采动区地基与水闸结构相互作用机理及加固技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加固改造是采动区水闸结构沉陷治理的有效方法,但前提是基于土与结构的相互作用准确地获取地表变形作用下水闸结构的受力状态。开采扰动影响下的土与结构界面的力学特性影响着采动区地基与结构的相互作用,但目前缺乏系统的研究。由于采动区地基与水闸结构相互作用的高度复杂性,平面有限元法无法分析采动影响下地基与水闸结构复杂的空间变形性状,因此本文采用三维模型对采动影响下的地基与水闸结构相互作用进行了系统研究,对采动区水闸结构的安全性和地下资源的充分利用具有重要的指导意义。
     根据采动区扰动土的特点,通过改变土样的初始孔隙比和饱和度模拟扰动土物理性质的变化。采用DRS-1型直剪试验系统完成了扰动土与结构材料界面的直剪试验,分析了法向应力、初始孔隙比以及初始饱和度对界面剪切特性的影响。通过自制的界面剪切试验系统进行了浸水条件下扰动土与结构界面的剪切试验,通过数据对比,验证了界面剪切试验系统的可靠性。根据剪切试验结果,分析了浸水条件、加载-卸载、分段加载及反向加载等复杂加载路径下扰动土与结构界面的剪切性能。在扰动土与结构界面剪切试验分析的基础上,讨论了土样剪切强度与界面剪切强度的关系,定量分析了结构表面粗糙度对界面剪切强度的影响,建立了扰动土与结构界面的本构模型。采用ABAQUS中FRIC子程序进行二次开发,通过数值计算验证了模型的有效性。
     根据采动区下沉盆地的特征,推导了三维下沉曲面公式,并采用Python语言进行编程实现该三维曲面在ABAQUS模型中的施加。数值计算的结果表明,其形成的下沉盆地移动变形规律与概率积分法所得下沉盆地的规律基本一致。结合工程实例,根据地表控制点的下沉量,采用反演分析方法计算出下沉盆地的程序参数。
     结合工程实例,建立了采动区地基与水闸结构的三维弹塑性有限元模型,分别探讨了修正剑桥模型、Mohr-Coulomb模型以及混凝土损伤塑性模型参数的选取办法。整体模型中地基与水闸的界面采用VSRP模型,并通过界面模型中孔隙比的变化模拟扰动土的影响。分别进行了不考虑扰动土影响和考虑扰动土影响的采动影响下水闸结构整体分析。
     根据有限元分析结果,提出了采用内衬箱涵式钢筋混凝土框架结构的加固方案。通过采动影响下的加固水闸结构的整体分析,结果表明加固方案设计合理,加固效果显著。针对水闸结构的加固改造提出了具体的实施方案及施工中的关键环节。对采动区新建抗变形水闸提出合理化的设计建议。
Reinforcement transformation method is an efficient way to harness the sluicewithin subsidence areas; the premise is to accurately obtain the stress condition of thesluice under the influence of mining based on soil-structure interaction. Thefoundation-sluice interaction within subsidence areas is influenced by mechanicalcharacteristics of disturbed soil-structure interface. However, a systematic study of theshear behavior of this disturbed soil-structure interface is relatively limited andinfrequently reported in the literature. As the foundation-sluice interaction withinsubsidence areas is highly complex, it is insufficient to analyze the spatialstress-deformation behavior by using the plane finite element method. This papersystematically studies the foundation-sluice interaction within subsidence areas, basedon a series of3-D finite element analysis. Which is great significant to the reliabilityof the sluice within subsidence areas and availability of underground resource.
     Based on the variation regularity of disturbed soil in mining subsidence areas, aseries of disturbed soil-structure shear tests was performed by DRS-1direct shearexperiment system. The shear characteristic of the soil-structure interface wassystematically studied. The influences of normal stress, initial porosity ratio andinitial saturation for interface were analyzed.A series of disturbed soil-structure sheartests under the water immersion condition was performed by a newly developed shearexperiment system. Based on data comparison,the reliability of newly experimentsystem was validated. The influences of water-immersion condition, unload-reloadshear, staged shear and reverse shear for the interface were analyzed.Based on theresults of tests, the shear strength relationship between soil and soil-structure interfacewas discussed, the influences of surface roughness for shear strength of the interfacewas quantitatively analyzed. The constitutive model of disturbed soil-structureinterface (VSRP model) has been established. Numerical implementation of VSRPmodel has been finished through user subroutines. Through numerical calculation, theavailability of the model was verified.
