磁悬浮系统的设计及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁悬浮的作用是利用电磁力克服物体的重力,使物体沿着或绕着某一基准框架的一轴或几轴保持固定位置不变,悬浮体和支撑之间没有任何接触。因而克服了由摩擦带来的能量消耗和速度限制,系统具有无磨损、无需润滑、无污染、无噪声、寿命长以及安全可靠等一系列优点。建立在麦克斯韦方程基础上的磁力机械设计理论和方法已有很好的应用。
     磁悬浮系统的设计涉及到电磁场理论、结构力学、电力电子技术、自动控制原理、传感器及检测技术等,本文通过对电磁悬浮系统性能特点的研究,分析其各组成模块——励磁系统、功率放大系统、传感器系统和控制器的设计方法和特点。随后,以一个单自由度磁悬浮球系统为例,在建立其数学模型的基础上,以模块化设计为原则,采用数字化设计方法,完成了磁场构建、控制系统设计并制作了实验模型。
     论文以制作的单自由度磁悬浮球系统为平台,完成了励磁系统吸力特性以及传感器系统磁场分布等参数测试实验。对力特性的测试实验结果进行分析,得出了励磁系统吸力-电流特性和吸力-位移特性。对传感器系统磁场分布的数据分析,找出了传感器最佳安装位置。最后根据磁悬浮控制系统的特点,基于PID控制方式,编制了控制程序并采用实验跟踪测试结果的参数整定方法,实现了单自由度目标物体的稳定悬浮。
The role of Maglev system is to use of electromagnetic force to overcome the object's gravity,and the object maintain a fixed position along or around one or few axis of a reference framework with no contact between the suspension and the support. Thus overcoming the energy consumption and speed limits caused by friction, the system has a series of merits such as no wear, without lubrication ,no pollution, no noise, long life as well as be safe and reliable and so on, received attention at home and abroad. Based on the theory of Maxwell’s equations , the design and experimental methods have a very good application.
     Maglev system design involves electromagnetic theory, structural mechanics, power electronics, control theory, sensors and detection technologies, Through the research of performance characteristics of maglev system, the dissertation analyzes the design methods and characteristics of its whole modules—excitation system ,power amplifier system ,sensor system and the regulator . Then the dissertation takes a single degree of freedom maglev sphere system for example , on the basis of the foundation of its mathematic model , based on the principle of modular design and digital design, the paper establishes its experimental circuit and the physical model.
     After the completeness of the model , on the foundation of the electromagnetic theory , the dissertation establishes the suction characteristics of its excitation system as well as the magnetic field distribution testing equipment of the sensor system .Then we make the analysis of the force characteristics of the testing results , obtain the suction-current characteristics as well as the suction-displacement characteristics of the excitation system .Afterwards we carry on the analysis of the magnetic field distribution data of the sensor system , find out the best laying position of the sensor system. Combining with the characteristics of the maglev control system , we take PID control mode which parameters are captured through the critical proportion law, namely through designing the whole model experimental programme , tracking the testing results , and finally realize the stable suspension of objection.
引文
[1]张钢,虞烈,谢友柏.电磁轴承的发展与研究.轴承. 1997(10): 13
    [2]汪通悦,陈辽军,周峰等.磁浮轴承的技术进展.现状·趋势·战略. 2002,445(40):21
    [3] Kasarda. An overview of active magnetic bearing technology and applications. M.E.F.Shock and Vibration Digest.2000.3
    [4]陈立群,张艳鸣,谢友柏.电磁轴承的发展与应用.西北轻工业学院学报. 1996,3(14):1-3
    [5]李强北.国外磁浮列车评述(上).国外铁道车辆. 1996(4):1-8
    [6]张冠生,陆俭国.电磁铁与自动电磁元件.北京:机械工业出版社. 1982
    [7]邹继斌,刘宝廷,崔淑梅,郑萍,程树康.磁路与磁场.哈尔滨:哈尔滨工业大学出版社. 1998
    [8]向洪岗.基于三维磁场有限元分析的电磁机构等效磁路研究.西安交通大学硕士学位论文. 2003
    [9]冯慈璋.电磁场.北京:高等教育出版社. 1994
    [10]李泉风.电磁场数值计算与电磁铁设计.北京:清华大学出版社. 2002
    [11]王勇.场路结合并考虑耦合的磁力机械分析与设计方法研究.合肥工业大学博士学位论文. 2006
    [12]施建,李黎川.磁悬浮系统动力学参数的开环辨识.微细加工技术. 2004 (2):72-76.
