混响干扰中的信号检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主动声纳在探测沉底或掩埋目标时海底混响是主要干扰。本文围绕着混响背景中信号检测的主题,结合高阶统计分析、支持向量机和时频滤波的理论及技术,研究了非高斯混响干扰中的信号检测技术和基于时频滤波的宽带信号检测技术。
     在混响统计模型的基础上,研究了混响干扰的统计特性,推导了受非高斯分布混响干扰时目标回波信号的概率密度。通过分析混响和目标回波的高阶统计特性,研究了基于高阶统计分析的特征检测方法(HOSA-SVM)。该检测方法在高信混比下检测性能较好,然而,由于只是提取3、4高阶统计特性,并且信混比对特性差异的影响比较严重,在低信混比下HOSA-SVM检测性能不太理想。
     针对HOSA-SVM检测方法的不足,提出了具有样本选择的支持向量机(DE-SVM)检测方法。该方法直接利用原始数据构造检测器,采用单类支持向量机进行样本选择,在不降低检测性能的前提下,有效的减少了训练时间,解决了训练样本数量与检测性能之间的矛盾。分析了该检测器的性能,在非高斯混响中DE-SVM检测算法的检测性能优于匹配滤波检测器。然而DE-SVM中的核函数及其参数的选择对检测性能的影响较大。针对该问题,首先理论分析了核函数在特征空间中的作用及对检测性能的影响,提出了基于数据驱动的自适应核函数的设计原则。利用混响和目标回波的高阶统计特性上的差别,设计了基于数据高阶统计量的自适应特征核函数。数学证明了该核函数在满足Mercer定理的前提下,能有效扩大两类样本在特征空间中的欧氏距离。然后将自适应特征核支持向量机(AFK-SVM)应用于混响背景中的信号检测,结合实际应用给出了训练和检测算法,并进行了湖上实验研究。最后分析了其检测性能,当混响背景为非高斯分布时,其检测性能优于基于传统核函数的支持向量机以及匹配滤波检测器。
     为了提高LFM信号的Wigner-Ville Hough变换(WHT)检测方法在低信噪比下的检测性能,研究了两种时频滤波方法。第一种方法首先分析了时频域上噪声和混响干扰的统计特性,然后采用基于统计特性的二维均值滤波和Wiener滤波方法抑制干扰。当信噪(混)比较高时,对噪声和混响有一定的抑制作用;然而,在较低的信混比下,二维均值滤波和Wiener滤波效果均不理想。第二种方法根据LFM信号与噪声和混响干扰在时频域上能量聚集性的不同,提出了自适应轴向均值脊波变换(XWVD-M-FRIT)的时频滤波方法。该方法首先采用互Wigner-Ville变换(XWVD)代替Wigner-Ville变换(WVD),在时频域上提高了信噪比,且避免了信号为多分量时各分量间的交叉项干扰。由于信号和噪声的统计特性不同,考虑到滑动窗长对均值滤波的影响,设计了自适应轴向均值滤波器用于滤除噪声和混响。然后采用脊波变换滤波进一步滤除噪声。最后采用Hough变换检测信号。对该滤波及检测方法进行了实验室及海上实验研究。分析了该时频滤波方法的统计性能,在低信噪(混)比下,XWVD-M-FRIT滤波后能有效的抑制噪声或混响干扰,使得该方法与WHT检测方法相比能够更有效的检测到目标回波信号。
The sea-floor reverberation is main disturbance when the active sonar detecting bottom or buried targets. In this paper, concerning about the subject of signal detection in reverberation, we studied technology of signal detection and wide-band signal filtering based on time-frequency analysis using theory of high-order statistic analysis, support vectors machine and time-frequency filtering.
     The probability density function of targets echo in non-Gaussian distribution reverberation was droved based on statistical model of reverberation. The high-order statistic of reverberation and target echo was analyzed. Referring to idea of pattern recognition and classification before detection, the method using high-order statistics and support vectors machine (HOSA-SVM) was studied for detecting targets echo in the reverberation. But in low signal to reverberation ratio, the performance is not good.
