电磁波在左手材料平板波导中的传输
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
左手材料(LHM)是近年来电磁学领域研究的热点问题,越来越引起研究者的广泛关注。LHM是一种介电常数和磁导率同时为负值的人工合成材料,具有一些奇异的电磁特性,当电磁波在这种材料中传输时,电磁波的电场矢量、磁场矢量与波矢构成左手关系,而在普通材料中三者构成右手关系。本文对覆盖层或衬底是左手材料的平板波导中的导引模做了深入研究,并详细讨论了不同结构平板波导中的表面模,发现了振荡模和表面模的一些新的特性。论文主要包括以下内容:
     首先,研究了覆盖层或衬底层是左手材料时,不对称平板波导中的导引模,引入归一化参数,用解析法得到其色散曲线,并分类详细讨论了振荡模和表面模的色散特性。TE_0振荡模有时不存在;有时仅在有限的归一化传播常数范围内存在。TE_1表面模的色散曲线与TE_0振荡模的曲线平滑连接,形成一个完整的曲线,有时存在二重简并现象。
     其次,用解析法分析了覆盖层或衬底是左手材料的不对称空心平板波导的TE表面模,求出了表面模的色散方程,画出了色散曲线,并详细讨论了波导的结构参数对其色散特性的重大影响。另外,对TM表面模的色散特性也做了说明。
     第三,用准光学的方法研究左手材料平板波导的表面模。引入一种射线模型,来研究平面迅衰波的传输特性。研究发现平面迅衰波在界面处反射和透射时会发生振幅跃变。还首次用射线图分析了含左手材料的单界面和平板波导中的TE表面模。我们发现,在芯层是LHM的平板波导中,结构参数对表面模的存在有很大的影响。在覆盖层或衬底是LHM的平板波导中,奇表面模不存在,但存在两种偶表面模。另外,对振荡模和表面模之间的导引机理和条件做了比较。
     第四,介绍了用于实现左手材料的重要组成单元一金属开口环谐振器(SRR)和互补开口环谐振器(CSRR),研究了它们的结构特点及其微带滤波器。它们能够应用于微波滤波器的设计中,以减小滤波器的尺寸,优化滤波器的性能。
     最后,我们不光做了以上的理论研究,为了丰富博士论文,还做了毫米波段的实验测量。椭圆偏振测量法是一种高灵敏度、非接触的现代检测技术,在薄膜参数及其特性的测量方面有着广泛的应用。将椭偏法的电磁频谱从原来可见光、红外波段拓展到毫米波段,分析了毫米波椭偏法测量原理,使用已构建的实验装置进行测量,通过对测量结果的分析,选择了合适的入射角,并进行了大量的测试,从而计算出了样品的复介电常数。
The study of the left-handed material (LHM) has been a hot topic in the electromagnetics for the past years, and attracts much more attention for scientists. LHM is a composite material with simultaneously negative dielectric permittivity and magnetic permeability, and possesses a number of remarkable properties. As electromagnetic wave propagates in this material, the electric field, magnetic field and wave vector form a left set of vectors. However, for conventional material, the three vectors form a right set of vectors. In this dissertation, a deeper study on the guided modes in slab waveguides with a left-handed material cover or substrate is presented, and the surface guided modes with respect to different parameters are researched in detail. In this way, we explore more new and unusual properties of oscillating and surface guided modes. The dissertation is summarized as follows:
     Firstly, the guided modes propagating along an asymmetrical dielectric slab waveguide with a left handed material cover or substrate are studied, respectively. By using normalized parameters, universal dispersion curves have been obtained analytically. Then the dispersion properties of oscillating and surface guided modes are classified systematically and discussed in detail. TE_0 oscillating mode some times does not exist; some times it exists in a restricted range of normalized propagation constant. The dispersion curve of TE_1 surface mode smoothly connects with that of TE_0 oscillating mode. It seems that the two different kinds of modes compensate each other to form one whole mode, and some times the whole mode curve is double degeneracy.
