飞秒强激光场中液相多原子分子的振动弛豫和内转换动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着超快激光脉冲技术的发展,在飞秒时间尺度内研究分子的动力学行为已经成为重要的研究课题。飞秒激光脉冲技术促进了分子动力学的时间分辨光谱实验和理论研究的迅速发展。目前,利用波包理论研究飞秒时间尺度内的分子动力学现象还没有包括环境的影响,即波包动力学适合于研究气相情况。鉴于多数化学反应和几乎所有的生物化学反应是在液相体系中发生的,对液相中分子的超快动力学过程的研究成为揭示与生命过程本质密切相关的生物化学反应的重要手段,此时需要考虑诸如退相过程和振动弛豫过程等效应。在理论描述中,人们通常应用密度矩阵理论研究分子系统与环境的相互作用,其中约化密度算符、量子主方程等均可用来描述分子系统的弛豫现象。
     本论文的主要内容是基于微扰密度矩阵方法和瞬态线性极化率理论研究液相多原子分子的超快动力学问题。通过自编程序,计算了多原子分子的飞秒时间分辨荧光亏蚀光谱。根据瓦维洛夫定理,荧光来自激发态的基振动能级向基电子态的跃迁,荧光强度正比于激发态的布居数,荧光亏蚀反映了激发态的弛豫动力学,因此可以利用荧光亏蚀谱探测分子动力学过程。首先,通过计算荧光亏蚀谱研究了超快振动弛豫过程和溶剂化效应,探讨了温度和探测脉冲对染料分子Rhodamine700和Oxazine750荧光亏蚀谱的影响。亏蚀谱的快速衰减过程发生在几百飞秒时间内,主要反映了激发电子态S_1的振动弛豫过程,与溶质有关;慢速衰减过程发生在皮秒时间内,主要反映溶剂化效应,与所用溶剂有关。其次,计算了叶绿素a分子在乙酸乙酯溶剂中的荧光亏蚀谱,研究了内转换过程。所计算结果与实验数据符合较好。同时还讨论了内转换对荧光亏蚀谱的影响。随着内转换时间的减少,荧光亏蚀增加。再次,计算了叶绿素a分子在二乙醚溶剂中Q_3→S_21及S_2→S_1的内转换时间。为了研究叶绿素a分子在二乙醚溶剂中从S_3态到S_1态的内转换路径,建立了一个理论模型并进行了理论计算。研究结果表明,间接内转换过程与实验结果相符。最后,利用微扰密度矩阵方法计算了Rhodamine700分子在不同溶剂中的荧光亏蚀谱和内转换速率,研究了给体数、氢键、粘度等对荧光亏蚀谱和内转换时间的影响。
With the development of the ultra-fast laser technology, molecular dynamics on the time scale of some femtoseconds is a subject of considerable interest. The advent of femtosecond optical laser technology has prompted a rapidly increasing amount of experimental and theoretical study considering the time-resolved spectroscopic investigation of ultra-fast molecular dynamics. Recently, the possible influence of environmental degrees of freedom has not been incorporated into the calculations of wave packet dynamics on investigating dynamical phenomena in molecular systems on a femtosecond time scale. Thus, the description of wave packet dynamics has been restricted to the gas phase. As almost all the biological chemical reaction take place in liquids, studying the ultra-fast dynamics of polyatomic molecules in liquids is the key to reveal the essence of the biological chemical reaction. The effects like dephasing and vibrational relaxation processes should be taken into account. In order to consider a coupling of the molecular system to a specific environment into the theoretical description one usually utilizes the density matrix formalism. The reduced density operator, the quantum master equation, etc. have been used to describe relaxational phenomena in molecular systems.
     The main works in this thesis are on the ultra-fast dynamics of polyatomic molecules in liquids using the perturbative density matrix method and the transient linear susceptibility theory. The fluorescence depletion spectrum of polyatomic molecules can be calculated within the density matrix models. According to the Vavilov theory, the fluorescence is generated by the transition from the level v=0 of the first excited electronic state S_1 to the ground electronic state S_0. The fluorescence intensity is proportional to the population of the excited electronic state. The fluorescence depletion reflects the vibrational relaxation dynamics in the electronic excited state of the molecule. Molecular dynamics can be monitored by the delay time between the pump and the probe pulses.
     Firstly, the fluorescence depletion spectra (FDS) are calculated to study the
     ultra-fast vibrational relaxation dynamics and the solvation effect of the excited state molecules. The effects of temperature and probe pulse parameters on the FDS are also investigated. A faster decay of the FDS with a few hundreds of femtoseconds reflects the vibrational relaxation time in the S_1 state and depends on the solute molecules. A slower decay process with a picosecond time scale reflects the solvation effect and depends on the property of solvent.
     Secondly, the FDS of chlorophyll-a (chl-a) in ethyl acetate are calculated and the internal conversion (IC) process is studied. The calculated FDS of chl-a agrees well with the experimental results. The IC time on the FDS is also discussed. With decreasing the IC time, the fluorescence depletion increases.
     Thirdly, the IC pathways and times between S_3 and S_1 states are investigated by simulating the FDS of chl-a in ethyl ether solvent using a theoretical model developed by us. The theoretical calculation shows that sequential IC process,S_3→S_2→S_1. agrees well with the experimental results.
     At last, the FDS and IC rates of the dye Rhodamine700 in methanol. ethanol and DMSO solvents are calculated using the density matrix theory. The effects of donor number, the hydrogen-bonding, the viscosity of the solvent on the FDS and IC times are also investigated.
引文
[1] Ben-Shaul A, Haas Y, Kompa K L and Levine R D, Laser and Chemical Change, Springer, Berlin, 1981.
    
