基于导波的结构健康监测中特征提取技术与损伤识别方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对简单结构和复杂结构以及工作环境变化时系统地研究了基于导波的结构健康监测技术。提出了有效的特征提取技术与损伤识别方法,使其更适用于工程实践。
     首先综述了基于导波的结构健康监测技术的研究概况、结构中导波的各个模式与缺陷相互作用的现象、用于提取导波信号特征的信号处理技术和结构损伤的识别方法几个方面的国内外研究成果和发展趋势。在此基础上提出了本文的主要研究内容、方法、路线以及结构纲要。
     利用动态有限元方法,研究薄铝板中的低频兰姆波的基础阶对称(S_0)模式和基础阶反对称(A_0)模式与切缝缺陷和孔洞缺陷的相互作用现象。利用圆柱坐标系把节点位移沿缺陷所散射的波信号的传播方向和垂直于该方向进行正交分解。分别采用径向板内位移(Uh)、板外位移(Uz)和垂直于径向的板内位移(Uv)描述缺陷散射的S_0模式、A_0模式和基础阶剪切(SH_0)模式。在缺陷周围的波场内校对缺陷散射的能量在不同角度的感应节点上的分布。结果表明在某些损伤情形下缺陷散射的S_0模式、A_0模式和SH_0模式的能量并不随缺陷尺寸的单调变化而单调变化。因此不能仅从缺陷所散射的能量大小推断缺陷的大小。根据各个模式的传播群速度推断S_0模式与厚度方向通透的切缝缺陷和孔洞缺陷相互作用时,不仅生成散射的S_0模式,而且S_0模式转换后生成SH_0模式。A_0模式与厚度方向通透的切缝缺陷和孔洞缺陷相互作用时仅生成散射的A_0模式。在较小频厚积(小于1MHz·mm)的情况下,S_0模式更适合用于利用主动传感器网络进行损伤识别的研究。对兰姆波与缺陷相互作用现象的研究有助于进一步研究提取代表损伤信息的信号特征技术和相应的损伤识别方法。
     为实现基于导波的旋转圆柱结构的健康监测,提出了一个圆柱模型和相应的损伤识别方法。当该圆柱模型存在不同缺陷时,基于动态有限元方法定义并校对所感应的纵(L)波的反射系数和残余系数。仿真结果表明残余系数可以作为一个有效的特征参数用于损伤识别。这种损伤识别方法在实验中得以验证。利用一个圆形的薄铝板模拟该圆柱模型的径向切片。两个圆形的压电应变片(piezoelectric transducer,PZT)分别固定在铝板上下表面的圆心位置用于激励和采集导波信号。在无缺陷(基准)状态下和有缺陷(检测)状态下从导波信号中提取第一阶基本模式分量(intrinsic mode function,IMF)作为信号特征,并进行比较以校对S_0模式的残余系数。实验结果和仿真结果的一致性验证了所提出的损伤识别方法的有效性,并且为实现基于导波的旋转圆柱结构的健康监测奠定了基础。
     为实现在宽带噪声干扰的工作环境下的损伤识别,提出一种合理的特征提取技术。利用分谱处理(split spectrum processing,SSP)算法,通过比较基准波信号(结构无缺陷时所采集的波信号)和检测波信号(结构有缺陷时所采集的波信号)的瞬时幅值变化度(instantaneous amplitudevariation degree,IAVD)来提取代表损伤信息的信号特征。通过评估缺陷散射的S0模式的飞行时间(time-of-flight,ToF),最终实现基于导波的损伤识别。首先在理想的工作环境中(无噪声),对无缺陷的铝板进行检测。然后在不同的工作环境中(无噪声和有噪声)检测带有切缝缺陷的铝板。实验结果表明,当检测波信号的信噪比(signal-to-noise ratio,SNR)较低时,噪声能量严重干扰了检测波信号的能量分布。然而,SSP算法所提取的检测波信号的IAVD几乎不受噪声的干扰。因此利用SSP算法能够有效地抵抗宽带噪声的干扰,精确地评估缺陷散射的S0模式的ToF,并进一步结合三角定位算法成功地定位出铝板中的切缝缺陷。
     针对复杂结构,为了避免在分析兰姆波信号时由激励和采样的时间非同步性以及基准状态下和检测状态下激励波信号的差异所导致的损伤识别误差提出了一个基于导波能量谱的相关性分析来校对传感路径损伤指数(damage index,DI)的方法。分别依据两种方案校对DI,并把所校对的DI作为代表损伤信息的特征参数。方案I:分析一条传感路径在基准状态下与检测状态下感应波信号能量谱的相关性,并把相关系数作为所校对的该条传感路径的DI。方案II:校对一条传感路径激励波信号与感应波信号能量谱的相关系数,检测状态下相关系数相对于基准状态下相关系数的变化量被作为该条传感路径的DI。实验中分别结合依据方案I和方案II所校对的DI与损伤诊断成像算法定位带有加强筋的碳纤维复合材料板上的锥形孔缺陷。利用加权分布函数,传感器网络中各条传感路径所校对的DI值被映射到检测区域内的各个离散坐标上,构建了缺陷出现在这些离散坐标上的概率图像。结果表明,这种基于导波能量谱相关性分析的方法可以避免信号激励和采样的时间同步性影响;方案II相比于方案I可以更有效地避免由基准状态下和检测状态下激励波信号的差异所导致的识别误差,实现对复杂结构中缺陷的精确识别。
     为实现不参考基准状态信息的损伤识别技术,并尽量减少传感器网络中传感路径的数量以识别多缺陷,提出一个结合时间逆转的兰姆波与损伤诊断成像算法的损伤识别方法。通过分析在时间逆转过程中所获得的重建波形与原始激励的调幅脉冲之间的波形扭曲来校对基于时间逆转的DI,并把所校对的DI作为代表损伤信息的特征参数。利用动态有限元方法在无缺陷和有不同切缝缺陷(不同长度)的铝板中研究兰姆波的时间可逆性,并评估这个基于时间逆转的DI对损伤识别的有效性。实验中,在环境温度变化的情况下利用所提出的损伤识别方法诊断一个带有双切缝缺陷的铝板。实验结果表明该方法不但不需要参考基准状态信息,而且可以利用较少数量的传感路径精确地识别多缺陷。