     For the deficiency of HOSA-SVM detection method, we studied on directly constructing detector from SVM using original data (DE-SVM). Using one-class SVM to choose effective data for reducing training time, the problem of needing magnitude of data to achieve good performance was solved. In non-Gaussian reverberation, the performance of DE-SVM is better than matched filter detector. But the kernel function and parameter of DE-SVM detector seriously effected on the detection performance. So effect of kernel in feature space was analyzed. And the principle of designing adaptive kernel function based on data driving was proposed. Using the difference of high-order statistics between targets and reverberation, the adaptive kernel function based on high-order statistics was designed. It is proved that it enlarges the distance of two kinds of samples using feature kernel, and the kernel also satisfies the Mercer theorem. The feature kernel support vector machine was applied for signal detection in Gaussian and non-Gaussian reverberation. The training and detecting algorithms in practice were given. The results of experiment and simulation show that when selecting statistics existing great difference as feature and the reverberation is non-Gaussian distribution, its performance is better than matched filter and support vector machines based on traditional kernel function.
     To solve the problem which the performance of detection was reduced in the low signal to noise ratio (SNR) using Wigner-Ville Hough transform (WHT), two methods were studied. In the first method, it is to restrain noise using two-dimension mean filter and Wiener filter. When the SNR is high, this method is effective, but in the low SNR, the performance is not good. In second method, the method of XWVD adaptive mean and ridgelet transform filtering (XWVD-M-FRIT) was proposed. In this method, firstly used XWVD instead of WVD for improving SNR and avoiding the cross-components when the signal are multi-components. Due to the power distribution of signal is different from noise or reverberation in time-frequency domain and considering effect of length of splitting window, so designed adaptive axial mean filter. Then it is to restrain noise or reverberation using ridgelet transform filtering. At last, it is to detect the signal using Hough transform. The results of real and simulation experiments show, compared with WHT, in the low SNR the new method is feasible to restrain noise or reverberation in time-frequency domain for improving the performance of signal detection.
引文
[1]Eyring C.F., Chirstensen R.J., Raitt R.W. Reverberation in the sea. JASA, 1948,20(4):462-475P
    [2]Garison G.R., Murphy S.R., Potter D.S., measurement of the backscattering of underwater sound from the sea surface. JASA,1960,32(1):104-111 P
    [3]Urick R.J. The backscattering of sound from a Harbor bottom. JASA, 1954,26(2):231-235P
    [4]Zhang R, Li W, Qiu, Jin G. Reverberation loss in shallow water. Journal of Sound and Vibration,1995,186(2):279-290 P
    [5]Pierre Faure.Theoretical model of reverberation noise. JASA, 1964,36(2):259-266P