     According to characteristics of the surface subsidence basin, three-dimensionalsubsidence surface equations have been derived from two-dimensional equations, andimplemented in ABAQUS through Python. The result of numerical calculationindicates that the moving and deformation laws of the three-dimensional equations arebasically the same as those of probability integral method. With a project example, theparameters of the surface subsidence basin were calculated by back analysis.
     With a project example, the whole three-dimensional elastoplastic model of thefoundation and sluice was established. The selection is studied of the parameters ofMCC model, Mohr-Coulomb model and concrete damage plasticity model. VSRPmodel was used to simulate the interface between the foundation and the sluice. Theinfluence of disturbed soil was considered by changing porosity ratio in VSRP model.Finite element analysis of the sluice within subsidence areas has been finishedconsidering the disturbed soil and without considering the disturbed soil.
     According to the results of finite element analysis, the reinforcement scheme ofthe sluice chamber was presented by lining with box frame structure. It is showed thatthe scheme is reasonable and has remarkably reinforcing effect, through finite elementanalysis of the reinforced sluice after the influence of mining. Concrete implementscheme of reinforcement and design suggestion for newly-built anti-deformationsluice were presented.
引文
[1]Eduardo Kausel.Early history of soil–structure interaction[J].Soil Dynamics and EarthquakeEngineering,30(2010):822-832.
    [2]侯文峻.土与结构接触面三维静动力变形规律与本构模型研究[D].北京:清华大学,1997.
    [3]Potyondy J G.Skin friction between various soils and construction materials[J]. Geotechnique,1961,11(4):339-353.
    [4]Clough G W, Duncan J M.Finite element analyses of retaining wall behavior[J].Journal of SoilMechanic and Foundation Division, ASCE,1971,97(12):1657~1673.
    [5]Kulhaway F H,Peterson M S.Behavior of sand and concrete interfaces[J].Proc.6th PanAmerican Conf. on Soil Mechanics and Foundation Engineering,1979(2):225-236.
    [6]Desai C S.A dynamic muiti degree-of-freedom shear device[J].Report No.8-36, Dept. of Civ.Engrg., Virginia Tech., Blacksburg, Va.
    [7]Desai C S,Drumm E C,Zaman M M.Cyclic Testing and Modeling of Interfaces[J].Journal ofGeotechnical Engineering,1985,111(6):793-815.
    [8]Desai C S, Nagaraj B.Modeling for cyclic normal and shear behavior of iterfaces[J]. Journalof Engineering Mechanics,114(7):1198-1217.
    [9]BRANDT J R T.Behavior of Soil-Concrete Interfaces[D].Edmonton,Canada:University ofAlberta,1985.
    [10]Yin Zong-Ze, Zhu Hong, Xu Guo-Hua.A study of deformation in the interface between soiland concrete[J]. Computers and Geotechnics,1995,17(1):75-92.
    [11]殷宗泽,朱泓,许国华.土与结构材料接触面的变形及数值模拟[J].岩土工程学报,1994,16(3):14-22.
    [12]朱泓,殷宗泽.土与结构材料接触面性能研究综述[J].河海科技进展,1994,14(4):1-8.
    [13]Fakharian K,Evgin E.Three dimensional apparatus for cyclic testing of interfaces[J]. CanadianGeotechnical Conference,1993:485-493.
    [14]Fakharian K, Evgin E.Simple shear versus direct shear tests on interfaces during cyclicloading[J]. Proc.,3rd Int. Can[. On Recent Adv. in Geotech. Earthquake Engrg. and Soil Dyn.,Vol. III, S.Prakash, ed., Univ. of Missouri at Rolla, Mo.,13-16.
    [15]Hu L M,Pu J L.Testing and modeling of soil-structure interface[J].Journal of Geotechnicaland Geoenvironmental Engineering,2004,130(8):851-860.
    [16]胡黎明,濮家骝.土与结构物接触面物理力学特性试验研究[J].岩土工程学报,2000,23(4):431-435
    [17]DeJong J T,Randolph M F,White D J.Interface load transfer degradation during cyclicloading:a microscale investigation[J].Journal of the Japanese Geotechnical Society:soils andfoundation,2003,43(4):81-93.