    [2] Manz J and Woste L, Femtosecond Chemistry, Verlag Chemie, Weinheim, 1995.
    
    [3] Zewail A H, Femtochemistry-Ultrafast Dynamics of the Chemical Bond, World Scientific, Singapore, 1994.
    
    [4] Zewail A H, Femtochemistry: Recent progress in studies of dynamics and control reactions and their transition states, J. Phys. Chem., 1996, 100:12701.
    
    [5] Sundstrom V, The femtochemistry conference: an introduction, J. Phys. Chem. A. 1998. 102:4030.
    
    [6] Yajima H, The concept of femtosecond technology, optoelectronic-devices and technologies. J. Phys. Chem. A, 1995, 10:477.
    
    [7] Lin S H, Alden R G, Islampour R, Ma H and Villaeys A A, Density Matrix Method and Femtosecond Processes, World Scientific, Singapore, 1991.
    
    [8] Hermann J and Wilhelmi B, Laser for Ultrashort Light Pulses , North-Holland, Amsterdam, 1987.
    
    [9] Fan M G, Photochemical Basic Principles and Photoni Cmaterials Science, Science Press. Beijing, 2001.
    
    [10] Zewail A H, Femtochemistry: Atomic-scale dynamics of the chemical bond, J. Phys. Chem. A, 2000, 104:5660-5681.
    
    [11] Muino P L and Callis P R, Hybrid simulations of solvation effects on electronic spectra: Indoles in water, J. Chem. Phys., 1994, 100:4093.
    
    [12] Benjamin I, Solvent dynamics following charge transfer at the liquid-liquid interface, Chem. Phys., 1994, 180:287.
    
    [13] Dantus M, Bowman R M and Zewail A H, Femtosecond laser observations of molecular vibration and rotation, Nature, 1990, 343:737.
    
    [14] Zewail A H, Femtochemistry, J. Phys. Chem., 1993, 97:12427.
    
    [15] Liu Q, Wang J and Zewail A H, Femtosecond dynamics of dissociation and recombination in solvent cages, Nature, 1993, 364:427.
    [16] Walker G C, Jarzeba W, Kang T J, Johnson A E and Barbara P F, Ultraviolet femtosecond fluorescence spectroscopy: Techniques and applications, J. Opt. Soc. Am. B, 1990, 7:1521.
    
    [17] Mokhtari A, Chebira A and Chesnoy J, Subpicosecond fluorescence dynamics of dye molecules, J. Opt. Soc. Am. B, 1990, 7:1551.
    