     本文对简单结构和复杂结构以及在变化的工作环境中波信号的特征提取技术与针对参考基准状态信息和不参考基准状态信息的损伤识别方法的研究为基于导波的结构健康监测技术在工程实践中的广泛应用奠定了基础。
For simple and complicate structures and variational workingenvironment, guided-wave-based structural health monitoring is researchedsystemically. Effective feature extraction techniques and damageidentification methods are proposed, being more adaptive to the actualengineering practice.
     Some research conclusions and developing trend about guided-wave-based structural health monitoring, interaction with damage of individualmode of guided waves, signal processing techniques for extracting featuresof guided wave signals and damage identification methods are summarized.The advantages and disadvantages of them are discussed and the mainresearch contents, approaches and framework of this thesis are introduced.
     The interaction with notch and hole in a thin aluminum plate of thefundamental symmetric (S_0) mode and the fundamental anti-symmetric (A_0) mode which are activated at low frequency is researched using dynamicfinite element method. The displacement of node is decomposed along andvertical to the direction of damage-scattered wave propagation usingcylindrical coordinate system. The radial in-plane displacement (Uh), theout-plane displacement (Uz) and the in-plane displacement vertical to theradial (Uv) are used to describe the damage-scattered S_0mode, A_0mode andfundamental shear (SH_0) mode, respectively. Their energy distributions atthe sensor nodes with different angles are calibrated in wave field around thedamage. Results indicate that the damage-scattered energy in some damagecases does not vary monotonically with the monotonic variation in thedamage dimension, so the damage size can not be deduced only dependedon the damage-scattered energy. It is concluded that when the S_0modeinteracts with the through-thickness notch or hole, not only the S_0mode isscattered by the damage but also the SH_0mode which is mode-converted bythe S_0mode appears. When the A_0mode interacts with the through-thicknessnotch or hole, only the A_0mode is scattered by the damage. For the littlefrequency-thickness product (less than1MHz·mm), the S_0mode is moreadaptive for damage identification using active sensor network. Research ofthe interaction with damage of Lamb waves is helpful for the furtherresearch of feature extraction technology and damage identification method.