    [6]David Middleton. A statistical theory of reverberation and similar first-order scattered fields Part 1:waveforms and the general process. IEEE transactions on information theory,1967,13(3):372-392 P
    [7]B.B.奥里雪夫斯基.海洋混响的统计特性.1977,科学出版社
    [8]蔡志明,郑兆宁,杨士莪.水中混响的混沌属性分析.声学学报.2002,27(6):497-501页
    [9]Nicolas C Makris, Purmina Ratilal. A unified model for reverberation and submerged object scattering in a stratified ocean waveguide. JASA, 2001,109(3):909-941 P
    [10]彭玲,严琪,葛辉良.提高信混比的模空间滤波方法.声学与电子工程.2006,2:18-20页
    [11]Anthony P.L.,Douglas A. Abraham. Statistical characterization of high-frequency shallow-water seafloor backscatter. JASA, 1999,106(3):1307-1315 P
    [12]Douglas A. Abraham. Signal Excess in K-distributed reverberation. IEEE Journal of Oceanic engineering,2003,28(3):526-536 P
    [13]Ming Gu, Douglas A. Abraham. Using McDaniel’s model to represent Non-Rayleigh reverberation. IEEE Journal of Oceanic engineering,2001, 26(3):348-357 P
    [14]Douglas A. Abraham. Anthony P.L. Novel physical interpretations of K-distributed reverberation. IEEE Journal of Oceanic engineering,2002, 27(4):800-813P
    [15]Middleton D. New physical-statistical methods and models for clutter and reverberation:the KA-distribution and related probability structures. IEEE Journal of Oceanic Engineering,1999,24(3):261-284 P
    [16]Brian R. La Cour. Statistical characterization of active sonar reverberation using extreme value theory. IEEE Journal of Oceanic Engineering, 2004,29(2):310-312P
    [17]Douglas A. Abraham, Anthony P.L. Simulation of Non-rayleigh reverberation and clutter. IEEE Journal of Oceanic Engineering,2004, 29(2):347-362 P
    [18]Thomas J. Barnard and Fyzodeen Khan. Statistical normalization of spherically invariant non-Gaussian clutter. IEEE Journal of oceanic engineering,2004,29(2):303-309 P
    [19]许江湖.混响背景下的水下目标回波恒虚警检测器研究.海军工程大学博士论文,2007
    [20]王平波,蔡志明.有色非高斯背景下微弱信号的Rao有效绩检验.电子学报,2007,35(3):534-538页
    [21]Gualtierotti A.F, Climescu-Haulica, A and pal M. Likelihood ratio detection of signal on reverberation noise.2002 IEEE international conference on acoustics, speech and signal processing,2002,2:1589-1592 P
    [22]D. Abraham, Lyons A.P. Exponential scattering and K-distribution reverberation. MST/IEEE Oceans 2001. An Ocean Odyssey. Conference proceedings,2001,3:1622-1628 P
    [23]D. A. Abraham. Broadband detection in K distribution reverberation.2002 IEEE Sensor Array and Multichannel Signal processing Workshop Proceedings,2002,53-57 P
    [24]D. A. Abraham, Lyons A.P. Reverberation envelope statistics and their dependence on sonar band width and scattering patch size. IEEE Journal of oceanic engineering,2004,29(1):126-137 P
    [25]D. A. Abraham. Efficacy analysis of the power-law detector for non-Rayleigh distributed reverberation in active sonar systems.20001 IEEE Aerospace conference proceedings,2001,4:1739-1748 P
    [26]陈功,蔡志明.基于窄带混合高斯噪声的最佳检测.海洋技术.2005,24(3):53-55页
    [27]孙文俊,马远良,杨益新.非瑞利混响背景下接收机工作特性曲线仿真.声学与电子工程.2007,1:12-14页
    [28]Boashash, Boualem and O'Shea, Peter J. (1990) A methodology for detection and classification of some underwater acoustic signals using time-frequency analysis techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing,38(11):1829-1841 P
    [29]张静远,蒋兴舟.基于时间尺度域二维相关的宽带信号检测.声学学报,2002,27(3):253-257页