    [18] Wang Q, Schoenlein R W and Peteanu L A, Vibrationally coherent photochemisty in the femtosecond primary event of vision, Science, 1994, 266:422.
    [19] Huxley J, Mataloni P and Schoenlein R, Femtosecond excited-state dynamics of polydi-acetylene, 1990, 56:1600.
    [20] Chen Y, Hunziker L and Ludowise P, Femtosecond transient stimulated emission pumping studies of ozone visible photodissociation, J. Chem. Phys., 1992, 97:2149.
    [21] Laubereau A, Seilmeier A and Kaiser W, A new technique to measure ultrashort vibrational relaxation times in liquid systems, Chem. Phys. Lett., 1975, 36:232.
    [22] Schneider S, Bierl R and Seischab M, Sub-picosecond transient grating measurements of the resonant energy transfer in cresyl violet solutions: Evidence for non-diffusive energy transport, Chem. Phys. Lett., 1994, 230:343.
    [23] Weiner A M, Silvestri S and Ippen E P D, Three-pulse scattering for femtosecond dephasing studies: theory and experiment, J. Opt. Soc. Am. B, 1985, 2:654.
    [24] Weiner A M and Ippen E P, Femtosecond excited state relaxation of dye molecules in solution, Chem. Phys. Lett., 1985, 114:456.
    [25] Brito C H, Cruz R L and Shank C V, Spectral hole burning in large molecules probed with 10 fs optical pulses, Chem. Phys. Lett., 1986, 132:341.
    [26] Taylor A J, Erskine D J and Tang C L, Femtosecond vibrational relaxation of large organic molecules, Chem. Phys. Lett., 1984, 103:430.
    [27] Wild W, Seilmeier A, Gottfried N H and Kaiser W, Ultrafast investigations of vibrationally hot molecules after internal conversion in solution, Chem. Phys. Lett., 1985, 119:259.
    [28] Laermer F, Israel W and Elsaesser T, Femtosecond spectroscopy of stimulated emission from highly excited dye molecules, J. Opt. Soc. Am. B, 1990, 7:1604.
    [29] Laermer F, Elsaesser T and Kaiser W, Ultrashort vibronic and thermal relaxation of dye molecules after femtosecond ultraviolet excitation, Chem. Phys. Lett., 1989, 156:381.
    [30] Bardeen C J and Shank C V, Femtosecond electronic dephasing in large molecules in solution using mode suppression, Chem. Phys. Lett., 1993, 203:535.
    
    
    [31] Lenz K M, Lau P A and Elsaesser T, Resonance raman and femtosecond absorption studies of vibrational relaxation initiated by ultrafast intramolecular proton transfer, Chem. Phys. Lett., 1994, 229:340.
    
    [32] Zhong Q, Wang Z, Sun Y, Zhu Q and Kong F, Vibrational relaxation of dye molecules in solution studied by femtosecond time-resolved stimulated emission pumping fluorescence depletion, Chem. Phys. Lett., 1996, 248:277.
    
    [33] Zhong Q, Wang Z, Liu Y, Zhu Q and Kong F, The ultrafast intramolecular dynamics of phthalocyanine and porphyrin derivatives, J. Chem. Phys., 1996, 105:5377.
    
    [34] He Y, Xiong Y, Zhu Q and Kong F, Ultrafast internal conversion and vibrational relaxation of butylphthalocyanine and tetraphenylporphyrin in solution, Acta Phys.-Chim. Sin., 1999, 15:636.
    
    [35] Khundkar L R and Zewail A H, Ultrafast molecular reaction dynamics in real-time: progress over a decade, Ann. Rev. Phys. Chem., 1990, 41:15.
    
    [36] Manz J and Castleman A W, Femtosecond chemistry: The berlin conference. J. Phys. Chem., 1993, 97:12423.
    
    [37] Broeckhove J and Lathouwers L, Time-Dependent Molecular Dynamics, Plenum. New-York, 1992.
    
    [38] Dantus M, Rosker M J and Zewail A H, Femtosecond real-time probing of reactions. ii. the dissociation reaction of icn, J. Chem. Phys., 1998, 89:6128.
    
    [39] Bowman R M, Dantus M and Zewail A H, Femtosecond transition-state spectroscopy of iodine: From strongly bound to repulsive surface dynamics, Chem. Phys. Lett., 1998. 161:297.
    
    [40] Dantus M, Bowman R M, Gruebele M and Zewail A H, Femtosecond real-time probing of reactions. v. the reaction of ihgi, J. Chem. Phys., 1989, 91:7437.
    
    [41] Walkup R E, Misewich J A, Glownia J H and Sorokin P P, Classical model of femtosecond time-resolved absorption spectra of dissociating molecules, J. Chem. Phys., 1991. 94:3389.
    
    [42] Schinke R, Photodissociation Dynamics, Cambridge University Press, Cambridge, 1993.
    
    [43] Rosker M J, Wise E W and Tang C L, Femtosecond relaxation dynamics of large molecules. Phys. Rev. Lett., 1986, 57:321.
    
    [44] Wise F W, Rosker M J and Tang C L, Oscillatory femtosecond relaxation of photoexcited organic molecules, J. Chem. Phys., 1987, 86:2827.
    