     A cylindrical model is proposed and a corresponding damageidentification method is promoted to realize the guided-wave-based healthmonitoring of revolving cylindrical structure. Reflection coefficient andresidual coefficient of the captured longitudinal (L) wave in the proposedcylindrical model are defined and calibrated corresponding to differentdamage cases based on dynamic finite element analysis. Simulation resultsdemonstrate that the residual coefficient can be utilized as feature parameterto interpret different damage cases. The promoted damage identificationmethod is validated experimentally. A circular thin aluminum plate with twocentral circular piezoelectric transducers (PZTs) is used to model a radialslice of the proposed cylindrical model. The first intrinsic mode functions(IMFs), extracted from the captured wave signals as signal features, arecompared between the benchmark (without damage) and damage case (withdamage) to calibrate the residual coefficient of the S_0mode. Experimentalresults consist with the simulation results, indicating the efficiency of thepromoted damage identification method and building foundation for thefuture research about detecting revolving cylindrical structure.
     Aiming on extracting effective singal feature for damage identificationin the working environment with broad band noise, a split spectrumprocessing (SSP) algorithm is proposed. The time of flight (ToF) of the damage-scattered S_0mode is estimated by comparing the instantaneousamplitude variation degree (IAVD) of the captured wave signal frombenchmark with that from a damage case, so as to realize theguided-wave-based damage identification. Wave signals captured from anintact aluminum plate (benchmark) are firstly acquired in ideal environment(without noise). Then a notch is artificially introduced into the aluminumplate and wave signals captured from the notched aluminum plate (damagecase) are acquired in different environments (without and with noise).Experimental results demonstrate that even though the captured wave signalfrom the damage case has a low signal-to-noise ratio (SNR), the IAVD ofthe captured wave signal extracted using the SSP algorithm is almost notinfluenced by the noise. As result, the proposed SSP algorithm is capable ofestimating the ToF of the damage-scattered S_0mode with high precision,regardless of the broad band noise disturbance, leading to the successfulidentification of the notch in the aluminum plate using triangulationalgorithm.
     With the objective of avoiding damage identification error, which iscaused by time unsynchronization of activating and sampling signals and theactivated signal differences between benchmark and damage cases, amethod of calibrating damage index (DI) based on the correlation of signal energy spectrum is promoted for the complex structure. Two schemes aredeveloped to calibrate DI and the calibrated DI is utilized as featureparameter to represent damage information. Scheme I: for a sensing path,analyze the correlation of energy spectrums of captured wave signalsbetween benchmark and damage cases, and the correlation coefficient istaken as the calibrated DI. Scheme II: for a sensing path, calibrate thecorrelation coefficient of energy spectrums of the activated wave signal andcaptured wave signal, and the variation of correlation coefficient for damagecase relative to that for benchmark is taken as the calibrated DI. Inexperiment, integrate the calibrated DI using scheme I and scheme II with adamage diagnostic imaging algorithm, respectively, to estimate theprobability of damage presence, locating a cone hole in a composite platewith stiffener. With a weight distribution function, the calibrated DI valuesfor individual sensing paths are mapped to individual grids in the inspectedarea covered by a senor network, constructing a probability image for thepresence of damage. Results demonstrate that the promoted method iscapable to avoid the influence of the time synchronization and scheme II iscompetent for identifying damage in the complex strucre more precisely,avoiding the error induced by the activated signal differences betweenbenchmark and damage cases.
     To realize damage identification without referring benchmark andidentify multi-damage with numbered sensing pathes in a sensor network,time-reversal Lamb waves combined with a damage diagnostic imagingalgorithm is developed. The distortion between the original activated toneburst and the reconstructed waveform is analyzed to calibrate atime-reversal-based DI which is utilized as feature parameter to representdamage information. The time-reversibility of Lamb waves and theefficiency for identifying damage of the time-reversal-based DI isinvestigated and evaluated in aluminum plates without and withthrough-thickness notches (with different lengths) based on dynamic finiteelement method. An experimental evaluation is conducted for the developeddamage identification method at the different environmental temperatures.The successful locations of dual notches in an aluminum plate demonstratethat the developed method is not only benchmark-free, but also competentfor identifying multi-damage with numbered sensing pathes.