     Secondly, TE surface modes in asymmetrical hollow slab waveguide with a left handed material cover or substrate are investigated analytically, respectively. The dispersion relation is derived, and the dispersion curves are calculated. We find that the constitutive parameters have important effect on dispersion properties. In addition, TM surface modes also are discussed.
     Thirdly, we study the surface guided modes in a left-handed material slab waveguide using the method of quasi-optics. A ray model for an evanescent plane wave has been introduced to describe the property of propagation. It is found that an evanescent wave undergoes an amplitude jump during reflection and transmission on a plane interface. TE surface modes guided by a single interface and a slab waveguide containing left-handed materials are then analyzed by using a ray picture, respectively. We find that existence of surface modes in a LHM slab is strongly dependent on constitutive parameters. In a slab waveguide with left-handed material cover or substrate, odd surface mode does not exist, but there exist two even surface modes. Besides, guiding mechanics and conditions are compared between oscillating and surface guided modes.
     Fourthly, the split-ring resonator (SRR) and complementary split-ring resonator (CSRR) that act as fundamental composite units to make left-handed material are discussed. The constitutive characters and the planar microstrip filters that based on SRR and CSRR are researched. SRR and CSRR can be used in design of microwave filter in order to miniaturize the filter and improve its performances.
     Lastly, in order to make the dissertation better, we not only do the research above in theory, but also do an experiment in millimeter-wave band. Ellipsometry is a kind of famous measurement technology with the character of contactless and remarkable sensitivity, and it plays a very important part in measuring dielectric character of materials. The electromagnetic frequency band of ellipsometry is extended from visible light and infrared band to millimeter-wave band. We analyze the measurement principle of ellipsometry in millimeter-wave band, and do an experiment using the built measurement apparatus. According to the measured results, the appropriate incident angle is chosen. At last, we get the complex permittivity of materials basing on a lot of measured data.
引文
[1] V. GVeselago. Electrodynamics of substances with simultaneously negative electrical and magnetic properties[J]. Sov Phyis USPEKHI , 1968, 10(4): 509-517.
    [2] J. B.Pendry, A. J.Holden, W. J.Stewart, et al. Extremely low frequency plasmons in metallic mesostructure[J]. Phys. Rev. Lett., 1996, 76(25):4773-4776.
    [3] J. B. Pendry, A. J.Holden, D. J. Robbins, et al. Low frequency plasmons in thin-wire structures [J]. J. Phys.: Condens. Matter, 1998, 10:4785-4808.
    [4] J. B. Pendry, A. J. Holden, D. J. Robins, et al. Magnetism from conductors and enhanced nonlinear phenomena [J]. IEEE Trans. Micr. Theory Tech., 1999, 47(11):2075-2084.
    [5] J. B. Pendry. Negative refraction makes a perfect lens [J]. Phys. Rev. Lett., 2000, 85(18):3966-3969.
    [6] P. M. Valanju, R. M. Walser, A. P. Valanju. Wave refraction in negative-index media: Always positive and very inhomogeneous [J]. Phys. Rev. Lett., 2002, 88(18):187401-1-187401-4.
    [7] D. R. Smith, N. Kroll. Negative refractive index in left-handed materials [J]. Phys. Rev. Lett., 2000, 85(14):2933-2936.
    [8] V. Kuzmiak, A. A. Maradudin. Scattering properties of a cylinder fabricated from a left-handed material [J]. Phys. Rev. B, 2002, 64(4):045116-1 -045116-7.
    [9] G .M. Zhang, J. C. Peng, Z. J. Jian, et al. Transmission Loss due to Modes Conversion Caused by Random Surface Imperfections in Left-Handed-Material Slab Waveguides [J].Chinese Phys. Lett., 2006,23(7): 1826-1829.
    [10] N. Garcia, M. Nieto-Vesperinas. Left-handed materials do not make a perfect lens [J]. Phys. Rev. Lett., 2002, 88(20):207403-1-207403-4.