    [45] Chesnoy J and Mokhtari A, Resonant impulsive-stimulated raman scattering on malachite green, Phys. Rev. A, 1988, 38:3566.
    
    [46] Holzapfel W, U. Finkele W K, Oesterhelt D, Scheer H, Stilz H U and Zinth W, Initial electron-transfer in the reaction center from rhodobacter sphaeroides, Proc. Natl. Acad. Sci. USA, 1990, 87:5168.
    
    [47] Vos M H, Lambry J C, S. J. Robels D C Y, Breton J and Martin J L, Low frequency vibrational modes in proteins: Changes induced by point-mutations in the protein-cofactor matrix of bacterial reaction centers, Proc. Natl. Acad. Sci. USA, 1991, 88:8885.
    
    [48] Mukamel S, Femtosecond optical spectroscopy: A direct look at elementary chemical events, Ann. Rev. Phys. Chem., 1990, 41:647.
    
    [49] Mataga N, Okada T and Masuhara H, Dynamics and Mechanisms of Photoinduced Electron Transfer and Related Phenomena, North-Holland, Amsterdam, 1992.
    
    [50] Fano U, Description of states in quantum mechanics by density matrix and operator techniques, Rev. Mod. Phys., 1957, 29:74.
    
    [51] Slichter C P, Principles of Magnetic Resonance, Springer, Berlin, 1990.
    
    [52] Kono H and Fujimyra Y, Theory of resonance secondary emission in femtosecond laser excitation: On the connection with wave packet dynamics, J. Chem. Phys., 1989, 91:5960.
    
    [53] Pollard W, Lee S Y and Mathies R A, Wave packet theory of dynamic absorption spectra in femtosecond pump probe experiments, J. Chem. Phys., 1990, 92:4012.
    
    [54] Lindenberg K and West B J, The Nonequilibrium Statistical Mechanics of Open and Closed Systems, VCH, New York, 1990.
    
    [55] Redfield A G, On the theory of relaxation processes, J. Res. Dev, 1957, 1:19.
    
    [56] Redfield A G, The theory of relaxation processes, Adv. Magn. Reson., 1965, 1:1.
    
    [57] Wangsness R K and Bloch F, The dynamical theory of nuclear induction, Phys. Rev., 1933, 89:728.
    
    [58] R.Zwanzig, Statistical Mechanics of Irreversibility, Vol. 3 of Lectures in Theoretical Physics, Interscience, New York, 1961.
    
    [59] Argyres P N and Kelley P L, Theory of spin resonance and relaxation, Phys. Rev. A, 1964, 134:A98.
    
    [60] Albers J and Deutch J M, Redfield-langevin equation for nuclear spin relaxation, J. Chem. Phys., 1971, 55:2613.
    
    [61] Yoon B, Deuth J M and Freed J H, A comparison of generalized cumulant and projection operator methods in spin-relaxation theory, J. Chem. Phys., 1975, 62:4687.
    
    [62] B.Fain, Theory of Rate Processes in Condensed Media, Springer, Berlin, 1980.
    
    [63] Romem-Rochin V, Orsky A and Oppenheim I, Theory of spin-relaxation processes. Physica. A, 1989, 156:244.
    
    [64] van Kampen N G, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1992.
    
    [65] Toutounji M, Small G J and Mukamel S, Optical response functions for condensed systems with linear and quadratic electron-vibration coupling, J. Chem. Phys., 1998, 109:7949.
    
    [66] Khidekel V, Chernyak V and Mukamel S, Interplay of multiple vibrational spectral densities in femtosecond nonlinear spectroscopy of liquids, J. Chem. Phys., 1996, 105:8543.
    
    [67] Tanimura Y and Mukamel S, Temperature dependence and non-condon effects in pump-probe spectroscopy in the condensed phase, J. Opt. Soc. Am. B, 1993, 10:2263.
    
    [68] Cho M, FLeming G R and Mukamel S, Nonlinear response functions for birefringence and dichroism measurements in condensed phases, J. Chem. Phys., 1993, 98:5314.
    
    [69] Fried L E and Mukamel S, Simulation of nonlinear electronic spectroscopy in the condensed phase, Adv. Chem. Phys., 1993, 84:435.
    
    [70] Loring R F, Yan Y J and Mukamel S, Time-resolved fluorescence and hole-burning line shapes of solvated molecules: Longitudinal dielectric relaxation and vibrational dynamics, J. Chem. Phys., 1987, 87:5840.
    
    [71] Yan Y J, Fried L E and Mukamel S, Ultrafast pump-probe spectroscopy: Femtosecond dynamics in liouville space, J. Phys. Chem., 1989, 93:8149.
    
