大跨度管道悬索桥的风致响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬索桥结构以其外形美观、跨越能力强、经济指标良好和设计施工成熟等优点,在国内外油气管道桥建设中被大量采用。与普通悬索桥相比,管道悬索桥刚度更小、风振问题更突出。本文以某油气管道悬索桥方案为工程背景,对其动力特性、静风响应、颤振稳定性、抖振响应等方面展开研究,主要工作及结论如下:
     (1)运用索单元初应变迭代方法得到合理成桥线形,对其进行了动力特性分析,研究了结构参数对管道悬索桥自振特性的影响。结果表明:管道悬索桥振型密集,振动特性复杂;扭弯比低,侧向刚度较弱,低阶振型均是以加劲梁振动为主的振型;设置抗风索能显著提高结构侧向刚度,增加抗风索的预拉力可提高结构侧弯和扭转刚度,减小抗风索倾角可以提高结构竖弯刚度;设置共轭索对高阶振动抑制作用较大。
     (2)通过节段模型测力实验得到静力三分力系数,分析了篦子板对三分力的影响,运用增量与内外两重迭代法进行了静风响应分析。结果表明:管道悬索桥的静风失稳过程是静风荷载非线性与结构非线性相互影响的结果;风荷载初始攻角增大,静风稳定性降低;设置抗风索,静风失稳风速可提高20%以上;初始攻角,附加攻角,缆索系统风荷载,抗风索对静风响应均存在影响。
     (3)通过节段模型测振实验,得到不同攻角下的颤振临界风速,对颤振稳定性进行评价;运用最小二乘法识别了均匀流场中模型的颤振导数,为颤抖振分析提供气动自激力参数。
     (4)运用谐波合成法模拟了全桥的脉动风场,运用Davenport抖振力理论建立了全桥抖振力分析模型,通过ANSYS中的Matrix27单元实现了对自激力的气动刚度和气动阻尼的模拟,考虑气动和几何非线性,运用瞬态动力分析进行了抖振响应时域分析。
With its beautiful appearance, long span, good economic indicators, the advantages of mature design and construction, suspension bridge has been widely adopted for oil and gas pipeline bridge. Compared with ordinary suspension bridge, pipeline suspension bridge's stiffness is smaller, wind-induced vibration problem is more prominent. In this paper, taking one oil and gas pipeline suspension bridge as example, those keypoints had been studied on: dynamic characteristics, aerostatic response, flutter stability and buffeting response. The main work and conclusions are as follows:
     (1) Through the method of link elements initial strain iteration, the bridge reasonable linear shape has been obtained. The dynamic analysis has been carried out, the design parameter change to the pipeline hanging bridge self oscillation characteristic influence has also been studied. The result indicated:The pipeline suspension bridge mode is crowded, the vibration characteristic is complex; The frequency ratio of torisional to vertical bending is low, the lateral rigidity is weak, the low-order mode of vibration is by the stiffening girder vibration lineup primarily; The installment of windcables can obviously enhance the structure lateral rigidity, increases the wind cables pretension strength to be possible to enhance the structure lateral bending and the torsional rigidity, reduce the wind resistant rope inclination angle to be possible to enhance the structure to set upright the curved rigidity; The establishment conjugate cable is big to the higher order vibration abatement function.
     (2) The paper obtained three force component coefficients through the static stage section model wind tunnel test, analyzed the influences on three force component by grate plate. The paper has carried on the static wind stability analyses and the still wind response analysis using the increase with the inside and outside twofold repetitive process. The result indicated:The pipeline suspension bridge's aerostatic divergence process is result from the aerostatic load and the structure nonlinearities; The wind load initial angle of attack increases, the static wind stability reduces; The establishment of windcable may enhance aerostatic divergence speed by 20%; The initial angle of attack, the additional angle of attack, the cable system wind load, the windcable' establishment has influences on the aerostatic response.
     (3) The paper has obtained flutter critical wind speed under the different angle of attack through the section model dynamic wind tunnel test, has carried on the appraisal to the flutter stability; has distinguished the smooth flows flutter derivative using the least squares method, provides the self-excitation force parameter for the buffeting response analysis.
     (4) The paper has simulated the entire bridge's pulsation wind field using the WAWS, has established the entire bridge buffeting strength model using the Davenport buffeting strength theory, has been realized through the ANSYS in matrix27 element to the self-excitation strength aerodynamic rigidity and damping simulation, considered that aerodynamic and geometric nonlinearity, has carried on the buffeting response time domain analysis using the transient state mechanical analysis.
引文
[1]梁翕章.管道建设的基本规律[J].油气储运,2003,22(12):1-9.
    [2]宋艾玲,张树军.我国油气管道现状与发展趋势[J].油气田地面工程,2006,(6).
    [3]田西宁等.穿跨越技术在长输管道敷设中的应用与发展[J].当代化工,2008,419-422.
    [4]王金国,管道悬索跨越结构抗震能力和健康诊断研究[D]:(博士学位论文)哈尔滨:中国地震局工程力学研究所,2005.