    [30]朱垫,龚素英.时频分布后置积累法检测和识别分布目标.声学学报,1998,23(5):409-416页
    [31]葛凤翔,蔡平,惠俊英,彭应宁.混响背景中目标检测和参数估计的一种新方法.电子学报,2001,29(3):304-306页
    [32]李军,侯朝焕.基于多尺度特征的匹配滤波处理.声学学报.2004,29(4):313-318页
    [33]李军,胡可心.一种时频空联合探测方法.声学学报.2001,26(6):557-561页
    [34]聂东虎,李雪耀,张汝波等.混响背景下目标回声的高斯小波检测.模式识别与人工智能,2005,18(5):582-587页
    [35]邓兵,陶然,齐林等.基于分数阶傅立叶变换的混响抑制方法研究.兵工学报,2005,26(6):761-765页
    [36]王强,潘翔.水下沉底小目标回波的短时FrFT滤波分析.浙江大学学报,2008,42(6):918-922页
    [37]陈鹏,侯朝焕,马晓川等.基于匹配滤波和离散分数阶傅立叶变换的水下动目标LFM回波联合检测.电子与信息学报,2007,29(10):2305-2308页
    [38]Henry Cox, Huang Lai. Geometric comb waveforms for reverberation suppression. Proceeding of 28th Asilomar conference on signal, system and computers,1995,2:1185-1189 P
    [39]Ward S. The use of sinusoidal frequency modulated pulses for low-doppler detection. MTS/IEEE Oceans 2001. An ocean odyssey. Conference proceedings,2001,4:2147-2151 P
    [40]姚东明,蔡志明.主动声纳梳状谱信号研究.信号处理.2006,22(2):256-259页
    [41]T. Collins and P. Atikins. Doppler-sensitive active sonar pulse designs for reverberation processing. IEE proceeding of Radar, Sonar, Navigation, 1998,145(6)
    [42]刘贯领,沈文苗,凌国民.声纳信号抗混响能力和声兼容性分析.声学技术.2008,3:319-322页
    [43]Kay S. Optimal signal design for detection of Gaussian point targets in stationary Gaussian clutter/reverberation. IEEE Journal of Selected Topics in Signal Proceeding,2007,1(1):31-41 P
    [44]孙大军,田坦,张殿伦.跳频脉冲信号在水下沉底小目标探测中的应用[J]哈尔滨工程大学.2007,28(9):1025-1029页
    [45]Lynch R. Analytical results in detecting broadband signals in reverberation dispersive environments.2006 IEEE Aerospace Conference,2006
    [46]A. Maguer, S. Fioravanti and A. Lovik. below critical angle detection of buried objects. OCEANS'97. MTS/IEEE Conference Proceedings,512-517 P
    [47]Griffiths H D,Rafik T Aet al. Interferometric synthetic aperture sonar for high resolution 3-D mapping of the seabed.IEE-Proc.-Radar,Sonar,Navig, 1997,144 (2):96-103 P
    [48]Mathias Fink. Time reversal of ultrasonic fields part 1:basic principles. IEEE Transaction on Ultrasonics. Ferroelectrics and Frequency Control, 1992,39(5):555-566P
    [49]Mathias Fink. Time reversal of ultrasonic fields part 2:experimental results. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control, 1992,39(5):567-578 P
    [50]Mathias Fink. Time reversal of ultrasonic fields part 3:theory of the closed time-reversal cavity. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control,1992,39(5):579-591 P
    [51]M. Tanter, J. F. Aubry, J. Gerber, J.L. Thonmas and M.Fink. Optimal focusing by spatio-temporal inverse filter part 1:basic principles. JASA, 2001,110(1):37-47P
    [52]J. F. Aubry, M. Tanter, J. Gerber, J.L. Thonmas and M.Fink. Optimal focusing by spatio-temporal inverse filter part 2:Experiments. Application to focusing through absorbing and reverberating media. JASA,2001, 110(1):48-58P
    [53]Najet Chakroun, Mathias A. Fink and Francois Wu. Time reversal processing in ultrasonic non-destructive testing. IEEE Transaction on Ultrasonics, Ferroelectrics and Frequency Control,1995,42(6):1087-1098 P
    [54]Seongil Kim, G.F. Edelmann, W.A. Kuperman et al. Spatial resolution of time-reversal arrays in shallow water. JASA,2001,110(2):820-829 P
    [55]J.S. Kim, H.C. Song and W.A. Kuperman. Adaptive time-reversal mirror. JASA,2001,109(5):1817-1825P