    [72] Fried L E and Mukamel S, A classical theory of pump-probe photodissociation for arbitrary pulse durations, J. Chem. Phys., 1990, 93:3063.
    
    [73] Yan Y J and Mukamel S, Pulse shaping and coherent raman spectroscopy in condensed phases, J. Chem. Phys., 1989, 94:997.
    
    [74] Pollard W T and Mathies R A, Analysis of femtosecond dynamic absorption spectra of nonstationary states, Ann. Rev. Phys. Chem., 1992, 43:497.
    
    [75] Fain B, Lin S H and Hamer N, Two-dimensional spectroscopy theory of nonstationary time-dependent absorption and it application to femtosecond processes, J. Chem. Phys.. 1989, 91:4485.
    
    [76] Fain B and Lin S H, Space-time coherences induced by ultrashort electromagnetic pulses, J. Chem. Phys., 1990, 93:6387.
    
    [77] Stock G and Domcke W, Theory of femtosecond pump-probe spectroscopy of ultrafast internal conversion processes in polyatomic molecules, J. Opt. Soc. Am. B, 1990, 7:1970.
    
    [78] Meslinger J S and Albrecht, Theory of time and frequency resolved resonance secondary radiation from a three-level system, J. Chem. Phys., 1986, 84:1247.
    
    [79] Blum K, Density Matrix Theory and Applications, Plenum, New York, 1981.
    
    [80] Xu Z X, Advanced Quantum Mechanics, East China Normal University, Shang Hai, 1994.
    
    [81] Ka X L, Advanced Quantum Mechanics, Higner Education Press, Bei Jing, 1999.
    
    [82] Ling R L, Pure state and mixed state, J. Chang. Shu. College, 2001, 15:27.
    
    [83] Lin S H and Eyring H, Proc. Natl. Acad. Sci. USA, 1977b, 74:3623.
    
    [84] May V and Kiihn O, Charge Energy Transfer Dynamics in Molecular Systems, Wiley-VCH, Berlin, 1999.
    
    [85] Jarzeba W, G. C. Walker A. E. Johnson M A K and Barbara P F, Femtosecond microscopic solvation dynamics of aqueous solutions, J. Phys. Chem., 1988, 92:7039.
    
    [86] Maroncelli M and Fleming G R, Erratum: Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solvation, J. Chem. Phys., 1990, 92:3251.
    
    [87] Maroncelli M and Fleming G R, Picosecond solvation dynamics of coumarin 153: The importance of molecular aspects of solvation, J. Chem. Phys., 1987, 86:6221.
    
    [88] der Zwan G V and Hynes J T, Time-dependent fluorescence solvent shifts, dielectric friction, and nonequilibrium solvation in polar solvents, J. Phys. Chem., 1985, 89:4181.
    
    [89] Wolynes P G, Linearized microscopic theories of nonequilibrium solvation, J. Chem. Phys., 1988, 86:5133.
    
    [90] Ripa I, Klafter J and Jortner J, Dynamics of ionic solvation, J. Chem. Phys., 1988, 88:3246.
    
    [91] Ripa I, Klafter J and Jortner J, Solvation dynamics in polar liquids, 1988, 89:4288.
    
    [92] Shank C V, Investigation of ultrafast phenomena in the femtosecond time domain, Science, 1986, 233:1276.
    
    [93] Saikan S, Nakabayashi T, Kanematsu Y and Imaeka A, Observation of vibronic quantum beat in dye-doped polymers using femtosecond accumulated photon echo, J. Chem. Phys., 1988, 89:4609.
    
    [94] Kalponzos C, D. Mcmorroe W T L and Kenney-Wallance G A, Femtosecond laser-induced optical kerr dynamics in cs2/alkane binary solutions, Chem. Phys. Lett., 1988, 150:138.
    
    [95] Ho Z Z and Peyghambarian N, Femtosecond dynamics in organic thin films of fiuoro-aluminium phthalocyanine, Chem. Phys. Lett., 1988. 148:107.
    
    [96] Lu H and Eisenthal K B, Femtosecond studies of electron-hole recombination in neat alka-nes, J. Chem. Phys., 1988, 89:606.
    
    [97] Rosker M J, Dantus M and Zewail A H, Femtosecond clocking of the chemical bond, Science.1988, 242:1200.
    
    [98] Lin S H and Fain B, Application of the theory of two-dimensional spectroscopy to the real-time femtosecond transition state spectroscopy, Chem. Phys. Lett., 1989, 155:216.
    