    [13] G.施韦策,H.布鲁勒,A.特拉克斯勒著.虞烈,袁崇军译.主动磁轴承基础.北京:新时代出版社.1997
    [14]孙立志. PWM与数字化电动机控制技术应用.北京:中国电力出版社. 2008
    [15]汪希平,袁崇军,谢友柏.电磁轴承系统的控制策略与功放电路设计.西安交通大学学报. 1995,29(12):68-74
    [16]赵玉刚,邱东.传感器基础.北京:北京大学出版社. 2006:89-91
    [17] Hajjaji A E, Ouladsine M. Modeling and nonlinear control of magnetic levitation systems. IEEE Trans on Industrial Elect ronics.2001:48 (4):831-838.
    [18]袁开茂,林小玲.磁悬浮球用PWM开关型功率放大器.机电工程. 2005,22(2):29-31
    [19]陈立群,谢友柏.电磁轴承开关功放设计.机电工程. 1998 (2):50-52.
    [20]康华光.电子技术基础(模拟部分).北京:高等教育出版社. 2006
    [21]苏义鑫,周祖德,胡业发,张丹红.磁悬浮轴承功率放大器的研究.武汉理工大学学报. 2003,25(6):43-45
    [22]谭建成.电机控制专用集成电路.北京:机械工业出版社. 2003:35-51
    [23]唐达.磁悬浮球述评及降低其功耗的方法.上海电机学院学报. 2005,8(3):72-75
    [24] R. D. Williams, P. M. Wagner. Et al. Reliable High-speed Digital Control for Magnetic Bearings. Proc. of 4th International Symposium on Magnetic Bearings ETH Zurich, August 23-26,1994:1-6
    [25] Chicara Murakami. Digital Control of Conical Motion of High Speed Rotors Suspended by Magnetic Bearings in case of Large Sampling Period. Proc. of 4th International Symposium on Magnetic Bearings ETH. Zurich, August 23-26,1994:7-8
    [26]孙涵芳,徐爱卿. MCS-51/96系列单片机原理及应用(修订版).北京:北京航空航天大学出版社. 2005
    [27]吴秀清,周荷琴.微型计算机原理与接口技术.合肥:中国科学技术大学出版社. 2004
    [28]卢建华,刘爱元,王立元.一种磁悬浮球数字控制系统的研制.仪表技术与传感器. 2007 (1):23-24
    [29]涂时亮.单片微机MCS - 51用户手册.上海:复旦大学出版社. 1990
    [30]蔡国廉.电磁铁.上海:上海科学技术出版社. 1965:178-186
    [31]朱秋,徐龙祥,刘正勋.单自由度磁轴承数字控制器的研究.电气传动. 1999, 29(3): 23-25.
    [32]杨叔子,杨克冲等.机械工程控制基础.华中理工大学出版社. 2000:121-127
    [33]刘金琨.先进PID控制MATLAB仿真(第2版).北京:电子工业出版社. 2004:1-2
    [34]袁开茂,林小玲.磁悬浮球系统控制器的分析设计.机电工程. 2007,24(1):19-21
    [35]马杰,范文君,张树琪.磁悬浮系统的极点配置控制器设计研究.自动化技术与应用. 2008,27(8):47-50

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700