H F Lodish. Role of transforming growth factor beta in human diease. N Engl L Med, 2001; (3): 1350-1358
    
    8. Ferrara N, Davis Smith T. The biology of vascular endothelial growth factor .Endocrine Rreviews, 1997; 18(1): 425-435
    
    9. Asai K, Kanazawa H, Kamoi H,et al. Increased Levels of vascular endothelial growth factor in induced sputum in asthmatic patients. Clin Exp Allergy, 2003; 33: 595-599
    
    10. Kobayashi T, Liu X, Wen FQ ,et al. Smad3 mediates TGF-beta1 induction of VEGF production in lung fibroblasts. Biochemical & Biophysical Research Communications, 2005; 327(2): 393-398
    
    11. Guuther Hochaus .New development in corticosteroids. Thorax, 2004; 1: 269-274
    
    12. ATS/ERS. American Thoracic Soiety/European Respiratory Society international multidisciplinary consensus classification of the idiopathiv interstitial pneumonias. Am J Resrir Crit Care Med, 2002, 165 (2): 277-304
    
    13. Redington AE, Howarth P. Airway wall remodeling in asthma. Thorax, 1997; 52: 310-312
    
    14. Bousquet S, Vigola AM, Chanze P, et al. Airwayway remodeling in asthma:no doubt,no more? Int Arch Allergy Immunol, 1995; 107: 211-215
    
    15. Crimi E, Spanevello A, Neri M, et al. Dissociation between airway inflammation and airway hyperresponsiveness in allergic asthma. Am J Respir Crit Care Med, 1998; 157: 4-9
    
    16. Gizycki MJ, Adelroth E, Rogers AV , et al. Myofibroblast involvement in the allergy-induced late response in mild atopic asthma. Am J Respir Cell Mol Biol, 1997; 16: 664~673
    17. Cao B, Guo ZJ, et al. The potential role of PDGFIGF-1TGFβ1 expression in idopaththic pulmonary fibrosis. Chinese Med J, 2000; 113: 776~782
    18. Hoshino M, Takahashi M, Aoike N. Expression of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin immunoreactivity in asthmatic airways and its relationship to angiogenesis. Journal of Allergy & Clinical Immunology, 2001; 107(2): 295~301
    19. Daniels CE, whilkes MS, Eens M, et al. Imatinib mesulate inhibits the profibrogenic activity of TGF-beta and prevents bleomycin-mediated lung fibrosis. J Clin Invest, 2004, 114(9): 1308~1316
    20. Massague J. TGF-beta signal transduction. Annu Rev. Biochem, 1998; 67: 753-759
    21. Catherine Duvernelle, Verionique Freund, Nelly Frossard. Transforming growth factor-beta and its role in asthma. Pulmonary Pharmacology & Therapeutics, 2003; (16): 181~196
    22. Antonio M, Vignola, Franco Mirabella. Airway Remodeling in Asthma Chest, 2003; 12(2): 417~422
    23. Derynck Rik, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-βfamily signalling. NATURE, 2003; 425(10): 575~584
    24. Kobayashi T, Liu XD, Wen FQ, et al. Smad3 mediates TGF-beta(1)-induced collagen gel contraction by human lung fibroblasts. Biochemical & Biophysical Research Communications, 2006; 339(1): 290~295
    25. Reisdorf P, Lawrence D A, Sivan V, et al. Alteration of transforming growth factor-betal response involves down-regulation of smad3 signling in myofibroblast from skin fibrosis,Am J Pathol, 2001; 159: 262-272
    26. Song CZ, Tian X, Gelehrter T. Glucocorticoid receptor inhibits transforming growth factor-beta signaling by directly targeting the transcriptional activation function of Smad3. Dproceedings of the national academy of Scineces of the united states of America, 1999; 96 (21): 1776-1781
    
     27. Sybill Patan. Vasculogenesis and Angiogenesis as Mechanisms of Vascular Network Formation.Growth and Remodeling.Journal of neuro-oncology, 2000; 50: 1-15
    
    28. Hoshino M, Nakamura Y, Hamid QA .Gene expression of vascular endothelial growth factor and its receptors and angiogenesis in bronchial asthma.Journal of Allergy & Clinical Immunology, 2001; 107(6): 1034-1038
    
    29. Wen FQ, Liu XD, Manda W, et al. TH2 cytokine-enhanced and TGF-beta-enhanced vascular endothelial growth factor production by cultured human airway smooth muscle cells is attenuated by IFN-gamma and corticosteroids.Journal of Allergy & Clinical Immunology, 2003; 111(6): 1307-1318
    
    30. Niewoehner DE, Erbland ML, Deupree RH, et al. Effect of systemic glucocorticoids on exacerbations of chronic obstructive pulmonary disease. NEngl L Med, 1999; 340(25): 1941-1947
    