    
    [11] R. W. Ziolkowski, E. Heyman. Wave propagation in media having negative permittivity and permeability [J]. Phys. Rev. E, 2001, 64(5): 056625-1-056625-15.
    [12]Z.Ye.Optical transmission and reflection of perfect lenses by left-handed materials[J].Phys.Rev.B,2003,67:193106-1-193106-4.
    [13]D.R.Smith,J.Padilla Willie,D.C.Vier,et al.Composite Medium with Simultaneously Negative Permeability and Permittivity[J].Phys.Rev.Lett.,2000,84(18):4184-4187.
    [14]R.A.Shelby,D.R.Smith,S.Schultz.Experimental verification of a negative index of refraction[J].Science,2001,292:77-79.
    [15]J.Pacheco,T.M.Grzegorczyk,B.I.Wu,et al.Power propagation in homogeneous isotropic frequency-dispersive left-handed media[J].Phys.Rev.Lett.,2002,89(25):257401-1-257401-4.
    [16]J.A.Kong,B.Wu,Y.Zhang.Lateral displacement of a Gaussian beam reflected from a grounded slab with negative permittivity and permeability[J].Appl.Phys.Lett.,2002,80(12):2084-2086.
    [17]L.Ran,J.Huangfu,H.Chen,X.Zhang,K.Chen,T.M.Grzegorezyk,J.A.Kong.Beam shifting experiment for the characterization of left-handed properties[J].J.Appl.Phys.,2004,95(5):2238-2241.
    [18]A.Grbic,G.V.Eleftheriaded.Experimental verification of backward wave radiation from a negative refractive index metamaterial[J].J.Appl.Phys.,2002,92(10):5930-5935.
    [19]G.V.Eleftheriades,A.K.Iyer,P.C.Kremer.Planar negative refractive index media using periodically L-C loaded transmission lines[J].IEEE Trans.Microwave Theory Tech.,2002,50(12):2702-2712.
    [20]A.K.Iyer,P.C.Kremer,G.V.Eleftheriades.Experimental and theoretical verification of focusing in a large,periodically loaded transmission line negative refractive index metamaterial[J].Optics Express,2003,11(7):696-708.
    [21]黄志洵.微波异常传播中的负折射问题[J].物理,2001,30(11):689-692.
    [22]A.A.Houck,J.B.Brock,I.L.Chuang.Experimental observations of a left-handed material that obeys Snell's Law[J].Phys.Rev.Lett.,2003,90(13):137401-1-137401-4.
    [23]C.G.Parazzoli,R.B.Greegor,K.Li,et al.Experimental verification and simulation of negative index of refraction using Snell's Law[J].Phys.Rev.Lett.,2003,90(10):107401-1-107401-4.
    [24]刘战存.多普勒和多普勒效应的起源[J].物理,2003,32(7):488-491.
    [25]徐耿钊,张伟华,朱星.奇妙的左手材料[J].物理,2004,33(11):801-808.
    [26]A.B.Kozyrev,D.W.Weide.Explanation of the inverse Doppler effect observed in nonlinear transmission lines[J].Phys.Rev.Lett.,2005,94:203902-1-203902-4.
    [27]N.Seddon,T.Bearpark.Observation of the inverse Doppler effect[J].Science,2003,302:1537-1540.
    [28]郭硕鸿.电动力学[M].北京:高等教育出版社,1979.
    [29]C.Luo,M.Ibanescu,S.G.Johnson et al.Cerenkov radiation in photonic crystals[J].Science,2003,299(5605):368-371.
    [30]M.C.K.Wiltshire,J.B.Pendry,I.R.Young,et al.Microstructured magnetic materials for RF flux guides in magnetic resonance imaging[J].Science,2001,291(5505):849-851.
    [31]N.Fang,X.Zhang.Imaging properties of a metamaterial superlens[J].Appl.Phys.Lett.,2003,82(2):161-163.