    [18]DeJong J T,Westgate Z J. Role of initial state, material properties, and confnement conditionon local and global soil-structure interface behavior[J]. Journal of Geotechnical andDeoenvironmental Engineering,2009.135:1646-1660.
    [19]Westgate Z J, Jason T, et al. Evolution of sand-structure interface response during monotonicshear using particle image velocimetry[J]. Geo Congress,20060226-0301Atlanta, GA (US),2006,1-6
    [20]Zhang G,Zhang J M.Large-scale apparatus for monotonic and cyclic soil-structure interfacetest[J].Geotechnical Testing Journal,2006,29(5):401-408.
    [21]张嘎,张建民.大型土与结构接触面循环加载剪切仪的研制及应用[J].岩土工程学报,2003,25(2):149-153.
    [22]张嘎,张建民.粗粒土与结构接触面单调力学特性的试验研究[J].岩土工程学报,2004,26(4):21-25.
    [23]张建民,候文俊,张嘎等.大型三维土与结构接触面试验机研制及应用[J].岩土工程学,2008,30(6):889-894.
    [24]冯大阔,张嘎,张健民等.常刚度条件下粗粒土与结构接触面三维力学特性试验研究[J].岩土工程学报,2009,31(10):1571-1577.
    [25]冯大阔,张建民,侯文峻.三维加载条件下粗粒土与结构接触面力学特性的试验研究[J].地震工程与工程振动,2010,30(6):154-161.
    [26]Mortara G,Mangiola A,Ghionna V N.Cyclic shear stress degradation and post-cyclicbehaviour from sand-steel interface direct shear tests[J].Canadian Geotechnical Journal,2007,44(7):739-752.
    [27]Acar Y B,Durgunoglu H T,Tumay M T.Interface properties of sands[J].Journal of theGeotechnical Engineering Division,1982,108(4):648-654.
    [28]Lings M L,Dietz M S.The peak strength of sand-steel interfaces and the role ofdilation[J].Soils and Foundations,2005,45(6):1-14.
    [29]张晓锋,袁聚云.土与钢材料接触面性能的试验研究[J].岩土工程技术,2007,21(3):131-133.
    [30]Frost J D,DeJong J T.In situ assessment of role of surface roughness on interfaceresponse[J].Journal of Geotechnical and Geoenvironmental Engineering,2005,131(4):498-511.
    [31]周国庆,夏红春,赵光思.深部土-结构接触面与界面层力学特性的直接剪切试验[J].煤炭学报,2008,33(10).
    [32]周国庆,赵光思,别小勇.超高压直残剪试验系统及其初步应用[J].中国矿业大学学报,2001,30(2):118-121
    [33]Tsubakihara Y,Kishida E. Frictional behavior between normally consolidated clay and steel bytwo direct shear type apparatuses[J]. Soils and Foundations.1993,32(3):1-13.
    [34]徐进,刘建锋,高春玉等.新型粗粒土直剪试验机研制[J].四川大学学报(工程科学版),2008.
    [35]闵弘,刘小丽,魏进兵,等.现场室内两用大型直剪仪研制(I):结构设计[J].岩土力学,2006,27(1):168-172
    [36]Bosscher P J, Carlos O G.Frictional properties between sand and various constructionmaterials[J].J. Geotech. Engrg.1987.113:1035-1039.
    [37]DeJong J T, Frost J D, Sacs M. Relating quantitative measures of surface roughness andhardness to geomaterial interface strength[J]. Proc. GeoEng2000(CD-ROM),Sydney,Australia.
    [38]DeJong J T, White D J, Randolph M F. Microstructure observation and modelling ofsoil-structure interface behavior using PIV[J]. Soils Found.,2006,46(1):15-28.
    [39]张嘎,张建民,梁东方.土与结构接触面试验中的土颗粒细观运动测量.岩土工程学报,2005,27(8):903-907.
    [40]Uesugi M,Kishida H,Tsubakihara Y.Friction between sand and steel under repeated loading[J].Soils and Foundations,1989,29(3):127-137.
    [41]Uesugi M,Kishida H,Tsubakihara Y.Behavior of sand particles in sand-steel friction[J].Soilsand Foundations,1988,28(1):107-118.