    [99] Fain B, Lin S H and Hamer N, Two-dimensional spectroscopy: Theory of nonstationary, time-dependent absorption and its application to femtosecond processes, J. Chem. Phys..1989, 91:4485.
    
    [100] Fain B, Lin S H and Wu W X, Rate processes affected by ultrashort-pulse fields. Phys. Rev. A, 1989, 40:824.
    
    [101] Shen Y R, Recent advances in nonlinear optics, Rev. Mod. Phys., 1976, 48:1.
    
    [102] Lin S H, Fujimura Y, Neusser H J and Schlag E W, Multiphoto Spectroscopy of Molecules. ACADEMIC PRESS,INC, London, 1984.
    
    [103] Bloembergen N, Nonlinear Optics, Addison-Wesley Publishing Company INC, New York. 1965.
    
    [104] Yariv A, Quantum electronics, Addison-Wesley Publishing Company INC, New York, 1975.
    
    [105] Sargent M, Scully M O and Lamb W E, Laser Physics, Addison-Wesley, Massachusetts, 1974.
    
    [106] Born M and Huang K, Dynamical theory of Crystal Lottics, Oxford University Press, New York, 1954.
    
    [107] Mchale J L, Molecular Spectroscopy, Prentice Hall, INC, USA, 1999.
    
    [108] Fork R L, Greene B I and Shank C V, Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking, 1995, 102:2691.
    
    [109] Stock G and Domcke W, Theory of femtosecond pump-probe spectroscopy of ultrafast internal conversion processes in polyatomic molecules, J. Opt. Soc. Am. B, 1990, 7:1970.
    
    [110] He Y, Xiong Y, Wang Z, Zhu Q and Kong F, A theoretical study on ultrafast vibrational relaxation of dye molecule in solution, Acta Phys.-Chim. Sin., 1998, 14:115.
    
    [111] He Y, Xiong Y, Wang Z, Zhu Q and Kong F, Theoretical analysis of ultrafast fluorescence depletion of vibrational relaxation of dye molecules in solution, J. Phys. Chem. A. 1998. 102:4266.
    
    [112] Wang Z, Xiong Y J, Sun Y and Kong F, Femtosecond time-resolved fluorescence spectra of lds751, Spectrosc Spect Anal, 1999, 19:257.
    
    [113] Liu J Y, The Dynamics of Ultrafast Process in Liquids Studied by Femtosecond Laser, Ph.D. Thesis, Chinese Academy of Sciences, The People's Republic of China, 2003.
    
    [114] Dai H L and Field R W, Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, World Science, Singapore, 1995.
    
    [115] Rose T S, Rosker M J and Zewail A H, Femtosecond real-time observation of wave packet oscillations (resonance) in dissociation reactions, J. Chem. Phys., 1998, 88:6672.
    
    [116] Pedersen S, Herek J L and Zewail A H, The validity of the diridacial hypothesis-direct femtosecond studies of the transition-state structures, Science, 1994, 266:1359.
    
    [117] Bigot J Y, Portella M T, Shoelein R W, Bardeen C J, Migus A and Shank C V, Non-markovian dephasing of molecules in solution measured with three-pulse femtosecond photo echoes, Phys. Rev. Lett., 1991, 66:1138.
    
    [118] Wolfseder B and Domcke W, Intramolecular electron-transfer dynamics in the inverted regime; quantum mechanical multi-mode model including dissipation, Chem. Phys. Lett., 1996, 259:113.
    
    [119] Domcke W and Stock G, Theory of ultrafast nonadiabatic excited-state processes and their spectroscopic detection in real time, Adv. Chem. Phys., 1997,100:1.
    
    [120] Pisliakov A V, Gelin M F and Domcke W, Detection of electronic and vibrational coherence effect in electron-transfer systems by femtosecond time-resolved fluorescence spectroscopy: theoretical aspects, J. Phys. Chem. A, 2003, 107:2657.
    
    [121] Gelin M F, Egorova D and Domcke W, Efficient method for the calculation of time-and frequency-resolved four-wave-mixing signals and its application to photon echo spectroscopy, J. Chem. Phys., 2005, 123:231103.
    
    [122] Yan Y J, Fried L E and Mukamel S, Ultrafast pump-probe spectroscopy: femtosecond dynamics in liouville space, J. Phys. Chem., 1989, 93:8149.
    