    [32]J.T.Shen,P.M.Platzman.Near field imaging with negative dielectric constant lenses[J].Appl.Phys.Lett.,2002,80(18):3286-3288.
    [33]G.Gomez-Santos.Universal features of the time evolution of evanescent modes in a left-handed perfect lens[J].Phys.Rev.Lett.,2003,90(7):077401:1-4.
    [34]马中团,鲁拥华,王沛,等,左手性材料研究进展[J].物理,2004,33(7):497-502.
    [35]J.B.Pendry,A.J.Holden,W.J.Stewart.Extremely low frequency plasmons in metallic mesostructures[J].Phys.Rev.Lett.,1996,76(25):4773-4776.
    [36]杜世刚.等离子体物理[M].北京:原子能出版社,1998.
    [37]J.B.Pendry,A.J.Holden,D.J.Robbins,et al.Magnetism from conductors and enhanced nonlinear phenomena[J].IEEE Transactions on Microwave Theory and Techniques,1999,47(11):2075-2084.
    [38]R.A.Shelby,D.R.Smith,S.C.Nemat-Nasser,S.Schultz.Microwave transmission through a two-dimensional,isotropic,left-handed metamaterial[J].Appl.Phys.Lett.,2001,78(4):489-491.
    [39]R.A.Shelby,D.R.Smith,S.Schultz.Experimental verification of a negative index of refraction[J].Science,2001,292:77-79.
    [40]D.R.Smith,W.J.Padilla,D.C.Vier,et al.Composite medium with simultaneously negative permeability and permittivity[J].Phys.Rev.Lett.,2000,84(18):4184-4187.
    [41]D.R.Smith,D.C.Vier,N.Kroll,et al.Direct calculation of permeability and permittivity for a left-handed metamaterial[J].Appl.Phys.Lett.,2000,77(14):2246-2248.
    [42]D.R.Smith,S.Schultz,P.Markos,et al.Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients [J].Phys.Rev.B,2002,65(10):195104-1-195104-5.
    [43]C.G.Parazzoli,R.B.Greegor,J.A.Nielsen et al.Performance of a negative index of refraction lens[J].Appl.Phys.Lett.,2004,84(17):3232-3234.
    [44]R.W.Ziolkowski.Design,fabrication,and testing of double negative metamaterials[J].IEEE Transactions on Antenna and Propagation,2003,51(7):1516-1529.
    [45]H.S.Chen,L.X.Ran,J.T.Huangfu,et al.Metamaterial exhibiting left-handed properties over multiple frequency bands[J].J.Appl.Phys,2004,96(9):5338-5340.
    [46]L.Ran,J.Huangfu,H.Chen,et al.Microwave solid-state left-handed material with a broad bandwidth and an ultralow loss[J].Phys.Rev.B,2004,70(7):073102-1-073102-3.
    [47]A.N.Lagarkov,V.N.Kissel.Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate[J].Phys.Rev.Lett.,2004,92(7):077401-1-077401-4.
    [48]L.Liu,C.Caloz,C.C.Chang et al.Forward coupling phenomena between artificial left-handed transmission lines[J].J.Appl.Phys.,2002,92(9):5560-5565.
    [49]I.S.Nefedov,S.A.Tretyakov.On potential applications of metamaterials for the design of broadband phase shifters[J].Microwave Opt.Technol.Lett.,2005,45(2):98-102.
    [50]何金龙.负折射介质波导特性及应用研究[D].浙江大学,2006,22-27.
    [51]R.Ruppin.Surface polaritons of a left-handed medium[J].Phys.Lett.A,2000,277:61-64.
    [52]R.Ruppin.Surface polaritons of a left-handed material slab[J].J.Phys.:Condensed Matter,2001,13:1811-1819.
    [53]I.V.Shadrivov,A.A.Sukhorukov,Y.S.K.ivshar.,et al.Nonlinear surface waves in left-handed materials[J].Phys.Rev.E,2004,69(1),016617-1-016617-9.