    31. Barnes PJ. Efficacy of inhaled corticosteroids in asthma . Journal of Allergy & Clinical Immunology , 1998; 102(4): 531-538
    
    32. Lofdahl C, Laitinen LA , Schouten JP , et al. Long-term treatment with inhaled budesonide in persons with mild chronic obstructive pulmonary disease who continue smoking .N Engl J Med, 1999; 340: 1948-1953
    33. Walter N, Collard AR&King TE, Current perspectives on the treatment of IPF. Proc Am Thorac Soc, 2006,(3): 330~338
    34. Pelaia G, Vatrella A, Cuda G, Maselli R. Molecular mechanisms of corticosteroid antions in inflammatory airway diease. Life Sciences, 2003; (72): 1549~1561
    1. Aubier M. Neukirch F. Epidemiology of asthma and allergies. Bulletin de l Academie Nationale de Medecine. 2005; 189(7): 1419-34.
    2. Murray J J, Tonnel AB, Brash AR, et al. Release of prostaglandin D2 into human airways during acute antigen challenge. New England Journal of Medicine. 1986; 315(13): 800~4.
    3. Shiraishi Y, Asano K, Nakajima T, et al. Prostaglandin D2-induced eosinophilic airway inflammation is mediated by CRTH2 receptor. J Pharmacol Exp Ther. 2005; 312(3): 954~60.
    4. Fujitani Y, Kanaoka Y, Aritake K, et al. Eosinophilic lung inflammation and Th2 cytokine release in human lipocalin-type prostaglandin D synthase transgenic mice. J Immunol. 2002; 168(1): 443~9.
    5. Boie Y. Sawyer D. Slipetz K, et al. Moleular cloning and characterization of the human prostanoid DP receptor. J Biol Chem. 1995; 270(1): 18910~6.
    6. Toshiyuki Matsuoka, Masakazu Hirata, Hiroyuki Tanaka, et al. Prostaglandin D2 as a Mediator of Allergic Asthma. SCIENCE. 2000; 287(17): 2013~2017.
    7. Hirai H, Tanaka K, Yoshie O, et al. Prostaglandin D2 selectively induces chemotaxis in T helper type 2 cells, eosinophils, and basophils via seven-transmembrane receptor CRTH2. J Exp Med. 2001; 193(2): 255-61.
    8. Powell WS. Novel PGD(2) receptor expressed in eosinophils. Prostaglandins Leukot Essent Fatty Acids. 2003; 69(2-3): 179~85.
    9. Spik C. Brenuchon V. Angeli D, et al. Activation of the Prostaglandin D2 Receptor DP2/CRTH2 Increases Allergic Inflammation in Mouse. J. Immunol. 2005; 174(6): 3703~8.
    10. Monneret G, Gravel S, Diamond M, et al. Prostaglandin D_2 is a potent chemoattractant for human eosinophils that acts via a novel DP receptor. Blood. 2001; 98(6): 1942~8.
    11. Antonio M, Mirabella F, Costanzo G, et al. Airway Remodeling in Asthma. Chest. 2003; 123: 417-22.
    12. Jack A, Zhu Z, Chupp G, et al. Airway remodeling in asthma. J Clin Invest. 1999; 104(8): 1001-6.
    13. Kohyama T, Liu XD, Wen FQ, et al. Prostaglandin D2 inhibits fibroblast migration. Eur Respir J. 2002; 19(4): 684~9.
    14. Kohyama T, Wyatt TA, Liu XD, et al. PGD(2) modulates fibroblast-mediated native collagen gel contraction. Am J Respir Cell Mol Biol. 2002; 27(3): 375-81.
    15. Noguchi E, Shibasaki M, Kamioka M, et al. New polymorphisms of haematopoietic prostaglandin D synthase and human prostanoid DP receptor genes. Clin Exp Allergy. 2002; 32(1): 93~6.
    16. Tsuyoshi O, Palmer LJ., Birben E, et al. Role of Prostanoid DP Receptor Variantsin Susceptibility to Asthma. N Engl J Med. 2004; 351(17): 1752~63.
    17. Ulven T, Kostenis E. Minor structural modifications convert the dual DP/CRTH2 antagonist ramatroban into a highly selective and potent CRTH2 antagonist. J Med Chem. 2005; 48(4): 897~900.
    18. Mimura H, Ikemura T, Kotera O, et al. Inhibitory effect of the 4-aminotetrahydroquinoline derivatives, selective chemoattractant receptor-homologous molecule expressed on T helper 2 cell antagonists, on eosinophil migration induced by prostaglandin D2. J Pharmacot Exp Ther. 2005; 314(1): 244~51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700