食管癌中CXCR4与MMP-9,VEGF表达的临床和实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分食管鳞形细胞癌组织中CXCR4和相关蛋白MMP-9、VEGF的表达及临床意义
     研究背景和目的
     食管癌是一种常见的消化道肿瘤,以外科手术为主、辅以放化疗是该疾病目前的标准治疗模式,但根治性手术带来的巨大创伤以及放化疗导致的严重不良反应限制了传统治疗的发展。研究食管癌侵袭和转移机制、寻找新的分子靶点成为食管癌治疗的新方向。近年研究发现趋化因子受体CXCR4在多种肿瘤中均有表达,并且和肿瘤的侵袭、血管新生、转移及预后相关。基质金属蛋白酶-9(MMP-9)和血管内皮生长因子(VEGF)分别是肿瘤侵袭及血管新生的重要分子。本部分实验主要探讨食管鳞形细胞癌组织中CXCR4、MMP-9和VEGF表达水平及三者相关性,同时分析它们与患者临床病理学特征、预后的关系。
     方法
     收集2005年于我院行根治性开胸手术的127例食管鳞形细胞癌患者的病史和随访资料;同时收集他们的蜡块标本,根据免疫组化染色面积和染色强弱判断肿瘤组织中CXCR4、MMP-9和VEGF的表达水平;采用Kaplan-Meier法(单因素分析)及Cox回归(多因素分析)分析相关因素和预后的关系。
     结果
     CXCR4、MMP-9和VEGF在食管鳞形细胞癌组织中的表达阳性率分别为88.2%、93.7%及79.5%;CXCR4表达与肿瘤分化、肿瘤大小、肿瘤浸润深度、区域淋巴结转移以及TNM分期相关(P<0.05);MMP-9表达与患者年龄及肿瘤分化具有相关性(P<0.05);VEGF表达与肿瘤分化、肿瘤浸润深度及TNM分期相关(P<0.05):CXCR4与MMP-9(P<0.01,r=0.365)及CXCR4与VEGF(P<0.01,r=0.380)表达之间存在正相关,MMP-9与VEGF表达之间不存在相关性(P>0.05);单因素分析显示CXCR4表达、肿瘤大小、肿瘤浸润深度、区域淋巴结转移、TNM分期与患者预后相关(P<0.05),多因素分析发现肿瘤大小及区域淋巴结转移是食管癌患者的独立预后不良因素(P<0.01)。
     结论
     CXCR4在食管鳞形细胞癌组织中高表达,并且和MMP-9、VEGF、患者临床病理学特征及预后密切相关,推测CXCR4在食管鳞形细胞发展过程中起着重要作用,并且可能参与了肿瘤细胞对MMP-9、VEGF分泌的调控。
     第二部分CXCR4表达下调对Eca109细胞株的增殖、凋亡、侵袭及MMP-9、VEGF表达的影响
     研究背景和目的
     随着分子生物学的发展,基因靶向治疗成为肿瘤研究的热点。作为基因靶向药物的小分子酪氨酸激酶抑制剂(吉非替尼、厄洛替尼)已经应用于非小细胞肺癌的临床治疗,并且取得了一定的疗效。但至今还没有一种有效的靶向药物应用于食管癌的临床治疗。第一部分的研究发现,CXCR4在食管癌组织中高表达,并且和患者临床病理特征、预后以及MMP-9、VEGF表达密切相关。本部分实验将通过体外细胞实验进一步探讨CXCR4基因下调对食管癌Eca109细胞株增殖、凋亡、侵袭及MMP-9、VEGF表达的影响。
     方法
     针对CXCR4基因,构建4条RNA干扰序列,以质粒为载体转染Eca109细胞株,利用荧光实时定量PCR及Western印迹法检测质粒干扰效果,筛选出效果最佳干扰质粒;利用最佳干扰质粒转染Eca109细胞株,下调CXCR4基因表达,之后分别采用MTT法、流式细胞仪、Transwell小室实验、Western印迹法检测细胞增殖、凋亡、侵袭能力以及MMP-9、VEGF的表达水平。
     结果
     荧光实时定量PCR及Western印迹法检测发现,2号质粒对食管癌CXCR4基因干扰效果最佳。之后,利用2号干扰质粒转染Eca109细胞株,进行相关实验。结果发现,与阴性对照组(无质粒组)、非特异性干扰组相比较,转染CXCR4干扰质粒的细胞侵袭能力(P<0.05)以及MMP-9、VEGF表达水平明显下降(P<0.01):但是,细胞增殖及凋亡没有明显变化(P>0.05)。
     结论
     CXCR4调控MMP-9、VEGF的表达,推测CXCR4在食管癌Eca109细胞侵袭及血管新生过程中起着重要作用;CXCR4将来可能会成为食管癌基因治疗新的靶点。
BACKGROUND
     Esophageal cancer is a common disease of alimentary tract. The standard treatment is multimodality therapy, which is combined surgery with chemotherapy and radiotherapy. However, the trauma due to operation and the adverse effects of adjuvant treament restrict the development of multimodality therapy. To investigate the mechanism of invasion, metastasis and then find out the molecular target have become the new focus in the treatment of esophageal cancer. In recent years, CXCR4 was found to be expressed in many tumors and significantly correlated with invasion, angiogenesis, metastasis and prognosis. MMP-9 and VEGF were the important fators in tumor invasion and angiogenesis, respectively. In this study, we will investigate the expressions of CXCR4, MMP-9 and VEGF in esophageal squamous cell cancer and analyze their associations with patients's clinicopathological features and prognosis.
     METHODS
     We collected the paraffin-embedded samples, as well as medical records and follow-up data of 127 patients with esophageal cancer, who were treated by thoracic surgery in Zhongshan Hospital in 2005. The CXCR4, MMP-9 and VEGF expressions in esophageal cancer tissues were evaluated according to the immunohistochemical staining area and intensity. The associations between patients' prognosis and covariates were analyzed by Kaplan-Meier method (univariate analysis) and Cox regression (multivariate analysis).
     RESULTS
     The overall expression rate of CXCR4, MMP-9 and VEGF was 88.2%, 93.7% and 79.5%, respectively. CXCR4 expression was significantly associated with tumor grade, tumor size, tumor depth, regional lymph node metastasis and TNM stage (P<0.05). MMP-9 expression was significantly associated with age and tumor grade (P<0.05). VEGF expression was significantly associated with tumor grade, tumor depth and TNM stage (P<0.05). CXCR4 expression was positively correlated with MMP-9 expression (P<0.01, r =0.365) and VEGF expression (P<0.01, r=0.380). However, there was no significant association between MMP-9 and VEGF expressions (P>0.05). In univariate analysis, CXCR4 expression, tumor size, tumor depth, regional lymph node metastasis and TNM stage were correlated with patients' prognosis (P<0.05); in multivariate analysis, tumor size and regional lymph node metastasis were the independent factors of poor prognosis.
