整车舒适性研究与悬挂系统优化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车平顺性是现代高速、高效率汽车的一个主要性能指标,不仅影响了乘客的乘坐舒适性,而且对保证驾驶员在复杂的行驶和操纵条件下具有良好的心理状态和准确灵敏的反应有重要作用,因此越来越受到人们的重视。但传统的研究分析方法已无法满足当代汽车的需要,虚拟样机作为一项新技术,已广泛地应用于车辆动力学方面,本文正是基于多体动力学软件ADAMS研讨悬架系统对平顺性的影响。
     本文概述了国内外汽车平顺性研究的发展进程,平顺性评价标准与方法,介绍了多体动力学分析理论与优化设计理论,并提出了本文的研究内容与意义。
     本文以某款车型为研究对象,提取整车建模所需参数,简化车身、座椅、发动机等部件,利用多体动力学软件—ADAMS,建立了包括钢板弹簧悬架或空气弹簧悬架、轮胎等系统在内的整车平顺性分析动力学模型。基于正弦波叠加原理,利用某公司现场测试路面的数据,分析了实验公路的平整度状况,并编制了适合ADAMS/View的、与实验路面近似的路面文件,且根据位移功率谱密度验证了路面模型的正确性。根据建立好的车——路相互作用模型,实现整车虚拟样机在随机输入激励下,车辆振动模型的时域仿真求解,得到B级路面下,车速为30km/h时,分别配置有钢板弹簧、空气弹簧的车辆在垂直方向的振动情况,根据平顺性评价标准对该车平顺性进行了分析,分析表明,原有板簧设计参数无法达到空气弹簧的平顺性效果,且实验测实验证了模型的正确性。在此基础上,根据板簧设计理论,重新计算了板簧参数,并将钢板弹簧以螺旋弹簧等效替换,根据汽车系统的优化准则,以垂直加速度均方根最小为目标函数,动、静挠度及刚度匹配为约束条件,对弹簧刚度参数进行优化,优化结果表明,平顺性得到有效改善。针对原有车型,通过将钢板弹簧与空气弹簧对比分析,选择钢板弹簧作为更合理的、更具竞争优势的弹性元件。最后根据优化的刚度参数反求钢板弹簧尺寸参数,达到了优化该车平顺性的目的,同时减轻了整车重量,降低了生产成本。
Ride comfort is one important index of the high-speed and efficient vehicle, it influents not only the comforance of passengers, but also the psychology. It plays a important role in ensuring a good mentality, accurate and sensitive response of the driver in a complex driving conditions, so people have paid more and more attention on it. But the traditional analysis can't satisfy the demand, as a new technology, virtual prototyping technology has been widely used in vertical dynamics. This is a discussion of suspension system ride based on the dynamics software ADAMS.
     Firstly, we summarized the developments of the ride comfort research. Then we dissussed the criteria and methods of ride evaluation and the theory of optimal design.
     This paper extracted the parameters of some vehicle and analyzes the dynamics model of the vehicle with multi-object dynamics software-ADAMS, including leaf spring suspension or air spring, tires and other systems, it streamlines the body and seat. The paper not only prepared the road file for ADAMS/View based on the superpositon principle and the data of test, but also verified the correctness of the pavement model according to the displacement power spectral density. On the foundation, we conclued the solving time-domain simulation in the random input excitation. The analysis deal with the vibration results of vehicle with the leaf spring or the air spring in the vertical direction when the car was riding on B class road in 30km/h. We evaluated the ride performance according to the standards and compared it with the test result to verify the validity of the model. The result proved that the leaf spring could not fulfill the effect of air spring. We recalculated the spring parameters on the base of the spring design theory and replaced the leaf spring with spiral spring. According to the optimization criteria, we minimized the root mean square of vertical acceleration as the objective function, using dynamic deflection, static deflection and stiffness matching as constraints to optimize the stiffness of leaf spring. It proved that the ride comfort improved effectively. The leaf spring was choosed as the more reasonable and more competitive spring than the air spring. Finally, we reverse to calculate the size of leaf spring according to the optimization. The result optimize the ride comfort, and reduced vehicle weight and the cost of production.