    [123] Grimberg B I, Lozovoy V V, Dantus M and Mukamel S, Ultrafast nonlinear spectroscopic techniques in the gas phase and their density matrix representation, J. Phys. Chem. A, 2002, 106:697.
    
    [124] Chen G, Takahashi A and Mukamel S, Chemical bonding and off-resonance nonlinear polarizabilities of conjugated organic molecules, J. Chem. Phys., 1994, 100:2366.
    
    [125] Mukamel S, Takahashi A, Wang H X and Chen G, Electronic coherence and nonlinear susceptibilities of conjugated polyenes, Science, 1994, 266:250.
    
    [126] Mukamel S, Principles of Nonlinear Optical Spectroscopy, Oxford University Press. New York, 1995.
    
    [127] Chen G and Mukamel S, Nonlinear susceptibilities of donor-acceptor conjugated systems; coupled-oscillator representation, J. Am. Chem. Soc, 1995, 117:4945.
    
    [128] Chen G and Mukamel S, Reduced electronic density matrices, effective hamiltonians, and nonlinear susceptibilities of conjugated polyenes, J. Chem. Phys., 1995, 103:9355.
    
    [129] Chen G and Mukamel S, Nonlinear polarizabilities of donor-acceptor substituted conjugated polyenes, J. Phys. Chem., 1996, 100:11080.
    
    [130] Deng Z and Mukamel S, Nonlinear susceptibilities and coherent and spontaneous raman spectroscopy of polyatomic molecules in condensed phases, J. Chem. Phys., 1986. 85:1738.
    
    [131] Knoester J and Mukamel S, Intermolecular interactions in linear and nonlinear susceptibilities: beyond the local field approximation, J. Opt. Soc. Am. B, 1988, 6:643.
    
    [132] Spano F C and Mukamel S, Nonlinear susceptibilities of molecular aggregates: Enhancement of x3 by size, Phys. Rev. A, 1989, 40:5783.
    
    [133] Lin S H, Fain B and Hamer N, Ultrafast processes and transitionstate spectroscopy. Adv. Chem. Phys., 1990, 79:133.
    
    [134] Renger T, May V and Kiihn O, Ultrafast excitation energy transfer dynamics in photo-synthetic pigment-protein complexes, Phys. Rep., 2001, 343:137.
    
    [135] Renger T and May V, Theory of multiple exciton effects in the photosynthetic antenna complex lhc-ii, J. Phys. Chem. B, 1997, 101:7232.
    
    [136] Zhou L C, Liu J Y, Zhao G J, Shi Y, Peng X J and Han K L, The ultrafast dynamics of near-infrared heptamethine cyanine dye in alcoholic and aprotic solvents, Chem. Phys., 2007, 333:179.
    
    [137] Liu J Y, Fan W H, Han K L, Xu D L and Lou N Q, Ultrafast dynamics of dye molecules in solution as a function of temperature, J. Phys. Chem. A, 2003, 107:1914.
    
    [138] Liu J Y, Fan W H, Han K L, Deng W Q, Xu D L and Lou N Q, Ultrafast vibrational and thermal relaxation of dye molecules in solutions, J. Phys. Chem. A, 2003, 107:10857.
    
    [139] Mishima K, Hayashi M, Lin J T, Yamashita K and Lin S H, A numerical study on vibronic and vibrational dynamics generated by chirped laser pulses in the presence of relaxation processes, Chem. Phys. Lett., 1999, 309:279.
    
    [140] Miranda M A and Garcia H, 2,4,6-triphenylpyrylium tetrafluoroborate as an electron-transfer photosensitizer, 1994, 94:1063.
    
    [141] Kenkre V M, Tokmakoff A and Fayer M D, Theory of vibrational relaxation of polyatomic molecules in liquids, J. Chem. Phys., 1994, 101:10618.
    
    [142] Owrutsky J C, Raftery D and Hochstrasser R M, Vibrational-relaxation dynamics in solutions, Ann. Rev. Phys. Chem., 1994, 45:519.
    
    [143] Mimuro M, Akimoto S and Takaichi S, Effect of molecular structures and solvents on the excited state dynamics of the s2 state of cartenoids analyzed by the femtosecond up-conversion method, J. Am. Chem. Soc, 1997, 119:1452.
    
    [144] Radloff W, Stert V, Freudenberg T, Hertel I, Jouvet C, Dedonder-Lardeux C and Sol D, Internal conversion in highly excited benzene and benzene dimer: femtosecond time-resolved photoelectron spectroscopy, Chem. Phys. Lett., 1997, 281:20.
    