     CONCULSIONS
     CXCR4 was highly expressed in esophageal cancer and correlated with MMP-9, VEGF, clinicopathological features and prognosis. We speculated CXCR4 play an important role during the progression of this disease and CXCR4 might participate in the regulation of MMP-9 and VEGF secretions.
     BACKGROUND
     Targeted thearpy has become the focus of cancer research with the development of molecular biology. As a typical targeted drug, the small-molecule tyrosine kinase inhibitors (Gefitinib, Erlotinib) have been approved for clinical treatment of no small cell lung cancer and got the promising effect. However, there was no effective targeted drug used in clinical treatment for esophageal caner. Through the previous study of Part 1, we found that CXCR4 was highly expressed in esophageal cancer and significantly associated with patients' clinicopathological features, prognosis and MMP-9, VEGF expressions. The aim of this study was to investigate the influence of CXCR4 downregulation on proliferation, apopotosis, invasion and MMP-9, VEGF expressions in Eca109 cell line in vitro.
     METHODS
     Four RNA interference sequences targeted for CXCR4 were constructed and transfected into Eca109 cell with the vector of plasmid. The best effective RNA interference plasmid was selected by Real time PCR and Western blot. After downregulating the expression of CXCR4 in Eca109 cell by the best effective plasmid transfection, the cell proliferation, apoptosis, invasion and the expressions of MMP-9 and VEGF were detected by MTT assay, flow cytometry, transwell assay and Western blot, respectively.
     RESULTS
     Number 2 plasmid showed the best RNA interference effect according to the detection of Real time PCR and Western blot. And then, Eca109 was transfected with Number 2 plasmid for the experiments. Compared with the negative control (no plasmid transfection) and the nonspecific control, the invasion ability of Eca109 cell transfected with RNA interference plasmid was significantly lower (P<0.05), as well as the expressions of MMP-9 and VEGF (P<0.01). However, no difference was foundin cell proliferation or apoptosis (P>0.05).
     CONCULTIONS
     MMP-9、VEGF expressions were regulated by CXCR4, which would act as an important role in Eca109 cell's invasion and angiogenesis; CXCR4 might be a novel therapeutic target of esophageal cancer in the future.
引文
1.林东昕.中国食管癌分子流行病学研究.中华流行病学杂志.2003;24(10):939-943.
    2.Enzinger PC,Mayer RJ.Esophageal cancer.N Engl J Med 2003;349(23):2241-52.
    3.Kris MG,Natale RB,Herbst RS,et al.Efficacy of gefitinib,an inhibitor of the epidermal growth factor receptor tyrosine kinase,in symptomatic patients with non-small cell lung cancer:a randomized trial.Jama 2003;290(16):2149-58.
    4.Perez-Soler R.Phase Ⅱ clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib(OSI-774) in non-small-cell lung cancer.Clin Lung Cancer 2004;6 Suppl 1:S20-3.
    5.Tew WP,Kelsen DP,Ilson DH.Targeted therapies for esophageal cancer.Oncologist 2005;10(8):590-601.
    6.Luker KE,Luker GD.Functions of CXCL12 and CXCR4 in breast cancer.Cancer Lett 2006;238(1):30-41.
    7.Callewaere C,Banisadr G,Rostene W,et al.Chemokines and chemokine receptors in the brain:implication in neuroendocrine regulation.J Mol Endocrinol 2007;38(3):355-63.
    8.Balkwill F.The significance of cancer cell expression of the chemokine receptor CXCR4.Semin Cancer Biol 2004;14(3):171-9.
    9.Darash-Yahana M,Pikarsky E,Abramovitch R,et al.Role of high expression levels of CXCR4 in tumor growth,vascularization,and metastasis.Faseb J 2004;18(11):1240-2.
    10.Lapteva N,Yang AG,Sanders DE,et al.CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo.Cancer Gene Ther 2005;12(1):84-9.
    11.Li JK,Yu L,Shen Y,et al.Inhibition of CXCR4 activity with AMD3100decreases invasion of human colorectal cancer cells in vitro.World J Gastroenterol 2008;14(15):2308-13.
    12.Kaifi JT,Yekebas EF,Schurr P,et al.Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer.J Natl Cancer Inst 2005;97(24):1840-7.
    13.Gockel I,Schimanski CC,Heinrich C,et al.Expression ofchemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma. BMC Cancer 2006;6:290.
    