    [54]K.L.Tsakmakidis,C.Hermann,A.Klaedtke,et al.Surface plasmon polaritons in generalized slab heterostructures with negative permittivity and permeability [J].Phys.Rev.B,2006,73(8):085104-1-085104-11.
    [55]S.A.Darmanyan,M.Neviere,A.A.Zakhidov.Surface modes at the interface of conventional and left-handed media[J].Optics Communications,2003,225:233-240.
    [56]S.A.Darmanyan,M.Neviere,A.A.Zakhidov.Nonlinear surface waves at the interfaces of left-handed electromagnetic media[J].Phys.Rev.E,2005,72:036615-1-036615-6.
    [57]J.G.Lee,J.H.Lee.Backward-wave directional coupler with complete coupling and broadband using conventional microstrip and 1D mushroom structure[J].Microwave Opt.Tech.Lett.,2006,48(7):1293-1296.
    [58]I.V.Shadrivov,A.A.Sukhorukov,Y.S.Kivshar.Guided modes in negative-refrative-index waveguides[J].Phys.Rev.E,2003,67:057602-1-057602-4.
    [59]B.I.Wu,T.M.Grzegorczyk,Y.Zhang,and J.A.Kong.Guided modes with imaginary transverse wave number in a slab waveguide with negative permittivity and permeability[J].2003,J.Appl.Phy.,93:9386-9388.
    [60]H.Cory,A.Barger.Surface-wave propagation along a metamaterial slab[J].Microwave Opt.Technol.Lett.,2003,38(5):392-395.
    [61]Y.He,Z.Cao,Q.Shen.Guided optical modes in asymmetric left-handed waveguides[J].Opt.Commun.,2005,245:125-135.
    [62]Z.Y.Xiao,Z.H.Wang.Dispersion charadteristics of asymmetric double negative materials slab waveguides[J].J.Opt.Soc.Am.B,2006,23(9):1757-1760.
    [63]J.He,S.He.Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate[J].IEEE Microw.Wireless Compon.Lett.,2006,16:96-98.
    [64]H.Kogelnik,V.Ramaswamy.Scaling rules for thin-film optical waveguides[J].Appl.Opt.1974,13(8):1857-1862.
    [65]Z.H.Wang,Z.Y.Xiao,S.P.Li.Guided modes in slab waveguides with a left handed material cover or substrate[J].Optics Communications,2008,281:607-613.
    [66]王子华,李素萍.左手材料介质平板波导的表面模[J].半导体光电,2008,29(6):855-858.
    [67]S.P.Li,Z.H.Wang,L.F.Shen.Surface modes in slab waveguides with a left handed materials cover[J].Optoelectronics Letters,2009,5(2):89-92.
    [68]Z.J.Wang,J.F.Dong.Analysis of guided modes in asymmetric left-handed slab waveguides[J].Progress in Electromagnetics Research,2006,62:203-215.
    [69]王子华,李素萍.左手材料空心平板波导的表面模[J].半导体光电,2008,29(4):466-470.
    [70]S.Xiao,L.Shen,S.He.A novel directional coupler utilizing a left-handed material[J].IEEE Photon.Technol.Lett.,2004,16:171-173.
    [71]P.K.Tien.Light waves in thin films and integrated optics[J].Appl.Opt.,1971,10(11):2395-2413.
    [72]Z.H.Wang,S.P.Li.Quasi-optics of the surface guided modes in a left-handed material slab waveguide[J].J.Opt.Soc.Amer.B,2008,25(6):903-908.
    [73]冉立新,章献民,陈抗生,T.M.Grzegorczyk,J.A.Kong.异向媒质及其实验验证[J].科学通报,2003,48(12):1271-1273.
    [74]陈红胜,冉立新,皇甫江涛,章献民,陈抗生,孔金瓯.异向介质平板对高斯波传播的影响[J],浙江大学学报(工学版),2004,38(10):1380-1382.