    [145] Yarkony D, S1-s0 internal conversion in ketene. 1. the role of conical intersections, J. Phys. Chem. A, 1999, 103:6658.
    
    [146] Litvinenko K L, Webber N M and Meech S R, An ultrafast polarisation spectroscopy study of internal conversion and orientational relaxation of the chromophore of the green fluorescent protein, Chem. Phys. Lett., 2001, 346:47.
    
    [147] Macpherson A N and Gillbro T, Solvent dependence of the ultrafast s2-s1 internal conversion rate of β-carotene, J. Phys. Chem. A, 1998, 102:5049.
    
    [148] Pecourt L J M, Peon J and Kohler B, Ultrafast internal conversion of electronically excited rna and dna nucleosides in water, J. Am. Chem. Soc, 2000, 122:9348.
    
    [149] Cerullo G, Polli D, Lanzani G, Silvestri S D, Hashimoto H and Cogdell R, Photosynthetic light harvesting by carotenoids: Detection of an intermediate excited state, Science, 2002, 298:2395.
    
    [150] Furuichi K, Sashima T and Koyama Y, The first detection of the 3ag~- state in carotenoids using resonance-raman excitation profiles, Chem. Phys. Lett., 2002, 356:547.
    
    [151] Fujii R, Inaba T, Watanabe Y, Koyama Y and Zhang J, Two different pathways of internal conversion in carotenoids depending on the length of the conjugated chain, Chem. Phys. Lett., 2003, 369:165.
    
    [152] He Y, Xiong Y, Zhu Q and Kong F, Ultrfast internal conversion and vibrational relaxation of butylphthalocyanine and tetraphenylporphyrin in solution, Acta Phys.-Chim. Sin., 1999, 15:636.
    
    [153] Shi Y, The Dynamics of Ultrafast Process of Chlorophyll a in Liquids Studied by Femtosecond Laser, Ph.D. thesis, Chinese Academy of Sciences, The People's Republic of China. 2005.
    
    [154] Shi Y, Liu J Y and Han K L, Investigation of the internal conversion time of the chlorophyll a from s3, s2 to s1, Chem. Phys. Lett., 2005, 410:260.
    
    [155] Thomas L L, Kim J and Cotton T, Comparative study of resonance raman and surface-enhanced resonance raman chlorophyll a spectra using soret and red excitation, J. Am. Chem. Soc, 1990, 112:9378.
    
    [156] Wang Z, Zhong Q, Xiong Y J, Sun Y, Zhu Q and Kong F, Ultrafast investigation of the internal conversion and vibrational relaxation in excited states of zinc phthalocyanine derivatives, Chin. J. Chem. Phys, 1998, 11:15.
    
    [157] Gu X Z, Hayashi M, Suzuki S and Lin S H, Vibrational coherence and relaxation dynamics in the primary donor state of the mutant reaction center of rhodabacter capsulatus: theoretical analysis pump-probe stimulated emission, Biochim. Biophys. Acta, 1995, 1229:215.
    
    [158] Lai T I and Lim E C, Time-resolved fluorescence spectra and energy-resolved decays of vibronically coupled electronic states: effects of solvent relaxation on the excited-state dynamics of thioxanthone, Chem. Phys. Lett., 1981, 84:303.
    
    [159] Dong L Q, Niu K and Cong S L, Theoretical analysis of internal conversion pathways and vibrational relaxation process of chlorophyll-a in ethyl ether solvent, Chem. Phys. Lett.. 2007, 440:150.
    
    [160] Dong L Q, Niu K and Cong S L, Theoretical study of vibrational relaxation and internal conversion dynamics of chlorophyll-a in ethyl acetate solvent in femtosecond laser fields. Chem. Phys. Lett., 2006, 432:286.
    
    [161] Randall L and Therese M, A resonance raman investigation of the cation radical of chlorophyll a and several derivatives, J. Phys. Chem., 1990, 94:3968.
    
    [162] Robinson P J and Holbrook K, Unimolecular Reaction, New York, Wiley, 1972.
    
    [163] Lewis G N, Valence and the Structure of Atoms adn Molecules, New York, The Chemical Catalog Co., 1923.
    
    [164] Barbara P F and Jarzeba W, Ultrafast photochemical intramolecular charge transfer and excited state solvation, Adv. photochem., 1990, 15:1.
    
    [165] Yoshihaara T, Shimada H, Shizuka H and Tobita S, Internal conversion of o-aminoacetophenone in solution, Phys. Chem. Chem. Phys., 2001, 3:4972.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700