引文
[1]Shawn, P. McGuan. Active Human Response to a Vibration Environment. In:the 2006 MSC.Software VPD Conference. CA:MSC.Software Corporation,2006: 20-25
    [2]王望予.汽车设计.北京:机械工业出版社,2007:174-175
    [3]宋现东,刘俊.车内噪声控制措施初探.客车技术与研究,2004,26(1):17-19
    [4]李旭荣.汽车悬架用钢板弹簧设计原理的研究与软件开发:[武汉汽车工业大学硕士学位论文].武汉:武汉汽车工业大学,2000:5-6
    [5]乔明侠.基于多体动力学的汽车平顺性仿真分析及悬架参数优化:[合肥工业大学硕士学位论文].安徽:合肥工业大学,2005:1-2
    [6]J. E. Bernard, J. E. Shanan. Simulation of Heavy Vehicle Dynamics. SAE,1990, (10):20-28
    [7]吴俊宏.高速公路减速路面汽车平顺性仿真与分析:[中国农业大学硕士学位论文].北京:中国农业大学,2007:6-7
    [8]M. Gobbi, G. Mastinu, C. Doniselli. Optimizing a Car Chassis. Vehicle System Dynamics,1999, (32):149-170
    [9]Yuan Zhang, Arthur Tang, Tim Palmer. Virtual Proving Ground-an integrated technology for full vehicle analysis and simulation. International Journal of Vehicle Design,1999, (21):450-470
    [10]Toyonori, Nishimatsu, Hironmasa Hayakawa, Yoshio Shimizu, EijiToba. Influence of Top Coated Cloth for Sitting Comfort of Car Driver'S Seat[A]. In: Instrumen-tation and Measurement Technology Conference,2000, IMTC2000, Proceedings of the 17thIEEE, Baltimore, MD,2000, (10):915-920
    [11]Lars Hanson, Willfried Wienholt, Lena Sperling. A control handling comfort model based on fuzzy logics. International Journal of Industrial Ergonomics, 2003, (31):87-100
    [12]李霞.RV减速器虚拟样机的建造研究:[中国农业大学硕士学位论文].北京:中国农业大学,2009:7-8
    [13]金睿臣,宋健.应用机械系统分析软件ADAMS研究汽车对路面随机输入的响应.见:1998年ADAMS软件中国地区用户年会论文集.北京:MSC.Software公司,1998,(10):23-33
    [14]刘岩,丁玉兰,林逸.汽车高速振动仿真与实验研究.公路交通科技,2000, 17(3):73-75
    [15]王国权.车辆平顺性虚拟实验技术的研究:[中国农业大学博士学位论文].北京:中国农业大学,2002:14-15
    [16]王其东,乔明侠,梅奋永.汽车随机路面输入平顺性的仿真分析.合肥工业大学学报,2005,28(4):346-351
    [17]李贝贝.轻型载货汽车行驶平顺性建模仿真及实验研究:[山东大学硕士学位论文].山东:山东大学,2008:5-7
    [18]休斯敦,刘又午.多体系统动力学.天津:天津大学出版社,1999:18-19
    [19]Ray. Laura R. Robust linear-optimal control laws for active suspension Systems. Advanced Automotive Technologies,1991, (40):40-45
    [20]徐陈夏.汽车平顺性仿真分析与悬架参数优化[合肥工业大学硕士学位论文].安徽:合肥工业大学,2009:2-3
    [21]B. MJ, F. MJ. Introduction to ADAMS theory. USA:MDI,1997,(10):21-25
    [22]石博强,申焱华,宁晓斌.ADAMS基础与工程范例教程.北京:中国铁道出版社,2007:1-2
    [23]H.г.帕尔希洛夫斯基.汽车的钢板弹簧.北京:人民交通出版社,1959:121-124
    [24]Xu, X.T, Salamon. Leaf spring design:effects of friction and interleaf gaps. Spring National Design Engineering Show & Conference,1988, (1):20-28
    [25]郑银环.汽车钢板弹簧计算模型研究:[武汉理工大学硕士学位论文].武汉:武汉理工大学,2005:16-18
    [26]杨贵春.商用车空气弹簧结构分析及参数化设计:[贵州大学硕士学位论文].贵州:贵州大学,2007:7-8
    [27]ContiTech Holding GmbH. Air Springs for Commercial Vehicles.hannover: ContiTech Holding GmbH,2000, (5):4-5
    [28]尹万建,杨绍普,申永军等.空气弹簧悬架的振动模型和刚度特性研究.北京交通大学学报,2006,30(1):71-75
    [29]Willian, J. Sidelko. An objective approach to highway truck frame design. SAE paper,1966,660162