    [75]D.R.Smith,W.J.Padilla,D.C.Vier et al.Composite medium with simultaneously negative permeability and permittivity[J].Physical Review Letters,2000,84(18):4184-4187.
    [76]E.Ozbay,K.Aydin,E.Cubukcu,et al.Transmission and reflection properties of composite double negative metamaterials in free space[J].IEEE Trans.Antennas and Propagation,2003,51(10):2592-2595.
    [77]R.Marque's,J.Martel,F.Mesa,et al.Left-handed-media simulation and transmission of EM waves in subwavelength Split-ring-resonator-loaded metallic waveguides[J].Physical Review Letters,2002,89(18):183901-1-183901-4.
    [78]H.Chen,L.Ran,J.Huangfu,et al.Left-handed materials composed of only S-shaped resonators[J].Physical Review E,2004,70(52):057605-1-057605-4.
    [79]J.Garc(?)a-Garc(?)a,F.Mart(?)n,F.Falcone,et al.Microwave filters with improved stopband based on sub-wavelength resonators[J].IEEE Trans.Microwave Theory and Techniques,2005,53(6):1997-2004.
    [80]皇甫江涛,冉立新,陈抗生.一种新型人工异向介质结构的设计与仿真[J].浙江大学学报(工学版),2005,39(4):584-587.
    [81]J.Garc(?)a-Garc(?)a,F.Mart(?)n,F.Falcone,et al.Spurious passband suppression in microstrip coupled Line band pass Filters by means of split ring resonators[J].IEEE Microwave and Wireless Components Letters,2004,14(9):416-418.
    [82]C.G.Hwang,N.H.Myung.An oscillator with low phase noise and superior harmonic suppression characteristics based on uniplanar compact split ring resonators[J].Microwave Optical Technology Letters,2006,48(5):938-940.
    [83]X.Q.Lin,T.J.Cui.Controlling the Bandwidth of Split Ring Resonators[J].IEEE Microwave and Wireless Components Letters,2008,18(4):245-247.
    [84]J.G.Lee,J.H.Lee.Suppression of spurious radiations of patch antennas using split-ring resonators(SRRs)[J].Microwave Optical Technology Letters,2006,48(2):283-287.
    [85]J.Garc(?)a-Garc(?)a,J.Bonache,I.Gil,et al.Comparison of electromagnetic band gap and Split-ring resonator microstrip linesas stop band structures[J].Microwave Optical Technology Letters,2005,44(4):376-379.
    [86]J.Bonache,I.Gil,J.Garcia-Garcia,et al.Split rings resonators:Key particles for microwave device design[C].IEEE.2005 Spanish Conference on Electron Devices,Spanish:IEEE.,2005,135-138.
    [87]F.Falcone,T.Lopetegi,J.D.Baena,et al.Effective negative-ε stopband microstrip lines based on complementary split ring resonators[J].IEEE Microwave and Wireless Components Letters,2004,14(6):280-282.
    [88]F.Falcone,T.Lopetegi,M.A.G.Laso,et al.Babinet principle applied to the design of metasurfaces and metamaterials[J].Physical Review Letters,2004,93(19):197401-1-197401-4.
    [89]H.W.Wu,M.H.Weng,Y.K.Su,et al.Propagation characteristics of complementary split-ring resonator for wide bandgap enhancement in microstrip bandpass filter[J].Microwave Optical Technology Letters,2007, 49(2):292-295.
    [89] R.Marque's, F. Medina, R. Rafii-El-Idrissi. Role of bianisotropy in negative permeability and left-handed metamaterials [J]. Physics Review B, 2002; 65(14): 144440-1-144440-6.
    [90] S.N. Burokur, M. Latrach, S. Toutain. A novel type of microstrip coupler utilizing a slot Split-ring resonators defected ground plane [J]. Microwave Optical Technology Letters, 2006,48 (1):138-141.
    [91] J. Garci'a-Garci'a, J. Bonache, F. Falcone, et al. Stepped-impedance lowpass filters with spurious passband suppression [J]. Electronics Letters, 2004, 40 (14): 881-883.