    14. Gockel I, Schimanski CC, Moehler M, et al. Novel therapeutic targets in esophageal cancer: impact of chemokine receptor CXCR4. Future Oncol 2007;3(2):119-22
    1. Li H, Zhang Q, Xu L, et al. Factors predictive of prognosis after esophagectomy for squamous cell cancer. J Thorac Cardiovasc Surg 2009; 137(1):55-9.
    
    2. Gockel I, Schimanski CC, Moehler M, et al. Novel therapeutic targets in esophageal cancer: impact of chemokine receptor CXCR4. Future Oncol 2007;3(2):119-22.
    
    3. Gu ZD, Chen KN, Li M, et al. Clinical significance of matrix metalloproteinase-9 expression in esophageal squamous cell carcinoma. World J Gastroenterol 2005; 11(6):871-4.
    
    4. Folkman J. What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 1990; 82(1):4-6.
    
    5. Bouck N. Tumor angiogenesis: the role of oncogenes and tumor suppressor genes. Cancer Cells 1990; 2(6):179-85.
    
    6. Gockel I, Schimanski CC, Heinrich C, et al. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma. BMC Cancer 2006;6:290.
    
    7. Parkin DM. International variation. Oncogene 2004; 23(38):6329-40.
    
    8. Enzinger PC, Mayer RJ. Esophageal cancer. N Engl J Med 2003;349(23):2241-52.
    
    9. Tew WP, Kelsen DP, Ilson DH. Targeted therapies for esophageal cancer. Oncologist 2005; 10(8):590-601.
    
    10. Kryczek I, Wei S, Keller E, et al. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 2007; 292(3):C987-95.
    
    11. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004; 14(3):171-9.
    
    12. Kang H, Watkins G, Douglas-Jones A, et al. The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast 2005; 14(5):360-7.
    
    13. Li YM, Pan Y, Wei Y, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004; 6(5):459-69.
    
    14. Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 2005; 23(12):2744-53.
    15.Burger JA,Kipps TJ.CXCR4:a key receptor in the crosstalk between tumor cells and their microenvironment.Blood 2006;107(5):1761-7.
    16.卢春来,纪元,葛棣.CXCR4在食管鳞形细胞癌中的表达及临床意义.复旦学报(医学版)2008;35(2):224-27.
    17.Vihinen P,Kahari VM.Matrix metalloproteinases in cancer:prognostic markers and therapeutic targets.Int J Cancer 2002;99(2):157-66.
    18.El-Shahat M,Lotfy M,Fahmy L,et al.Prognostic value of microvessel density,matrix metalloproteinase-9 and p53 protein expression in esophageal cancer.J Egypt Natl Canc Inst 2004;16(4):224-30.
    19.Samantaray S,Sharma R,Chattopadhyaya TK,et al.Increased expression of MMP-2 and MMP-9 in esophageal squamous cell carcinoma.J Cancer Res Clin Oncol 2004;130(1):37-44.
    20.Sato F,Shimada Y,Watanabe G,et al.Expression of vascular endothelial growth factor,matrix metalloproteinase-9 and E-cadherin in the process of lymph node metastasis in oesophageal cancer.Br J Cancer 1999;80(9):1366-72.
    21.Mroczko B,Kozlowski M,Groblewska M,et al.Expression of matrix metalloproteinase-9 in the neoplastic and interstitial inflammatory infiltrate cells in the different histopathological types of esophageal cancer.Folia Histochem Cytobiol 2008;46(4):471-8.
    22.Inoue K,Ozeki Y,Suganuma T,et al.Vascular endothelial growth factor expression in primary esophageal squamous cell carcinoma.Association with angiogenesis and tumor progression.Cancer 1997;79(2):206-13.
    23.Kleespies A,Guba M,Jauch KW,et al.Vascular endothelial growth factor in esophageal cancer.J Surg Oncol 2004;87(2):95-104.
    24.Chen L,Ren GS,Li F,et al.Expression of Livin and vascular endothelial growth factor in different clinical stages of human esophageal carcinoma.World J Gastroenterol 2008;14(37):5749-54.
    25.Senger DR,Van de Water L,Brown LF,et al.Vascular permeability factor (VPF,VEGF) in tumor biology.Cancer Metastasis Rev 1993;12(3-4):303-24.
    26.Ferrara N.Vascular endothelial growth factor.Eur J Cancer 1996;32A(14):2413-22.
    27.Darash-Yahana M,Pikarsky E,Abramovitch R,et al.Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. Faseb J 2004; 18(11): 1240-2.
    
    28. Hao L, Zhang C, Qiu Y, et al. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Lett 2007; 253(1):34-42.
    
    29. Hiratsuka S, Nakamura K, Iwai S, et al. MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell 2002; 2(4):289-300.
    
    30. Sweeney P, Karashima T, Kim SJ, et al. Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 production. Clin Cancer Res 2002; 8(8):2714-24.
    
    31. Kaifi JT, Yekebas EF, Schurr P, et al. Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. J Natl Cancer Inst 2005; 97(24): 1840-7.
    
    32. Ogata Y, Fujita H, Yamana H, et al. Expression of vascular endothelial growth factor as a prognostic factor in node-positive squamous cell carcinoma in the thoracic esophagus: long-term follow-up study. World J Surg 2003; 27(5):584-9.
    
    33. Bollschweiler E, Baldus SE, Schroder W, et al. Staging of esophageal carcinoma: length of tumor and number of involved regional lymph nodes. Are these independent prognostic factors? J Surg Oncol 2006; 94(5):355-63.
    
    34. Greenstein AJ, Litle VR, Swanson SJ, et al. Prognostic significance of the number of lymph node metastases in esophageal cancer. J Am Coll Surg 2008;206(2):239-46.
    
    35. Wilson M, Rosato EL, Chojnacki KA, et al. Prognostic significance of lymph node metastases and ratio in esophageal cancer. J Surg Res 2008; 146(1):11-5.
    
    36. Pouliquen X, Levard H, Hay JM, et al. 5-Fluorouracil and cisplatin therapy after palliative surgical resection of squamous cell carcinoma of the esophagus. A multicenter randomized trial. French Associations for Surgical Research. Ann Surg 1996;223(2): 127-33.
    
    37. Ando N, Iizuka T, Kakegawa T, et al. A randomized trial of surgery with and without chemotherapy for localized squamous carcinoma of the thoracic esophagus: the Japan Clinical Oncology Group Study. J Thorac Cardiovasc Surg 1997; 114(2):205-9.
    
    38. Ando N, Iizuka T, Ide H, et al. Surgery plus chemotherapy compared with surgery alone for localized squamous cell carcinoma of the thoracic esophagus: a Japan Clinical Oncology Group Study--JCOG9204. J Clin Oncol 2003;21(24):4592-6.
    1. Shimada H, Matsushita K, Tagawa M. Recent advances in esophageal cancer gene therapy. Ann Thorac Cardiovasc Surg 2008; 14(1):3-8.
    
    2. Yu K, Zhuang J, Kaminski JM, et al. CXCR4 down-regulation by small interfering RNA inhibits invasion and tubule formation of human retinal microvascular endothelial cells. Biochem Biophys Res Commun 2007;358(4):990-6.
    
    3. Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 2006; 238(1):30-41.
    
    4. Callewaere C, Banisadr G, Rostene W, et al. Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J Mol Endocrinol 2007; 38(3):355-63.
    
    5. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12(2):121-7.
    
    6. Murphy PM. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 2002; 54(2):227-9.
    
    7. Balkwill F. The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 2004; 14(3): 171-9.
    
    8. Sun YX, Wang J, Shelburne CE, et al. Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. J Cell Biochem 2003;89(3):462-73.
    