     In this thesis, reasearches of feature extraction techniques and damageidentification methods with and without referring benchmark for simple andcomplicate structures and variational working environment build afoundation for abroad application of guided-wave-based structural healthmonitoring in actual engineering practice.
引文
[1]. Zou Y., Tong L., Steven G. P., Vibration-based model-dependent damage (delamination)identification and health monitoring for composite structures-a review. Journal of Sound andVibration,2000.230(2):357-378.
    [2]. Ryles M., Ngau F. H., McDonald I., et al., Comparative study of nonlinear acoustic and Lambwave techniques for fatigue crack detection in metallic structures. Fatigue and Fracture ofEngineering Materials and Structures,2008.31(8):674-683.
    [3]. Drinkwater B. W., Wilcox P. D., Ultrasonic arrays for non-destructive evaluation: A review. NDT&E International,2006.39(7):525-541.
    [4].金建华,康宜华,杨叔子,油管损伤的磁性检测法及其实现技术.无损检测,2004.1(4):13-17.
    [5].刘怀喜,张恒,马润香,复合材料无损检测方法.无损检测,2003.12(10):631-656.
    [6]. Ren W., Roeck D. G., Structural Damage Identification using Modal Data. I: SimulationVerification. Journal of Structural Engineering,2002.128(1):87-95.
    [7]. Su Z., Ye L., Lu Y., Guided Lamb waves for identification of damage in composite structures: Areview. Journal of Sound and Vibration,2006.295(3-5):753-780.
    [8]. Rose J. L., Avioli M. J., Mudge P., et al., Guided wave inspection potential of defects in rail. NDT&E International,2004.37(2):153-161.
    [9]. Rose J. L., Cho Y., Avioli M. J., Next generation guided wave health monitoring for long rangeinspection of pipes. Journal of Loss Prevention in the Process Industries,2009.22(6):1010-1015.
    [10]. Ditri J. J., Utilization of guided elastic waves for the characterization of circumferential cracks inhollow cylinders. Journal of the Acoustical Society of America,1994.96(6):3769-3775.
    [11]. Jansen D. P., Hutchins D. A., Mottram J. T., Lamb wave tomography of advanced compositelaminates containing damage. Ultrasonics,1994.32(2):83-90.
    [12]. Kessler S. S., Spearing S. M., Soutis C., Damage detection in composite materials using Lambwave methods. Smart Materials and Structures,2002.11(2):269-278.
    [13]. Pruell C., Kim J. Y., Qu J., et al., Evaluation of fatigue damage using nonlinear guided waves.Smart Materials and Structures,2009.18(3):1-7.
    [14].袁慎芳,结构健康监控.北京:国防工业出版社,2007.
    [15]. Wang C. H., Rose L. R. F., Wave reflection and transmission in beams containing delaminationand inhomogeneity. Journal of Sound and Vibration,2003.264(4):851-872.
    [16]. Wang C. H., Chang F. K., Scattering of plate waves by a cylindrical inhomogeneity. Journal ofSound and Vibration,2005.282(1-2):429-451.
    [17]. Su Z., Ye L., Digital Damage Fingerprints (DDF) and its application in quantitative damageidentification. Composite Structures,2005.67(2SPEC. ISS.):197-204.
    [18]. Giurgiutiu V., Xu B., Chao Y., et al., Smart sensors for monitoring crack growth under fatigueloading conditions. Smart Structures and Systems,2006.2(2):101-113.
    [19]. Giurgiutiu V., Yu L., Santoni G. B., et al., Lamb wave tuning for piezoelectric wafer active sensorapplications in in-situ structural health monitoring. AIP Conference Proceedings,2008,896-903.
    [20]. Ihn J. B., Chang F. K., Detection and monitoring of hidden fatigue crack growth using a built-inpiezoelectric sensor/actuator network: I.Diagnostics. Smart Materials and Structures,2004.13(3):609-620.
    [21]. Li F., Murayama H., Kageyama K., et al., Debonding detection using self-calibration sensornetwork. Smart Materials and Structures,2010.19:1-8.