    [92] A. Velez, F. Aznar, J. Bonache, et al. Open Complementary Split Ring Resonators (OCSRRs) and Their Application to Wideband CPW Band Pass Filters [J]. IEEE Microwave and Wireless Components Letters, 2009, 19(4): 197-199.
    [93] J. C. Liu, D. S. Shu, B. H. Zeng, et al. Improved equivalent circuits for complementary split-ring resonator-based high-pass filter with C-shaped couplings [J]. IET Microwaves, Antennas & Propagation, 2008,2(6):622-626.
    [94] M.A. G. Laso, T. Lopetegi, M. J. J. Erro, et al. Multiple-frequency-tuned photonic bandgap microstrip structures [J]. IEEE Trans. Microwave Guided Wave Letters, 2000,10(6): 220-222.
    [95] R. Marques, F. Mesa, J. Martel, et al. Comparative analysis of edge- and broadside-coupled Split ring resonators for metamaterial design—theory and experiment [J]. IEEE Trans. Antennas and Propagation, 2003, 51(10): 2572-2581.
    [96] S. N. Burokur, M. Latrach, S. Toutain. Study of the effect of dielectric split-ring resonators on microstrip-line transmission [J]. Microwave Optical Technology Letters, 2005,4(5):445-448.
    [97] G. Marta, B. Jordi, G. G. Joan, et al. New Left Handed Microstrip Lines with Complementary Split Rings Resonators(CSRRs) Etched in the Signal Strip[J].IEEE,2007,1419-1422.
    [98]R.M.A.Azzam,N.M.Bashara.椭圆偏振测量术和偏振光[M].梁民基译.北京:科学出版社,1986:12-28.
    [99]F.Sagnard.Reflection ellipsometry for in-situ determination of complex permittivity and thickness of a single-layer material at several angles of incidence and frequencies[J].Microwave and Optical Technology Letters,2003,36(4):243-248.
    [100]王洪涛.椭圆偏振法测量薄膜参量的数据处理[J].物理实验,2001,21(7):8-11,17.
    [101]包学诚.椭偏仪的结构原理与发展[J].现代科学仪器,1999,(3):58-61.
    [102]I.Kalimanova,N.Ilieva,M.Georgieva.Ellipsometry and thin films parameters measurement[C].28th Int.Spring Seminar on Electronics Technology,2005:473-476.
    [103]P.Y.Guittet,U.Mantz,P.Weidner.Infrared spectroscopic ellipsometry in semiconductor manufacturing[C].IEEE/SEMI Advanced Semiconductor Manufacturing Conference.2004:176-180.
    [104]I.Kalimanova,N.Ilieva,M.Georgieva.Ellipsometry and thin films parameters measurement[C].28th Int.Spring Seminar on Electronics Technology.2005:473-476.
    [105]F.Sagnard,D.Seetharamdoo,V.L.Glaunec.Reflection and transmission ellipsometry data analysis for measuring the complex permittivity of a single-layer material at microwave frequencies[J].Microwave and Optical Technology Letters,2002,33(6):443-448.
    [106]F.Sagnard.Determination of complex permittivity and thickness of a single-layer material using reflection ellipsometry at several angles of incidence [J].Microwave and Optical Technology Letters,2002,35(2):154-157.
    [107]K.Tsuzukiyama,T.Sakai,T.Yamazaki,et al.Ellipsometry for measurement of complex dielectric permittivity in millimeter-wave region[C].33rd European Microwave Conference.Munich,2003:487-490.
    [108]F.Sagnard.,F.Bentabet,C.Vignat.In situ measurements of the complex permittivity of materials using reflection ellipsometry in the microwave band:experiments[J].IEEE Transactions on Instrumentation and Measurement,2005,54(3):1274-1282.
    [109]李素萍,王子华,李铭祥,李英,等.毫米波椭偏法测量介质的复介电常数,上海大学学报(自然科学版),2009,录用.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700