    [42]Uesugi M,Kishida H.Influential Factors of friction between steel and dry sands[J].Soils andFoundations,1986,26(2):33-46.
    [43]Uesugi M,Kishida H.Frictional Resistance at Yield between Dry Sand and Mild Steel. Soilsand Foundations,1986,26(4):139-149.
    [44]Desai C S,Ma Y.Modelling of joints and interfaces using the disturbed-state concept[J].International Journal for Numerical and Analytical Methods in Geomechanics,1992,16(9):623-653.
    [45]Desai C S,Rigby D B.Cyclic interface and joint shear device including pore pressureeffects[J].Journal of Geotechnical and Geoenvironmental Engineering,1997,123(6):568-579.
    [46]Evgin E,Fakharian K.Effect of stress paths on the behaviour of sand-steel interfaces[J].Canadian Geotechnical Journal,1996,33(6):853-865.
    [47]Fakharian K.Three-dimensional monotonic and cyclic behavior of sand-steel interfaces:Testing and Modeling[D].Ottawa,Canada:University of Ottawa,1996
    [48]Fakharian K,Evgin E.Automated apparatus for three-dimensional monotonic and cyclictesting of interfaces[J].Geotechnical Testing Journal,1996,19(1):22-31.
    [49]Fakharian K,Evgin E. Cyclic simple-shear behavior of sand-steel interfaces under constantnormal stiffness condition[J].J. Geotech. Geoenviron. Eng.,1997,123(12),1096–1105.
    [50]卢廷浩,鲍伏波.接触面薄层单元耦合本构模型[J].水利学报,2000(2):71-75.
    [51]高俊合.深基坑支护结构设计理论研究[D].南京:河海大学,1998.
    [52]高俊合,于海学,赵维炳.土与混凝土接触面特性的大型单剪试验研究及数值模拟[J].土木工程学报,2000,33(4):42-46.
    [53]Oumarou T A,Evgin E.Cyclic behaviour of a sand-steel plate interface[J].CanadianGeotechnical Journal,2005,42(6):1695-1704.
    [54]吴军帅,姜朴.土与混凝土接触面的动力剪切特性[J].岩土工程学报,1992,14(2):61-66.
    [55]张冬霁,卢廷浩.一种土与结构接触面模型的建立及其应用[J].岩土工程学报,1998,20(6):62-66.
    [56]王伟.基于能量耗散原理的土与结构接触面模型研究和应用[D].南京:河海大学,2006.
    [57]Li B.An experimental study and numerical simulation of sand-steel interface behaviour[D].Ottawa,Canada:University of Ottawa,2001.
    [58]Huck P J,Saxena S K.Response of soil-concrete interface at high pressure[J].Proc.of10thICSMFE.Sockholm,Sweden.1981.
    [59]Yoshimi Y,Kishida T.Ring torsion apparatus for evaluating friction between soiland metalsurfaces[J].1981,4(4):145-152.
    [60]Brummund W F,Leonards G A.Experimental study of static and dynamic friction betweensand and typical construction material.journal of testing and evaluation[J].ASTM,1973,1(2):162-165.
    [61]Coyle H M,Sulaiman I H.Skin Friction for steel piles in sand.american society of civilengineers proceedings[J].Journal of the Soil Mechanics and Foundations Division,1967,93(SM6):261-278.
    [62]俞培基,秦蔚琴.在共振柱仪上研究接触面的动力变形特性.水利学报,1995(1):81-85.
    [63]Gomez J E.Development of an extended hyperbolic model for concrete-to-soil Interfaces[D]Virginia,USA:Virginia Polytechnic Institute and State University,2000
    [64] Gomez J E.Extended hyperbolic model for sand-to-concrete interfaces[J]. Journal ofGeotechnical and Geoenviromental Engineering.2003,129(11):993-1000.
    [65]陈慧远.摩擦接触面单元及其分析方法[J].水利学报,1985(4):44-50.
    [66]钱家欢,詹美礼.接触面剪切流变特性实验及分析[R].岩土与水工建筑物相互作用研究成果汇编[M].南京:河海大学,1990.
    [67]安关峰,高人钊.接触面弹粘塑性本构关系研究[J].土木工程学报,2001,34(1):88-91.