    [56]H.C. Song, J.S. Kim and W.A. Kuperman. Environmentally adaptive reverberation nulling using a time reversal mirror. JASA,116(2):762-768 P
    [57]汪承灏,魏炜.改进的时间反转法用于有界面时超声目标探测的鉴别.声学学报.2002,27(3):193-197页
    [58]Pan Xiang. Research on underwater acoustic signal enhancement based on time reversal processing. Chinese Journal of Sensors and Actuators,2006,19(3):847-850 P
    [59]阎丽明,李建龙,潘翔等.时间反转处理用于掩埋目标检测.声学学 报,2008,33(6):542-547 P
    [60]郭国强,杨益新,孙超.前后混响零点约束下基于时反算子分解的信混比增强方法研究.声学学报,2008,33(2):116-123页
    [61]赵申东,唐劲松,黄海宁等.:三维空时多波束方法在抗混响中的应用.声学学报,33(2):124-130页
    [62]Wang Qiang. Shallow-water bottom target detection based on time, frequency dispersive channel and adaptive beamforming algorithm. Bio-inspired computational intelligence and applications. Proceedings international conference on life system modeling and simulation, LSMS 2007,2007,561-570 P
    [63]Joseph N., Maksym and Michael Sandys-Wunsch. Adaptive beamforming against reverberation for three-sensor array. JASA,1997,102(6):3433-3438
    [64]Steven Kay, John Salisbury. Improved active sonar detection using autoregressive prewhiteners. JASA,1990,87(4):1603-1611 P
    [65]V. Carmillet, P O. Amblard, GJourdain. Detection of phase or frequency modulated signal in reverberation niose. JASA,1999,105(6):3375-3389 P
    [66]Debasis Sengupta, Steven Kay. Parameter estimation and GLRT detection in colored non-Gaussian autoregressive processes. IEEE Transcations on Acoustics, Speech and Signal processing,1990,38(10):1661-1676 P
    [67]李宇.浅海环境下主动声纳抗混响、抗多途研究与系统实现.中科院声学研究所博士论文.2005,43-45页
    [68]许江湖,张明敏.一种基于PCI技术预白的水下目标检测方法.信号处理,2007,23(1):127-131页
    [69]许江湖,张明敏.基于Gram-Schmidt正交化算法的水下目标回波检测.海军工程大学学报,2006,18(1):89-963页
    [70]Manuel Aineto, Stuar Lawson. Narrowband signal detection in a reverberation-limited environment. MTS/IEEE Oceans'97 proceedings, 1997:27-32 P
    [71]Farina A, Protopapa A. New result on linear prediction for clutter cancellation. IEEE Transaction on Aerospace and Electronic Systems, 1998,24(3):275-285 P
    [72]梁红,李志舜.一种混响背景下自适应动目标检测方法.应用声学.2003,22(2):26-29页
    [73]Aineto Manuel and Lawson S. Performance evaluation of several adaptive algorithms for low and zero-Doppler active sonar signal detection. Applied signal processing,1999,6(2):71-80 P
    [74]许江湖,张明敏.混响背景下基于MTI技术的目标检测.声学技术.2005,24(3):157-166页
    [75]Kim K.M, Youn D.H, Doh K.C.An adaptive signal processing for enhanced target detection in active sonar system. Oceans'99. MTS/IEEE. Riding the crest into the 21st century. Conference and Exhibition. Conference proceedings,1999,1:295-298 P
    [76]Ki Man Kim, Chungyong Lee, Dae Hee Youn.Adaptive processing technique for enhanced CFAR detecting performance in active sonar system. IEEE Transaction on Aerospace and Electronic Systems, 2000,36(2):693-700 P
    [77]Chunhua Yuan, Azimi-sadjadi M.R., Wilbur J., Dobeck G.J. Underwater target detection using multichannel subband adaptive filtering and high-order correlation schemes. IEEE Journal of Oceanic engineering, 2000,25(1):192-205 P
    [78]樊书宏,王明州,郝保安等.一种从混响背景中检测目标信号的新算法.鱼类技术.2000,8(1):14-17页