    9. Chen X, Beutler JA, McCloud TG, et al. Tannic acid is an inhibitor of CXCL12 (SDF-1 alpha)/CXCR4 with antiangiogenic activity. Clin Cancer Res 2003;9(8):3115-23.
    
    10. Liang Z, Yoon Y, Votaw J, et al. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 2005; 65(3):967-71.
    
    11. Lapteva N, Yang AG, Sanders DE, et al. CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Ther 2005; 12(1):84-9.
    12. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669):806-11.
    
    13. Huang C, Li M, Chen C, et al. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 2008; 12(5):637-45.
    
    14. Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. Faseb J 2004; 18(11):1240-2.
    
    15. Barbieri F, Bajetto A, Stumm R, et al. Overexpression of stromal cell-derived factor 1 and its receptor CXCR4 induces autocrine/paracrine cell proliferation in human pituitary adenomas. Clin Cancer Res 2008; 14(16):5022-32.
    
    16. Barbieri F, Bajetto A, Porcile C, et al. CXC receptor and chemokine expression in human meningioma: SDF1/CXCR4 signaling activates ERK1/2 and stimulates meningioma cell proliferation. Ann N Y Acad Sci 2006; 1090:332-43.
    
    17. Billadeau DD, Chatterjee S, Bramati P, et al. Characterization of the CXCR4 signaling in pancreatic cancer cells. Int J Gastrointest Cancer 2006; 37(4):110-9.
    
    18. Li JK, Yu L, Shen Y, et al. Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro. World J Gastroenterol 2008; 14(15):2308-13.
    
    19. Chen GS, Yu HS, Lan CC, et al. CXC chemokine receptor CXCR4 expression enhances tumorigenesis and angiogenesis of basal cell carcinoma. Br J Dermatol 2006; 154(5):910-8.
    
    20. Rubin JB, Kung AL, Klein RS, et al. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci U S A 2003; 100(23):13513-8.
    
    21. Brand S, Dambacher J, Beigel F, et al. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res 2005; 310(1): 117-30.
    
    22. Yuecheng Y, Xiaoyan X. Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur J Cancer Prev 2007; 16(5):430-5.
    
    23. Zhang S, Qi L, Li M, et al. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. J Exp Clin Cancer Res 2008; 27:62.
    
    24. Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun 2007; 359(3):716-22.
    
    25. Wang J, Wang J, Sun Y, et al. Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 2005;17(12):1578-92.
    
    26. Tan CT, Chu CY, Lu YC, et al. CXCL12/CXCR4 promotes laryngeal and hypopharyngeal squamous cell carcinoma metastasis through MMP-13-dependent invasion via the ERK1/2/AP-1 pathway. Carcinogenesis 2008; 29(8): 1519-27.
    
    27. Rehman AO, Wang CY. SDF-1 alpha promotes invasion of head and neck squamous cell carcinoma by activating NF-kappaB. J Biol Chem 2008;283(29):19888-94.
    
    28. Helbig G, Christopherson KW, 2nd, Bhat-Nakshatri P, et al. NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 2003; 278(24):21631-8.
    
    29. Kris MG, Natale RB, Herbst RS, et al. Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: a randomized trial. Jama 2003; 290( 16):2149-58.
    
    30. Perez-Soler R. Phase II clinical trial data with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib (OSI-774) in non-small-cell lung cancer. Clin Lung Cancer 2004; 6 Suppl 1:S20-3.
    31.Aklilu M,Ilson DH.Targeted agents and esophageal cancer-the next step?Semin Radiat Oncol 2007;17(1):62-9.
    32.Gockel I,Schimanski CC,Moehler M,Junginger T.Novel therapeutic targets in esophageal cancer:impact of chemokine receptor CXCR4.Future Oncol 2007;3(2):119-22.
    1. Huang C, Li M, Chen C, et al. Small interfering RNA therapy in cancer: mechanism, potential targets, and clinical applications. Expert Opin Ther Targets 2008; 12(5):637-45.
    
    2. Mocellin S, Costa R, Nitti D. RNA interference: ready to silence cancer? J Mol Med 2006;84(1):4-15.
    
    3. Pai SI, Lin YY, Macaes B, et al. Prospects of RNA interference therapy for cancer. Gene Ther 2006; 13(6):464-77.
    
    4. Check E. A crucial test. Nat Med 2005; 11(3):243-4.
    
    5. Fire A, Xu S, Montgomery MK, et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391(6669):806-11.
    
    6. Zamore PD, Tuschl T, Sharp PA, et al. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 2000; 101(1):25-33.
    
    7. Elbashir SM, Martinez J, Patkaniowska A, et al. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J 2001;20(23):6877-88.
    
    8. Liu J, Carmell MA, Rivas FV, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004; 305(5689): 1437-41.
    
    9. Futreal PA, Coin L, Marshall M, et al. A census of human cancer genes. Nat Rev Cancer 2004; 4(3): 177-83.
    
    10. Blume-Jensen P, Hunter T. Oncogenic kinase signalling. Nature 2001;411(6835):355-65.
    
    11. Wohlbold L, van der Kuip H, Miething C, et al. Inhibition of bcr-abl gene expression by small interfering RNA sensitizes for imatinib mesylate (STI571).Blood 2003; 102(6):2236-9.
    
    12. Wilda M, Fuchs U, Wossmann W, et al. Killing of leukemic cells with a BCR/ABL fusion gene by RNA interference (RNAi). Oncogene 2002; 21(37):5716-24.
    
    13. Zhang M, Zhang X, Bai CX, et al. Inhibition of epidermal growth factor receptor expression by RNA interference in A549 cells. Acta Pharmacol Sin 2004;25(1):61-7.
    
    14. Yang G, Cai KQ, Thompson-Lanza JA, et al. Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem 2004; 279(6):4339-45.
    
    15. Sithanandam G, Fornwald LW, Fields J, et al. Inactivation of ErbB3 by siRNA promotes apoptosis and attenuates growth and invasiveness of human lung adenocarcinoma cell line A549. Oncogene 2005; 24(11): 1847-59.
    