    [68]武亚军,栾茂田,杨敏.土与结构间一种新的接触单元模型[J].同济大学学报(自然科学版),2003,33(4):432-435
    [69]武亚军,栾茂田,杨敏.土与结构间一种新接触单元的数值解[J].同济大学学报(自然科学版),2003,33(5):600-614
    [70]栾茂田,武亚军.土与结构间接触面的非线性弹性-理想塑性模型及其应用[J].岩土力学,2004,25(4):507-513
    [71]胡黎明,濮家骝.土与结构物接触面损伤本构模型[J].岩土力学,2002,23(1):6-11.
    [72]杨林德,刘齐建.土-结构物接触面统计损伤本构模型[J].地下空间与工程学报,2006,2(1):79-82.
    [73]夏红春,周国庆,商翔宇.基于Weibul1分布的土-结构接触面统计损伤软化本构模型[J].中国矿业大学学报,2007,36(6):734-737.
    [74]Ngo D,Scordelis A C.Finite element analysis of reinforced concrete beams[J].AmericanConcrete Institute,1967,64(3):152-163.
    [75]Goodman R E,Taylor R L,Brekke T L.Model for mechanics of jointed rock[J].AmericanSociety of Civil Engineers Proceedings,Journal of the Soil Mechanics and FoundationsDivision,1968,94(SM3):637-659.
    [76]DESAI C S,ZAMAN M M.Thin layer element for interfaces[J].Int Joum for Num&AnalyMeth in Geomech,1984,8(1):19-43.
    [77]梁为民,郭增长.采动区建筑物保护研究现状及展望[J].焦作工学院学报(自然科学版),2000,19(2):86-89.
    [78]邓喀中,郭广礼,谭志祥,杨军.采动区建筑物移动变形特性分析[J].中国矿业大学学报,2001,30(4):354-358.
    [79]段敬民.矿山塌陷区房屋杭采动理论及加固技术研究[D].西安:西南交通大学,2005.
    [80]周国铨,崔继宪,刘广容,等.建筑物下采煤[M].北京:煤炭工业出版社,1983.
    [81]邓喀中,马伟民,邢安仕,等.基础动态沉陷规律及地基反力[J].煤炭科学技术,1995,23(10).
    [82] Deck O, Heib M A,Homand F. Taking the soil-structure interaction into account in assessingthe loading of a structure in a mining subsidence area[J]. Engineering Structures,25(2003)435-448.
    [83]Bell S E. Successful design for mining subsidence[A].Large movements and structures[C].New York:Academic Press,1978.562-578.
    [84]Peng S S. Surface subsidence engineering [M].Colorado: Society for Mining, Metallurgy andEploration,1992.77-90.
    [85]Kratzsch H. Mining Subsidence Engineering[M]. Springer-Verlag,1983.
    [86]顾少华,仲继寿.煤矿采动区地表压缩变形区建筑物基础切人地基规律的认识[J].矿山测量,1995,(3):29-33.
    [87]刘金辉.保护采动区现有建筑物的新技术研究[J].矿山测量,1999,(4):11-14.
    [88]秦杰.采动区砖混结构房屋双重保护的研究[D].徐州:中国矿业大学,1999.
    [89]袁迎曙,秦杰,杨舜臣.村镇砖混住宅抗采动变形的结构保护体系研究[J].中国矿业大学学报,1999,28(6):530-534.
    [90]吴侃等.开采沉陷预计一体化方法[M],徐州:中国矿业大学出版社,1998.
    [91]乔志春,夏军武,郭广礼,等.老采空区上方大型工业建筑抗变形措施研究[J].中国矿业大学学报,1999,28(6):593-596.
    [92]夏军武,王守祥,王宽如,等.位于老采空区上的门式刚架结构抗变形性能分析研究[J].建筑结构,2004,34(5):30-32,35.
    [93]孙进.大沉陷量地区水闸加高加固技术研究[J].西北水资源与水工程,2001,12(4):19-22.
    [94]邹友峰.条带开采地表沉陷预计方法-三维层状介质理论研究[D].北京:中国矿业大学北京研究生部,1994.
    [95] Mark C P,Bieniawski Z T. Field measurements of chain pillar reponse to long wall abutmentloads[J]. Proc.5th Conf. on Ground Control in Mining. Morgantown:1986.
    [96] Serata S, Gardner B H,Shrinivasan K. Integrated instrumentation method of stress state,material property and deformation measurement for stress control method or mining. Proc.5thConf. on Ground Control in Mining. Morgantown:1986.123~133.