    [30]G. Jacoby. State of the art and futher of road simulation development. ATA Ingegneria automotoristica.1988,41(12):267-283
    [31]安世亚太.汽车CAE技术的新进展-虚拟实验场(VPG)技术.CAD/CAM与制造业信息化,2004,(12):64-66
    [32]徐延海.随机路面谱的计算机模拟.农业机械学报,2007,38(1):33-37
    [33]隗寒冰,邓楚南,何文.基于ADAMS软件的汽车平顺性仿真分析.机械设计 与制造,2006,(7):75-76
    [34]余志生.汽车理论(第2版).北京:机械工业出版社,1998:172-173
    [35]王锡爱,刘大维,严天一等.青——石308国道路面不平度特性研究.青岛大学学报,2007,22(1):91-94
    [36]郑联珠,刘明树,张友坤等.田间有效软路面谱形成过程分析.农业工程学报,1994,10(2):29-34
    [37]SchiehlenW. HuB. Spectral simulation and shock absorber identification. International Journal of Non-Linear Mechanics,2003, (38):161-171
    [38]杨兴龙.基于多体系统动力学的空气悬架大客车平顺性实验仿真研究:[吉林大学硕士学位论文].长春:吉林大学,2001:46-49
    [39]潘立.基于人椅系统三向振动的汽车平顺性建模与仿真:[浙江工业大学硕士学位论文].浙江:浙江工业大学,2004:10-13
    [40]江洪,李仲兴,周文涛.基于遗传算法的ECAS系统中三级阻尼匹配优化设计.机械工程学报,2009,45(10):279-283
    [41]卢剑伟,解陈,王其东.平顺性仿真驱动的板簧承载式悬架参数优化.系统仿真学报,2007,19(21):5025-5029
    [42]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用.北京:机械工业出版社,2007:278-292
    [43]郑凯,胡仁喜,陈鹿民等.ADAMS 2005机械设计高级应用实例.北京:机械工业出版社,2006:4-5
    [44]邵磊,傅幸民,姚雪梅等.工程车辆ADAMS建模与平顺性仿真.中国工程机械学报,2005,3(2):144-148
    [45]邵瑛.车辆主动悬架控制策略的仿真研究:[南京农业大学硕士学位论文].南京:南京农业大学,2003:25-30
    [46]王国权,许先锋,王蕾等.汽车平顺性的虚拟样机实验.农业机械学报,2003,34(3):26-32
    [47]H. A. AI-Qureshi. Automobile leaf springs from composite materials.Journal of Materials Processing Technology,2001, (1):58-61
    [48]Mohamed A. Omar, Ahmed A. Shabana. Aki Mikkola Multibody System Modeling of Leaf Springs. Journal of Vibration and Control,2004,10(11): 1601-1638
    [49]Shokrieh MM, Rezaei D. Analysis and optimization of a composite leaf spring. Composite Structures,2003,60(3):317-325
    [50]李增刚.ADAMS入门详解与实例.北京:国防工业出版社,2008:125-127
    [51]韩翔.基于ADAMS的钢板弹簧动力学建模方法及性能仿真.机械设计与制 造,2009,(10):220-222
    [52]魏道高,洪添胜,蒋国平等.汽车轮胎侧偏特性研究综述.江苏大学学报,2002,23(3):54-58
    [53]F. Mancos. Non-Linear Modal Rolling Tire Model For Dynamic Simulation With ADAMS. In:European Adams users'conference. Pairs:MSC.Software Corporation,1998:20-25
    [54]李军.ADAMS实例教程.北京:北京理工大学出版社,2002:129-134
    [55]郭孔辉.汽车操纵动力学.长春:吉林科学技术出版社,1991:108-126
    [56]J. Barber TERA. Accurate Tire Models for Vehicle Handling Useing the Empirical Dynamics Method. In:International ADAMS User conference. Orlando:MSC.Software Corporation.2000:10-12
    [57]周长城,孟婕.车辆悬架最佳阻尼匹配减振器设计.交通运输工程学报,2008,8(3):15-20
    [58]张建文,庄德军,逸林.汽车用空气弹簧悬架系统综述.公路交通科技,2002,19(6):151-155
    [59]于安和,桂良进,范子杰.钢板弹簧刚度特性的有限元分析.汽车技术,2007,(2):26-29
    [60]刘勋,黄世伟,朱利静等.半挂车钢板弹簧及轮胎的刚度等效分析.专用汽车,2008,(4):45-46
    [61]李丽莉,李玉峰,王杏华等.汽车行驶平顺性的预测及优化设计.天津大学学报,1999,32(4):450-453
    [62]张利,黄文振,周志革.灵敏度方法在连杆机构动态响应重分析中的应用.上海交通大学学报,2000,34(3):378-81
    [63]苏小平,殷晨波,魏学军等.IVECO汽车悬架系统性能参数设计方法.公路交通科技,2004,21(11):125-127
    [64]韩忠浩,符朝兴,张立军.汽车多工况平顺性优化初探.现代机械,2001,(2):90-93

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700