    16. Chen LM, Le HY, Qin RY, et al. Reversal of the phenotype by K-rasval 12 silencing mediated by adenovirus-delivered siRNA in human pancreatic cancer cell line Panc-1. World J Gastroenterol 2005; 11(6):831-8.
    
    17. Kaelin WG, Jr. Functions of the retinoblastoma protein. Bioessays 1999;21(11):950-8.
    
    18. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002; 2(5):342-50.
    
    19. Jiang M, Milner J. Selective silencing of viral gene expression in HPV-positive human cervical carcinoma cells treated with siRNA, a primer of RNA interference. Oncogene 2002; 21(39):6041-8.
    
    20. Jiang M, Milner J. Selective silencing of viral gene E6 and E7 expression in HPV-positive human cervical carcinoma cells using small interfering RNAs.Methods Mol Biol 2005; 292:401-20.
    
    21. DuPree EL, Mazumder S, Almasan A. Genotoxic stress induces expression of E2F4, leading to its association with p130 in prostate carcinoma cells. Cancer Res 2004; 64(13):4390-3.
    
    22. Harris SL, Levine AJ. The p53 pathway: positive and negative feedback loops. Oncogene 2005; 24(17):2899-908.
    
    23. Danovi D, Meulmeester E, Pasini D, et al. Amplification of Mdmx (or Mdm4) directly contributes to tumor formation by inhibiting p53 tumor suppressor activity. Mol Cell Biol 2004; 24(13):5835-43.
    
    24. Purow BW, Haque RM, Noel MW, et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005; 65(6):2353-63.
    
    25. Butz K, Ristriani T, Hengstermann A, et al. siRNA targeting of the viral E6 oncogene efficiently kills human papillomavirus-positive cancer cells. Oncogene 2003; 22(38):5938-45.
    
    26. Yuan J, Yan R, Kramer A, et al. Cyclin B1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene 2004; 23(34):5843-52.
    
    27. Zen Y, Harada K, Sasaki M, et al. Intrahepatic cholangiocarcinoma escapes from growth inhibitory effect of transforming growth factor-beta 1 by overexpression of cyclin D1. Lab Invest 2005; 85(4):572-81.
    
    28. Xiao Z, Xue J, Sowin TJ, et al. A novel mechanism of checkpoint abrogation conferred by Chk1 downregulation. Oncogene 2005; 24(8):1403-11.
    
    29. Guan HT, Xue XH, Dai ZJ, et al. Down-regulation of survivin expression by small interfering RNA induces pancreatic cancer cell apoptosis and enhances its radiosensitivity. World J Gastroenterol 2006; 12(18):2901-7.
    
    30. Abedini MR, Qiu Q, Yan X, et al. Possible role of FLICE-like inhibitory protein (FLIP) in chemoresistant ovarian cancer cells in vitro. Oncogene 2004;23(42):6997-7004.
    
    31. Holle L, Hicks L, Song W, et al. Bcl-2 targeting siRNA expressed by a T7 vector system inhibits human tumor cell growth in vitro. Int J Oncol 2004;24(3):615-21.
    
    32. Zhu H, Guo W, Zhang L, et al. Bcl-XL small interfering RNA suppresses the proliferation of 5-fluorouracil-resistant human colon cancer cells. Mol Cancer Ther 2005; 4(3):451-6.
    
    33. Taniai M, Grambihler A, Higuchi H, et al. Mcl-1 mediates tumor necrosis factor-related apoptosis-inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 2004; 64(10):3517-24. 34. Hatano M, Mizuno M, Yoshida J. Enhancement of C2-ceramide antitumor activity by small interfering RNA on X chromosome-linked inhibitor of apoptosis protein in resistant human glioma cells. J Neurosurg 2004;101(1):119-27.
    
    35. July LV, Beraldi E, So A, et al. Nucleotide-based therapies targeting clusterin chemosensitize human lung adenocarcinoma cells both in vitro and in vivo. Mol Cancer Ther 2004; 3(3):223-32.
    
    36. Patry C, Bouchard L, Labrecque P, et al. Small interfering RNA-mediated reduction in heterogeneous nuclear ribonucleoparticule A1/A2 proteins induces apoptosis in human cancer cells but not in normal mortal cell lines. Cancer Res 2003; 63(22):7679-88.
    
    37. Zheng W, Wang H, Xue L, et al. Regulation of cellular senescence and p16(INK4a) expression by Id1 and E47 proteins in human diploid fibroblast. J Biol Chem 2004; 279(30):31524-32.
    
    38. Takei Y, Kadomatsu K, Yuzawa Y, et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer Res 2004;64(10):3365-70.
    
    39. Filleur S, Courtin A, Ait-Si-Ali S, et al. SiRNA-mediated inhibition of vascular endothelial growth factor severely limits tumor resistance to antiangiogenic thrombospondin-1 and slows tumor vascularization and growth. Cancer Res 2003;63(14):3919-22.
    
    40. Kilic N, Oliveira-Ferrer L, Wurmbach JH, et al. Pro-angiogenic signaling by the endothelial presence of CEACAM1. J Biol Chem 2005; 280(3):2361-9.
    
    41. Schiffelers RM, Ansari A, Xu J, et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004;32(19):el49.
    
    42. Salvi A, Arici B, De Petro G, et al. Small interfering RNA urokinase silencing inhibits invasion and migration of human hepatocellular carcinoma cells. Mol Cancer Ther 2004; 3(6):671-8.
    
    43. Gondi CS, Lakka SS, Dinh DH, et al. RNAi-mediated inhibition of cathepsin B and uPAR leads to decreased cell invasion, angiogenesis and tumor growth in gliomas. Oncogene 2004; 23(52):8486-96.
    
    44. Lakka SS, Gondi CS, Dinh DH, et al. Specific interference of urokinase-type plasminogen activator receptor and matrix metalloproteinase-9 gene expression induced by double-stranded RNA results in decreased invasion, tumor growth, and angiogenesis in gliomas. J Biol Chem 2005; 280(23):21882-92.
    
    45. Edovitsky E, Elkin M, Zcharia E, et al. Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 2004;96(16):1219-30.
    
    46. Liu N, Bi F, Pan Y, et al. Reversal of the malignant phenotype of gastric cancer cells by inhibition of RhoA expression and activity. Clin Cancer Res 2004;10(18 Pt 1):6239-47.
    