    [97] Agioutantis Z, Karmis M. A study of roof caving in the eastern u.s.conalfields. Proc.5th Conf.on Ground Control in Mining. Morgantown:1986.
    [98]谭志祥.采动区建筑物地基、基础和结构协同作用理论与应用研究[D].徐州:中国矿业大学博士论文,2004.
    [99]代晓东.永城矿区动态采煤沉陷区杭变形房示范工程分析[J].矿山测量,2003,(2):5-6.
    [100]何晖,王云虎,陈翔,郑爱武.渭北采动沉陷区地表裂缝规律及村镇抗变形民宅设计分析[J].西安工业学院学报,2002,22(3):249-255.
    [101]张继民.浅谈塌陷区铁路桥涵设计[J].煤矿设计,1995,(2):40-42.
    [102]夏军武,于广云,吴侃,等.采动区桥体可靠性分析及抗变形技术研究[J].煤炭学报,2005,(1):17-21.
    [103]于广云,夏军武,王东权.采动区铁路桥沉陷加固治理[J].中国矿业大学学报,2004,33(1):59-61.
    [104]于广云,葛新辉.厚表土层下采煤对地表及铁路桥的影响分析[J].地下空间与工程学报,2005,1(6):1076-1079,1083.
    [105]焦永超,雷小磊.抗大变形技术在塌陷区公路桥施工中的应用[J].公路与汽运,2008,(4):158-159,214.
    [106]煤炭科学研究院北京开采研究所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1981.
    [107]袁迎曙,秦杰,蔡跃等.移动地表土与砌体结构共同作用的接触模型[J].中国矿业大学学报,1998,27(4):336-339.
    [108]秦杰,袁迎曙,杨舜臣.砌体结构与地基共同作用的研究[J].工业建筑,2000,30(12):22-25.
    [109]夏军武.采动区地基-基础-钢框架结构共同作用机理及抗变形研究[D].徐州:中国矿业大学博士论文,2005.
    [110]夏军武,郭广礼,刘家新.老采空区地基变形与基础协同作用的研究[J].河海大学学报,2001,29(增刊).
    [111]夏军武,袁迎曙,董正筑.采动区地基、独立基础与框架结构共同作用的力学模型.中国矿业大学学报.2007,36(1):33-37.
    [112]夏军武,袁迎曙,董正筑.采动区地基、条形基础与框架结构共同作用机理研究.岩土工程学报,2007,29(4):537-541.
    [113]谭志祥,邓喀中.采动区建筑物地基、基础和结构协同作用模型.中国矿业大学学报,2004,33(3):264-267.
    [114]仲继寿,采动区抗变形建筑物三维有限元模型的建立与分析[D].徐州:中国矿业大学硕士论文,1990.
    [115]马全明,三维有限元法在采动区建筑物中的应用与研究[D].徐州:中国矿业大学硕士论文,1990.
    [116]刘长文,刘忠洪,李继红.采动区建筑地基与基础上部作用的有限元计算.辽宁工程技术大学学报(自然科学版).2000,19(1):32-34.
    [117]Deck O, Anirudh H. Numerical study of the soil-structure interaction within miningsubsidence areas. Comput Geotech,(2010)
    [118]常虹.采动区不同结构形式水闸的稳定性研究[D].徐州:中国矿业大学,2006.
    [119]Biot M A.General theory of three-dimensional consolidation[J]. J. Appl.Phys.,1941,12:155-164.
    [120]李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型[J].水动力学研究与进展A辑,2003(4).2003,18(4):419-426.
    [121]杨志锡,叶为民,杨林德,基坑工程中应力场与渗流场直接耦合的有限元法[J].勘察科学技术,2001(3):32-36.
    [122]王媛.多孔介质渗流与应力的耦合计算方法[J].工程勘察,1995(2):33-36.
    [123]毛昶熙,李吉庆,段祥宝.渗流作用下土坡圆弧滑动有限元计算[J].岩土工程学报,2001,23(6):746-752.
    [124]高小育,廖红建,丁春华.渗流对土质边坡稳定性的影响[J],岩土力学,2004,25(1):69-72.
    [125]平扬,白世伟,徐燕平.深基坑工程渗流-应力耦合分析数值模拟研究[J].岩土力学,2001,22(1):37-41.