    [79]Jaffer,A.G:Constrained partially adaptive space-time processing for clutter suppression. ASILOMAR'94,28th Asilomar Conference on Signal, System and Computer,3 Oct.-2 Nov.1994, Pacific Grove, CA.235-245 P
    [80]Mio K, Chocheyras Y, Doisy Y Space time adaptive processing for low frequency sonar. Oceans 2000 MTS/IEEE conference and exhibition. Conference proceedings,2000,2:1315-1319 P
    [81]Simon Haykin and Xiao Bo Li. Detection of signal in chaos. Proceedings of The IEEE,83(1):95-122 P
    [82]蔡志明.海洋混响的动力学建模及其处理研究.哈尔滨工程大学博士论文.2001
    [83]甘维明,李风华.海洋混响信号的自适应非线性预测.声学学报,2008,33(4):310-315
    [84]姜可宇,蔡志明.主动声纳中混响干扰的一种非线性抑制方法.信号处理.2007,23(2):235-238页
    [85]Henry Leung, et al. Signal detection using the radial basis function couple map lattice. IEEE Transaction on Neual Networks,2000,11(5):1133-1151
    [86]姜可宇,蔡志明,陆振波.海底混响中基于前后向预测模型的信号检测.电子学报,2007,35(9):1766-1769页
    [87]高伟,王宁.浅海混响时间序列的支持向量机预测.计算机工程,2008,34(6):25-27页
    [88]Bohou Xu, Lingzao Zeng and Jianglong Li. Application of stochastic resonance in target detection in shallow-water reverberation. Journal of sound and vibration,2007,303(1-2)
    [89]江毅.水声目标检测中随机共振方法的应用.2006,东南大学硕士论文.
    [90]Thomas A. Palka and Donald W. Tufts. Reverberation characterization and suppression by mean of principal components. OCEANS'98 Conference Proceedings Volume 3,28 Sept.-1 Oct.1998,3:1501-1506 P
    [91]Guillaume G, Genevieve Jourdain. Principal component inverse algorithm for detection in the presence of reverberation. IEEE Journal of oceanic engineering.2002,27(2):310-321 P
    [92]D. A. Abraham, Hillsley K.L., Norrmann J. A robust model-based detector for active sonar. MST/IEEE Oceans 2001. An Odyssey. Conference proceedings,2001,4:2139-2146P
    [93]D. A. Abraham and Peter K. Willett. Active sonar detection in shallow water using the Page thest. IEEE Journal of oceanic engineering, 2002,27(1):35-46P
    [94]Trucco A, Pescetto A. Acoustic detection of objects buried in the seafloor. Electronics Letters,2000,36(18):1595-1596P
    [95]D. A. Abraham.Non-Rayleigh reverberation and clutter. IEEE Journal of Oceanic Engineering,2004,29(2):193-196P
    [96]Swami A. Non-gaussian mixture models for detection and estimation in heavy-tailed noise.2000 IEEE international conference on acoustic, speech and signal processing. proceedings,2000,6:3802-3805P
    [97]Yangamuchi H., Kajiwara A.,hayashi S. Radar signal detection in non-Gaussian distributed clutter by Bayesian predictive densities.2005 IEEE international radar conference record,2005,278-283P
    [98]Gini F.Greco M.V., Diani M. Verazzani L. Performance analysis of two adaptive radar detectors against non-Gaussian real sea clutter data. IEEE transaction on aerospace and electronic systems,2000,36(4):1429-1439P
    [99]Pascal F. Forster R., Ovarlez J.P., et al. Theoretical alaysis of an improved covariance matrix estimator in non-Gaussian noise [radar detection applications].2005 IEEE international conference on acoustic, speech and signal processing. proceedings,2005,4:69-72P
    [100]Emmanuelle J. Ovarlez J.P., Declercq D., Duvaut P. Bayesian optimum radar detector in non-Gaussian noise.2002 IEEE international conference on acoustic, speech and signal processing. proceedings,2002, 2:1289-1292P
    [101]Jay E., Ovarlez J.P., Declercq D.,et al. BORD:Bayesian optimum radar detector. Signal processin,.2003,83(6):1151-1162P