    47. Lipscomb EA, Dugan AS, Rabinovitz I, Mercurio AM. Use of RNA interference to inhibit integrin (alpha6beta4)-mediated invasion and migration of breast carcinoma cells. Clin Exp Metastasis 2003; 20(6):569-76.
    
    48. Chen Y, Stamatoyannopoulos G, Song CZ. Down-regulation of CXCR4 by inducible small interfering RNA inhibits breast cancer cell invasion in vitro. Cancer Res 2003; 63(16):4801-4.
    
    49. Liang Z, Yoon Y, Votaw J, et al. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 2005; 65(3):967-71.
    
    50. Marchesi F, Monti P, Leone BE, et al. Increased survival, proliferation, and migration in metastatic human pancreatic rumor cells expressing functional CXCR4. Cancer Res 2004; 64(22):8420-7.
    
    51. Scala S, Ottaiano A, Ascierto PA, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 2005; 11(5):1835-41.
    
    52. Jiang YP, Wu XH, Shi B, et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol Oncol 2006; 103(1):226-33.
    
    53. Kryczek I, Wei S, Keller E, et al. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 2007; 292(3):C987-95.
    
    54. Lee EJ, Mircean C, Shmulevich I, et al. Insulin-like growth factor binding protein 2 promotes ovarian cancer cell invasion. Mol Cancer 2005; 4(1):7.
    
    55. Duxbury MS, Ito H, Zinner MJ, et al. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene 2004; 23(7): 1448-56.
    
    56. Osta WA, Chen Y, Mikhitarian K, et al. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res 2004;64(16):5818-24.
    
    57. Dunn GP, Old LJ, Schreiber RD. The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22:329-60.
    
    58. Khong HT, Restifo NP. Natural selection of tumor variants in the generation of "tumor escape" phenotypes. Nat Immunol 2002; 3(11):999-1005.
    
    59. Gorelik L, Flavell RA. Immune-mediated eradication of tumors through the blockade of transforming growth factor-beta signaling in T cells. Nat Med 2001;7(10):1118-22.
    
    60. Yin JQ, Gao J, Shao R, et al. siRNA agents inhibit oncogene expression and attenuate human tumor cell growth. J Exp Ther Oncol 2003; 3(4): 194-204.
    
    61. Yue FY, Dummer R, Geertsen R, et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer 1997; 71(4):630-7.
    
    62. McCarthy BA, Mansour A, Lin YC, et al. RNA interference of IL-10 in leukemic B-1 cells. Cancer Immun 2004; 4:6.
    
    63. Yague E, Higgins CF, Raguz S. Complete reversal of multidrug resistance by stable expression of small interfering RNAs targeting MDR1. Gene Ther 2004;11(14):1170-4.
    
    64. Duan Z, Brakora KA, Seiden MV. Inhibition of ABCB1 (MDR1) and ABCB4 (MDR3) expression by small interfering RNA and reversal of paclitaxel resistance in human ovarian cancer cells. Mol Cancer Ther 2004; 3(7):833-8.
    
    65. Huang Y, Anderle P, Bussey KJ, et al. Membrane transporters and channels: role of the transportome in cancer chemosensitivity and chemoresistance. Cancer Res 2004; 64(12):4294-301.
    
    66. Chang IY, Kim MH, Kim HB, et al. Small interfering RNA-induced suppression of ERCC1 enhances sensitivity of human cancer cells to cisplatin. Biochem Biophys Res Commun 2005; 327(1):225-33.
    
    67. Chow TY, Alaoui-Jamali MA, Yeh C, et al. The DNA double-stranded break repair protein endo-exonuclease as a therapeutic target for cancer. Mol Cancer Ther 2004; 3(8):911-9.
    
    68. Lin ZP, Belcourt MF, Cory JG, et al. Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(-/-) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors. J Biol Chem 2004; 279(26):27030-8.
    
    69. Collis SJ, Swartz MJ, Nelson WG, et al. Enhanced radiation and chemotherapy-mediated cell killing of human cancer cells by small inhibitory RNA silencing of DNA repair factors. Cancer Res 2003; 63(7): 1550-4.
    
    70. Bumcrot D, Manoharan M, Koteliansky V, et al. RNAi therapeutics: a potential new class of pharmaceutical drugs. Nat Chem Biol 2006; 2(12):711-9.
    
    71. Dykxhoorn DM, Lieberman J. Running interference: prospects and obstacles to using small interfering RNAs as small molecule drugs. Annu Rev Biomed Eng 2006; 8:377-402.
    
    72. Kim DH, Rossi JJ. Strategies for silencing human disease using RNA interference. Nat Rev Genet 2007; 8(3): 173-84.
    
    73. Hadj-Slimane R, Lepelletier Y, Lopez N, et al. Short interfering RNA (siRNA), a novel therapeutic tool acting on angiogenesis. Biochimie 2007;89(10):1234-44.
    
    74. Scherr M, Eder M. RNAi in functional genomics. Curr Opin Mol Ther 2004;6(2):129-35.
    1. Luker KE, Luker GD. Functions of CXCL12 and CXCR4 in breast cancer. Cancer Lett 2006; 238(1):30-41.
    
    2. Callewaere C, Banisadr G, Rostene W, et al. Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J Mol Endocrinol 2007; 38(3):355-63.
    
    3. Zlotnik A, Yoshie O. Chemokines: a new classification system and their role in immunity. Immunity 2000; 12(2):121-7.
    
    4. Murphy PM. International Union of Pharmacology. XXX. Update on chemokine receptor nomenclature. Pharmacol Rev 2002; 54(2):227-9.
    
    5. Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996;272(5263):872-7.
    
    6. Ma Q, Jones D, Borghesani PR, et al. Impaired B-lymphopoiesis, myelopoiesis, and derailed cerebellar neuron migration in CXCR4- and SDF-1-deficient mice. Proc Natl Acad Sci U S A 1998; 95(16):9448-53.
    
    7. Nagasawa T, Hirota S, Tachibana K, et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1.Nature 1996; 382(6592):635-8.
    
    8. Tachibana K, Hirota S, Iizasa H, et al. The chemokine receptor CXCR4 is essential for vascularization of the gastrointestinal tract. Nature 1998;393(6685):591-4.
    
    9. Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 1998;393(6685):595-9.
    
    10. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer 2004; 4(7):540-50.
    