    [5]李德寅.管道悬索桥梁兼第聂伯河上跨度720m管道桥[J].国外桥梁1995(4):241-255.
    [6]卡扎凯维奇.地上管道和悬吊管道空气动力稳定性[M].施奈,赵元弼译.北京:石油工业出版社,1981.
    [7]Dusseau, Ralph Alan. Database for pipeline bridges in North America. Proceedings of the International Conference on Pipeline Infrastructure II,1993:530-548.
    [8]雷俊卿,郑明珠,徐恭义.悬索桥设计[M].北京:人民交通出版,2002.
    [9]陈仁福.大跨悬索桥理论[M].成都:西南交通大学出版社,1994.
    [10]项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001.
    [11]钱冬生,陈仁福.大跨悬索桥的设计与施工[M].成都:西南交通大学出版社,1999.
    [12]项海帆,葛耀君等著,现代桥梁抗风理论与实践[M].人民交通出版社,北京,2005.
    [13]陈政清.桥梁风工程[M].人民交通出版社,北京,2005.
    [14]项海帆,结构风工程的现状和展望[J].土木工程学报,vol.10,No.3,1997.9
    [15]SimiuE, SeanlanRH. Wind Effeets on Struetures[M]. Thirdedition, JohnWiley and Sons, NewYork, N. Y.,1996
    [16]大跨度拱桥气动参数识别及风致响应研究[D]:(博士学位论文)上海:同济大学,2008
    [17]项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展[J].土木工程学报,vol.36,No.4,2003.4
    [18]项海帆.进入21世纪的桥梁风工程研究[J].同济大学学报,vol.30,No.5,2002.5
    [19]JTG/T D60-01-2004公路桥梁抗风设计规范[R].北京:人民交通出版社,2004.
    [20]葛耀君,项海帆.大跨度桥梁的空气动力学挑战[J].第十八届全国桥梁学术会议.2008.天津
    [21]Dusseau, Ralph Alan, Pipe Geometry and Pipeline Bridge Wind Oscillation. ASCE, 1988:323-332.
    [22]Dusseau, Ralph Alan. Wind analysis of pipeline suspension bridges. Journal of Wind Engineering and Industrial Aerodynamics,1990:927-935.
    [23]Chen, Stephen C., McMullan, John G. Suspension Bridge/Carries Pipelines Across Canyon. Civil Engineering (New York),1994:58-61.
    [24]冯辛能.提高悬索管桥横向刚度的方法与计算[J].油气储运,1982(6):23-31.
    [25]王世圣,张宏.大跨度悬索式管桥风振响应分析[J].油气储运,2003,22(1):27-29.
    [26]李友祥,蒋新亭,祝志文.管道悬索桥的抗风性能试验研究[J].山西建筑,2009,35 (15):328-329.
    [27]祝志文,李友祥,王召祥等.管道悬索桥结构参数对全桥动力特性的影响研究[J].公路工程2008.33(5):36-40.
    [28]王若林,张金武.大跨管道悬索桥抗风特性分析[J].武汉大学学报.2003,36(5):98-100.
    [29]洪灶明.大跨度悬索管桥动力特性及风振响应分析[J].交通科技,2009,7-10.
    [30]张峰等.大跨度悬索结构的有益尝试,油气田地面工程[J].2003(4):78-79.
    [31]张相庭.工程结构风荷载理论和抗风计算手册[M].上海:同济大学出版社,1990.
    [32]SY/T0015.2-98《原油和天然气输送管道穿跨越工程设计规范》[R].北京:人民交通出版社,2004.
    [33]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2007.
    [34]ANSYS基本过程手册[M],北京ANSYS中国公司,2000.
    [35]李文武.星海湾人行桥主缆线形确定及斜塔受力分析[D]:(硕士学位论文)大连:大连理工大学,2006
    [36]沈世钊、徐崇宝、赵巨.悬索结构设计[M].北京:建筑工业出版社,1997
    [37]李加武,陈飞,张宏杰.考虑雷诺数效应的桥梁静风稳定分析[J].公路交通科技,2009,26(5),64-68.
    [38]邹小江.斜拉桥风振响应时域分析及静风稳定性研究[D]:(博士学位论文)广州:华南理工大学,2003.
    [39]胡晓伦.大跨度斜拉桥颤抖振响应及静风稳定性分析[D]:(博士学位论文)上海:同济大学,2006.
    [40]许福友.桥梁结构颤振导数识别与颤振分析[D]:(博士学位论文)上海:同济大学,2006.
    [41]乔云强.大跨窄钢桁架加劲梁悬索桥颤振稳定性研究[D]:(硕士学位论文)西安:长安大学,2008.
    [42]美国ANSYS公司.ANSYS Elements Reference [M].1994.
    [43]李天飞.自锚式悬索桥动力及静风响应研究[D]:(博士学位论文)大连:大连理工大学,2009.
    [44]武俊彦.大跨窄钢桁架加劲梁悬索桥抖振时域计算分析[D]:(硕士学位论文)西安:长安大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700