    [102]Jay E., Ovarlez J.P., Declercq D.,et al. PEOP:Pade estimated optimum detector. Proceedings of the 2001 IEEE radar conference,2001,270-274P
    [103]Kontorovich V., Lyandres V. Quasi-optimal signals detection in strong non-Gaussian environment. Proceedings of the IEEE signal processing workshop on higher-order statistics,1999,330-335P
    [104]Hwa-Tung Ong, Zoubir A.M. Bootstrap-based detection of signals with unknown parameters in unspecified correlated interference. IEEE transactions on signal processing 2003,51(1):135-141P
    [105]Georgios B.G, Michail K.T. Signal detection and classification using matched filtering and higher order statistics. IEEE Transactions on acoustic speech and signal processing,1990,38(7):1284-1296P
    [106]Brian M.S. Detection in correlated impulsive noise using fourth-order cumulants. IEEE transactions on signal processing,1996, 44(11):2793-2800P
    [107]de la Rosa, Munoz A.M. High-order cumulants and spectral kurtosis for early detection of subterranean termites. Mechanical systems and signal processing,2008,22(2):279-294P
    [108]Melvin J.H and Gary R.W. Detection of non-Gaussian signals in non-Gaussian noise using the bispectrum. IEEE transactions on acoustic speech and signal processing,1990,38(7):1126-1131P
    [109]Doron K. and Hagit M. Suboptimal detection of non-gaussian signals by third-order spectral analysis. IEEE transactions on acoustic speech and signal processing,1990,38(6):901-909P
    [110]Benzi R, Sutera A, Vulpiani A. A mechanism of stochastic resonance. Journal of Physics A:Mathematical and General,1981,14:453-457P
    [111]Zozor S.,Amblard P.O. Can stochastic resonance be used in detection. Signal processing X theories and applications. Proceedings of EUSIPCO 2000. Thenth European signal processing conference,2000,4:2409-2412P
    [112]Rousseau D., Anand G.V., Chapeau-Blondeau F. Noise-enhanced nonlinear detector to improve signal detection in non-Gaussian noise. Signal processing,2006,86(11),3456-3465P
    [113]Chapeau-Blondeau F. Nonlinear test statistic to improve signal detection in non-Gaussian noise. IEEE signal processing letters,2000,7(7):205-207P
    [114]Guha V.G., Anand G.V. Detection of weak signals in non-Gaussian noise using stochastic resonance. Proceedings of the IASTED international conference on signal processing, pattern recognition and applications, 2003,214-219P
    [115]Roy V.M. Anand G.V. Performance analysis of a suprathreshold stochastic resonance based nonlinear detector. NSSPW. Nonlinear statistical signal processing workshop 2006,2007,13-16P
    [116]Prashant P.G. and Viswanath R. Neural networks for signal detection in non-Gaussian noise. IEEE Transaction on signal processing,1997, 45(11):2846-2851P
    [117]Burian A., Kuosmanen P., Saarinen J. Neural detectors with variable threshold. Proceedings of the 1999 IEEE international symposium on circuits and systems VLSI,1999,5:599-602P
    [118]D.G. Khairnar, S.N. merchant, U.B. Desai. A neural solution for signal detection in non-Gaussian Noise.2007 4th international conference on information technology new generations,2007,1-5P