    11. Zlotnik A. Chemokines and cancer. Int J Cancer 2006; 119(9):2026-9.
    12. Kang H, Watkins G, Douglas-Jones A, et al. The elevated level of CXCR4 is correlated with nodal metastasis of human breast cancer. Breast 2005;14(5):360-7.
    
    13. Li YM, Pan Y, Wei Y, et al. Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell 2004; 6(5):459-69.
    
    14. Kim J, Takeuchi H, Lam ST, et al. Chemokine receptor CXCR4 expression in colorectal cancer patients increases the risk for recurrence and for poor survival. J Clin Oncol 2005; 23(12):2744-53.
    
    15. Jiang YP, Wu XH, Shi B, et al. Expression of chemokine CXCL12 and its receptor CXCR4 in human epithelial ovarian cancer: an independent prognostic factor for tumor progression. Gynecol Oncol 2006; 103(1):226-33.
    
    16. Scala S, Ottaiano A, Ascierto PA, et al. Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clin Cancer Res 2005; 11 (5):1835-41.
    
    17. Mochizuki H, Matsubara A, Teishima J, et al. Interaction of ligand-receptor system between stromal-cell-derived factor-1 and CXC chemokine receptor 4 in human prostate cancer: a possible predictor of metastasis. Biochem Biophys Res Commun 2004; 320(3):656-63.
    
    18. Ishikawa T, Nakashiro K, Hara S, et al. CXCR4 expression is associated with lymph-node metastasis of oral squamous cell carcinoma. Int J Oncol 2006; 28(1):61-6.
    
    19. Gockel I, Schimanski CC, Heinrich C, et al. Expression of chemokine receptor CXCR4 in esophageal squamous cell and adenocarcinoma. BMC Cancer 2006; 6:290.
    
    20. Oonakahara K, Matsuyama W, Higashimoto I, et al. Stromal-derived factor-lalpha/CXCL12-CXCR 4 axis is involved in the dissemination of NSCLC cells into pleural space. Am J Respir Cell Mol Biol 2004; 30(5):671-7.
    
    21. Salvucci O, Bouchard A, Baccarelli A, et al. The role of CXCR4 receptor expression in breast cancer: a large tissue microarray study. Breast Cancer Res Treat 2006;97(3):275-83.
    22. Su YC, Wu MT, Huang CJ, et al. Expression of CXCR4 is associated with axillary lymph node status in patients with early breast cancer. Breast 2006; 15(4):533-9.
    
    23. Spano JP, Andre F, Morat L, et al. Chemokine receptor CXCR4 and early-stage non-small cell lung cancer: pattern of expression and correlation with outcome. Ann Oncol 2004; 15(4):613-7.
    
    24. Sehgal A, Keener C, Boynton AL, et al. CXCR-4, a chemokine receptor, is overexpressed in and required for proliferation of glioblastoma tumor cells. J Surg Oncol 1998; 69(2):99-104.
    
    25. Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor lalpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res 2003;63(8): 1969-74.
    
    26. Scotton CJ, Wilson JL, Scott K, et al. Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Res 2002; 62(20):5930-8.
    
    27. Kijima T, Maulik G, Ma PC, et al. Regulation of cellular proliferation, cytoskeletal function, and signal transduction through CXCR4 and c-Kit in small cell lung cancer cells. Cancer Res 2002; 62(21):6304-11.
    
    28. Darash-Yahana M, Pikarsky E, Abramovitch R, et al. Role of high expression levels of CXCR4 in tumor growth, vascularization, and metastasis. Faseb J 2004; 18(11):1240-2.
    
    29. Katayama A, Ogino T, Bandoh N, et al. Expression of CXCR4 and its down-regulation by IFN-gamma in head and neck squamous cell carcinoma. Clin Cancer Res 2005; 11(8):2937-46.
    
    30. Marchesi F, Monti P, Leone BE, et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res 2004; 64(22):8420-7.
    
    31. Hall JM, Korach KS. Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Mol Endocrinol 2003; 17(5):792-803.
    
    32. Jordan VC, Morrow M. Tamoxifen, raloxifene, and the prevention of breast cancer. Endocr Rev 1999; 20(3):253-78.
    
    33. Lindgren P, Backstrom T, Mahlck CG, et al. Steroid receptors and hormones in relation to cell proliferation and apoptosis in poorly differentiated epithelial ovarian tumors. Int J Oncol 2001; 19(1):31-8.
    
    34. Rempel SA, Dudas S, Ge S, et al. Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma. Clin Cancer Res 2000; 6(1): 102-11.
    
    35. Kukreja P, Abdel-Mageed AB, Mondal D, et al. Up-regulation of CXCR4 expression in PC-3 cells by stromal-derived factor-1 alpha (CXCL12) increases endothelial adhesion and transendothelial migration: role of MEK/ERK signaling pathway-dependent NF-kappaB activation. Cancer Res 2005; 65(21):9891-8.
    
    36. Hartmann TN, Burger JA, Glodek A, et al. CXCR4 chemokine receptor and integrin signaling co-operate in mediating adhesion and chemoresistance in small cell lung cancer (SCLC) cells. Oncogene 2005; 24(27):4462-71.
    
    37. Sethi T, Rintoul RC, Moore SM, et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 1999; 5(6):662-8.
    
    38. Hazlehurst LA, Damiano JS, Buyuksal I, et al. Adhesion to fibronectin via betal integrins regulates p27kipl levels and contributes to cell adhesion mediated drug resistance (CAM-DR). Oncogene 2000; 19(38):4319-27.
    
    39. Uhm JH, Dooley NP, Kyritsis AP, et al. Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res 1999; 5(6): 1587-94.
    
    40. Muller A, Sonkoly E, Eulert C, et al. Chemokine receptors in head and neck cancer: association with metastatic spread and regulation during chemotherapy. Int J Cancer 2006; 118(9):2147-57.
    
    41. Zou W, Machelon V, Coulomb-L'Hermin A, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med 2001; 7(12): 1339-46.
    
    42. Bergers G, Benjamin LE. Tumorigenesis and the angiogenic switch. Nat Rev Cancer 2003;3(6):401-10.
    
    43. Wang J, Wang J, Sun Y, et al. Diverse signaling pathways through the SDF-1/CXCR4 chemokine axis in prostate cancer cell lines leads to altered patterns of cytokine secretion and angiogenesis. Cell Signal 2005; 17(12): 1578-92.
    