    [126]罗晓辉.深基坑开挖渗流与应力耦合分析.工程勘察,1996(6):37-41.
    [127]陈晓平,茜平一,梁志松等.非均质土坝稳定性的渗流场和应力场耦合分析[J].岩土力学,2004(6):860-864.
    [128]柴军瑞,许彦卿.均质土坝渗流场与应力场耦合分析的数学模型[J].陕西水利发电,1997,13(3):4-7.
    [129]何良德,苏兴海,徐笛清等.基于修正剑桥渗流耦合模型的闸室有限元分析[J].中国港湾建设,2013(3):16-21.
    [130]刘丽.水闸工程病害及可靠性评价方法研究[D].南京:河海大学硕士论文,2004.
    [131]袁庚尧,余伦创.全国病险水闸除险加固专项规划综述[J].水利水电工程设计,2003,22(3):6-9.
    [132]秦毅,顾群.全国病险水闸成因分析及加固的必要性[J].水利水电工程设计,2010,29(2):25-26,38.
    [133]李继业,李勇,邱秀梅.水闸工程除险加固技术[M].化学工业出版社,2012.
    [134]吴为民.高压旋啧桩在既有水闸地基加固中的应用.水利科技.2006(3):22-23,25
    [135]蔡元美.粉喷桩在珠海洪湾水闸软土地基加固中的应用[J].西部探矿工程,2002,(3):18-19.
    [136]王辉.沙湾镇涌口水闸纠偏加固工程的设计与施工.西部探矿工程,2000(1):13-14.
    [137]蔡迟亮,张伟民.龙沥闸病害原因分析和加固方案[J].中国农村水利水电电,2003(10):39-41.
    [138]娄运平,杨琼,刘延安等.碳纤维在北长河闸结构加固中的应用[J].水利水电技术,2007,38(3):76-78.
    [139]于广云.采动区大变形扰动土物理力学性质演变及工程响应研究[D].徐州:中国矿业大学,2009.
    [140]胡黎明,马杰,张丙印.直剪试验中接触面渐进破坏的数值模拟[J].清华大学学报(自然科学版),2008,48(6):943-946.
    [141]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].机械工业出版社,2006.
    [142]费康,张建伟.ABAQUS在岩土工程中的应用[M].中国水利水电出版社,2010.
    [143]邹友峰,邓喀中,马伟民.矿山开采沉陷工程[M].中国矿业大学出版社,2003.
    [144] Swaroop C H著,沈洁元译.简明Python教程.电子文档,2005.
    [145]曹金凤,王旭春,孔亮. Python语言在ABAQUS中的应用[M].机械工业出版社,2011.
    [146]徐中华.上海地区支护结构与主体地下结构相结合的深基坑变形性状研究[D].上海:上海交通大学,2007.
    [147] Roscoe K H, Schofield A N, Thurairajah A. Yielding of clays in states wetter than critical[J].Geotechnique,1963,13(3):211-240.
    [148]Roscoe K H, Burland J B. On the generalized stress-strain behaviour of wet clay[J].In:Engineering Plasticity. Cambridge University Press, Cambridge,1968, pp:535-609.
    [149]殷宗泽等.土工原理[M].中国水利水电出版社,2007.
    [150]Brinkgreve R B J. Selection of soil models and parameters for geotechnical engineeringapplication[C]. ASCE,2005.
    [151]商翔宇.不同应力水平深部粘土力学特性研究[D].徐州:中国矿业大学,2009.
    [152]刘用海.宁波软土工程特性及其本构模型应用研究[D].杭州:浙江大学,2008.
    [153]常士骠,张苏民,《工程地质手册》编委会.《工程地质手册(第4版)》.中国建筑工业出版社,2007.
    [154]方秦,还毅,张亚栋,等. ABAQUS混凝土损伤塑性模型的静力性能分析[J].解放军理工大学学报(自然科学版),2007,8(3):254-260.
    [155]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].清华大学出版社,2005.
    [156]王金昌,陈页开. ABAQUS在土木工程中的应用[M].浙江大学出版社,2006.
    [157]ABAQUS Inc. ABAQUS Theory Manual[M].2007.
    [158]张战廷,刘宇锋.ABAQUS中的混凝土塑性损伤模型[J].建筑结构,2011,41(增刊):229-232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700