    [119]Barbarossa S. A. Zanalda. A combined Wigner-Ville and Hough transform for cross-terms suppression and optional detection and parameter estimation. Proceedings ICASSP,1992,5:173-176P
    [120]李钢虎,李亚安,王军等Wigner-Hough变换在水下目标信号检测中的应用[J].兵工学报,2006,vo127(1):121-125页
    [121]Minisheng W, Andrew K.C., Charles K.C. Linear frequency modulated signal detection using Radon ambiguity transform. IEEE transactions on signal processing 1998,46(3):571-287P
    [122]Chintana G. A comparson study on the Wigner and Choi-Williams distributions for detection. Acoustics, Speech, and Signal Processing,1991. ICASSP-91.,1991 International Conference on 14-17 April 1991 vol.2:1485-1488P
    [123]刘建成,王雪松,刘忠,肖顺平,王国玉.基于Wigner-Hough变换的LFM信号检测性能分析[J].电子学报,2007,35(6)1212-1217页
    [124]郑生华,徐大专.基于小波脊线-Hough变换的LFM信号检测.量子电子学报,2008,25(2):145-150页
    [125]尚海燕,水鹏朗,张守宏等.基于时频形态学滤波的能量积累检测.电子与信息学报,2007,29(6):1416-1420页
    [126]王美娜.关于混响信号建模及其时空统计规律的研究.2007.哈尔滨工程大学硕士论文
    [127]孙玉荣.海底混响的水平相关统计特性研究.2008,哈尔滨工程大学硕士论文
    [128]张贤达.现代信号处理[M].北京:清华大学出版社,2002,263-274页
    [129]马君国,肖怀铁,李保国,朱江.基于局部围线积分双谱的空间目标识别算法[J].系统工程与电子技术,2005,27(8):1490-1493页
    [130]姜斌,王宏强,黎湘,郭桂蓉.海杂波背景下的信号检测新方法[J].物理学报.2006,55(8):3985-3991页
    [131]Vapnik V N. Statistic Learning Thory[M]. John Wiley, Sons, New york,1998
    [132]张学工.关于统计学习理论与支持向量机.自动化学报.2000,26(1):32-42页
    [133]Scholkopf B, Plat J C, Shawe-Taylor J, et al. Estimating the support of a high-dimensional distribution [J]. Neural Computation,2001,13(7): 1443-1471P
    [134]MICCHELLI Charles A, PONTIL Massimiliano. Learning the kernel function via regularization[J]. Journal of Machine Learning Research,2005, 6:1099-1125P
    [135]AMARI S, WU S. Improving support vector machine classifiers by modifying kernel functions[J]. Nenral Networks,1999,12(12):783-789P
    [136]LANCKRIET G R G, CRISTIANINI N, BARTLETT P, et al. Learning the kernel matrix with semi-definite programming[J]. J. of Machine Learning Research,2007,5:27-72P
    [137]ONG C. S, SMOLA A. J, WILLIAMSON R. C. Hyperkernel[A]. Advance in neural information processing systems, MIT press, Cambridge, MA,2003.
    [138]LI Jiaqiang, JIN Ronghong, GENG Junping, FAN Yu, MAO Wei. Detection and parameter estimation of LFM signal using integration of fractional Gaussian window transform[J].IEICE Transactions on Communications,2007, E90-B(3):630-635P
    [139]JIN Yan, HUANG Zhen; LU Jianhua. Separation of multi-path LFM signals based on fractional Fourier transform[J]. Journal of Tsinghua University,2008, vol48(10):1617-1620P
    [140]Candes E J. Ridgelet theory and applications [D]. Stanford:Department of Statistics,Stanford University,1998
    [141]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.313-318页
    [142]TAN Shan, JIAO Licheng. Image denoising using the ridgelet bi-frame[J]. Journal of the Optical Society of America A:Optics and Image Science, and Vision,2006,23(10):2449-2461P
    [143]Helbert David.3-D discrete analytical ridgelet transform[J]. IEEE Transactions on Image Processing,2006,15(12):3701-3714P
    [144]冈萨雷斯.数字图像处理(第二版),2005,电子工业出版社,221-225页
    [145]Minh N.Do, Martin Vetterli. The finite ridgelet transform for image representation [J]. IEEE transactions on image processing,2003,12(1): 1-14P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700