    44. Volin MV, Joseph L, Shockley MS, et al. Chemokine receptor CXCR4 expression in endothelium. Biochem Biophys Res Commun 1998;242(1):46-53.
    
    45. Kryczek I, Lange A, Mottram P, et al. CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Res 2005; 65(2):465-72.
    
    46. Mirshahi F, Pourtau J, Li H, et al. SDF-1 activity on microvascular endothelial cells: consequences on angiogenesis in in vitro and in vivo models. Thromb Res 2000; 99(6):587-94.
    
    47. Ferrara N. VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2002;2(10):795-803.
    
    48. Hao L, Zhang C, Qiu Y, et al. Recombination of CXCR4, VEGF, and MMP-9 predicting lymph node metastasis in human breast cancer. Cancer Lett 2007; 253(1):34-42.
    
    49. Liang Z, Brooks J, Willard M, et al. CXCR4/CXCL12 axis promotes VEGF-mediated tumor angiogenesis through Akt signaling pathway. Biochem Biophys Res Commun 2007; 359(3):716-22.
    
    50. Hong X, Jiang F, Kalkanis SN, et al. SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion. Cancer Lett 2006; 236(1):39-45.
    
    51. Zagzag D, Lukyanov Y, Lan L, et al. Hypoxia-inducible factor 1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion. Lab Invest 2006; 86(12):1221-32.
    52. Zlotnik A. Chemokines in neoplastic progression. Semin Cancer Biol 2004; 14(3):181-5.
    
    53. Chung LW. Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications. Cancer 2003; 97(3 Suppl):772-8.
    
    54. Chambers AF, Groom AC, MacDonald IC. Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer 2002; 2(8):563-72.
    
    55. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002; 2(3): 161-74.
    
    56. Hojilla CV, Mohammed FF, Khokha R. Matrix metalloproteinases and their tissue inhibitors direct cell fate during cancer development. Br J Cancer 2003; 89(10):1817-21.
    
    57. Samara GJ, Lawrence DM, Chiarelli CJ, et al. CXCR4-mediated adhesion and MMP-9 secretion in head and neck squamous cell carcinoma. Cancer Lett 2004; 214(2):231-41.
    
    58. Redondo-Munoz J, Escobar-Diaz E, Samaniego R, et al. MMP-9 in B-cell chronic lymphocytic leukemia is up-regulated by alpha4betal integrin or CXCR4 engagement via distinct signaling pathways, localizes to podosomes, and is involved in cell invasion and migration. Blood 2006; 108(9):3143-51.
    
    59. Chinni SR, Sivalogan S, Dong Z, et al. CXCL12/CXCR4 signaling activates Akt-1 and MMP-9 expression in prostate cancer cells: the role of bone microenvironment-associated CXCL12. Prostate 2006; 66(1):32-48.
    
    60. Brand S, Dambacher J, Beigel F, et al. CXCR4 and CXCL12 are inversely expressed in colorectal cancer cells and modulate cancer cell migration, invasion and MMP-9 activation. Exp Cell Res 2005; 310(1):117-30.
    
    61. Cardones AR, Murakami T, Hwang ST. CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via beta(1) integrin. Cancer Res 2003;63(20):6751-7.
    
    62. Burger M, Glodek A, Hartmann T, et al. Functional expression of CXCR4 (CD184) on small-cell lung cancer cells mediates migration, integrin activation, and adhesion to stromal cells. Oncogene 2003; 22(50):8093-101.
    63. Miura K, Uniyal S, Leabu M, et al. Chemokine receptor CXCR4-betal integrin axis mediates tumorigenesis of osteosarcoma HOS cells. Biochem Cell Biol 2005; 83(1):36-48.
    
    64. Jones J, Marian D, Weich E, et al. CXCR4 chemokine receptor engagement modifies integrin dependent adhesion of renal carcinoma cells. Exp Cell Res 2007.
    
    65. Muller A, Homey B, Soto H, et al. Involvement of chemokine receptors in breast cancer metastasis. Nature 2001; 410(6824):50-6.
    
    66. Liang Z, Wu T, Lou H, et al. Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Res 2004; 64(12):4302-8.
    
    67. Liang Z, Yoon Y, Votaw J, et al. Silencing of CXCR4 blocks breast cancer metastasis. Cancer Res 2005; 65(3):967-71.
    
    68. Zeelenberg IS, Ruuls-Van Stalle L, Roos E. The chemokine receptor CXCR4 is required for outgrowth of colon carcinoma micrometastases. Cancer Res 2003; 63(13):3833-9.
    
    69. Sun YX, Schneider A, Jung Y, et al. Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. J Bone Miner Res 2005; 20(2):318-29.
    
    70. Phillips RJ, Burdick MD, Lutz M, et al. The stromal derived factor-1/CXCL12-CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. Am J Respir Crit Care Med 2003; 167(12):1676-86.
    
    71. Devine SM, Flomenberg N, Vesole DH, et al. Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin's lymphoma. J Clin Oncol 2004;22(6):1095-102.
    
    72. Redjal N, Chan JA, Segal RA, et al. CXCR4 inhibition synergizes with cytotoxic chemotherapy in gliomas. Clin Cancer Res 2006; 12(22):6765-71.
    
    73. Mori T, Doi R, Koizumi M, et al. CXCR4 antagonist inhibits stromal cell-derived factor 1-induced migration and invasion of human pancreatic cancer. Mol Cancer Ther 2004; 3(1):29-37.
    74. Tamamura H, Hori A, Kanzaki N, et al. T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Lett 2003; 550(1-3):79-83.
    
    75. Zhang WB, Navenot JM, Haribabu B, et al. A point mutation that confers constitutive activity to CXCR4 reveals that T140 is an inverse agonist and that AMD3100 and ALX40-4C are weak partial agonists. J Biol Chem 2002;277(27):24515-21.
    
    76. Kryczek I, Wei S, Keller E, et al. Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. Am J Physiol Cell Physiol 2007; 292(3):C987-95.
    
    77. Labrosse B, Brelot A, Heveker N, et al. Determinants for sensitivity of human immunodeficiency virus coreceptor CXCR4 to the bicyclam AMD3100. J Virol 1998; 72(8):6381-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700