    [22]. Rayleigh L., Waves propagated along the plane surface of an elastic solid. Proceedings of theLondon mathematical society20,1889,225-234.
    [23]. Lamb H., On Waves in an Elastic Plate. Proceedings of the Royal Society of London. Series A,Containing Papers of a Mathematical and Physical Character,1917.93(648):114-128.
    [24]. Love A. E. H., Some problems of geodynamics. Cambridge University Press,1926.
    [25]. Achenbach J. D., Wave propagation in elastic solids. North-Holland Pub. Co./American ElsevierPub. Co.,1973.
    [26]. Rose J. L., Ultrasonic Waves in Solid Media. The Journal of the Acoustical Society of America,2000.107(4):1807-1808.
    [27]. Mindlin R. D., Medick M A, Extensional vibrations of elastic plates. Journal of Applied Physics,1959.26:561-569.
    [28]. Firestone F. A., Ling D. S., Method and means for generating and utilizing vibration waves inplates. USA. Patent,1954.
    [29]. Bourasseau N., Moulin E., Delebarre C., et al., Radome health monitoring with Lamb waves:experimental approach. NDT&E International,2000.33(6):393-400.
    [30]. Malyarenko E. V., Hinders M. K., Fan beam and double crosshole Lamb wave tomography formapping flaws in aging aircraft structures. Journal of the Acoustical Society of America,2000.108(4):1631-1639.
    [31]. Su Z., Yang C., Pan N., et al., Assessment of delamination in composite beams using shearhorizontal (SH) wave mode. Composites Science and Technology,2007.67(2):244-251.
    [32]. Giurgiutiu V., Bao J. J., Embedded-ultrasonics Structural Radar for In Situ Structural HealthMonitoring of Thin-wall Structures. Structural Health Monitoring,2004.3(2):121-140.
    [33]. Deng M., Pei J., Nondestructive evaluation of fatigue damage in solid plates using nonlinearultrasonic Lamb wave method. Shengxue Xuebao/Acta Acustica,2008.33(4):360-369.
    [34]. Kim Y. H., Kim D. H., Han J. H., et al., Damage assessment in layered composites using spectralanalysis and Lamb wave. Composites Part B: Engineering,2007.38(7-8):800-809.
    [35]. Park M. H., Kim I. S., Yoon Y. K., Ultrasonic inspection of long steel pipes using Lamb waves.NDT&E International,1996.29(1):13-20.
    [36]. Cawley P., Alleyne D., The use of Lamb waves for the long range inspection of large structures.Ultrasonics,1996.34(2-5):287-290.
    [37]. Wilcox P., Lowe M., Cawley P., The effect of dispersion on long-range inspection using ultrasonicguided waves. NDT&E International,2001.34(1):1-9.
    [38]. Diamanti K., Soutis C., Hodgkinson J. M., Lamb waves for the non-destructive inspection ofmonolithic and sandwich composite beams. Composites Part A: Applied Science andManufacturing,2005.36(2):189-195.
    [39]. Grondel S., Delebarre C., Assaad J., et al., Fatigue crack monitoring of riveted aluminium strapjoints by Lamb wave analysis and acoustic emission measurement techniques. NDT&EInternational,2002.35(3):137-146.
    [40]. Fromme P., Wilcox P. D., Lowe M. J. S., et al., On the sensitivity of corrosion and fatigue damagedetection using guided ultrasonic waves. Proceedings-IEEE Ultrasonics Symposium,2004.2:1203-1206.
    [41]. Lee B. C., Staszewski W. J., Modelling of Lamb waves for damage detection in metallic structures:Part II. Wave interactions with damage. Smart Materials and Structures,2003.12(5):815-824.
    [42]. Lee B. C., Staszewski W. J., Modelling of Lamb waves for damage detection in metallic structures:Part I. Wave propagation. Smart Materials and Structures,2003.12(5):804-814.
    [43]. Guo N., Cawley P., The interaction of Lamb waves with delaminations in composite laminates.Journal of the Acoustical Society of America,1993.94(4):2240-2246.
    [44]. Yang C., Ye L., Su Z., et al., Some aspects of numerical simulation for Lamb wave propagation incomposite laminates. Composite Structures,2006.75(1-4):267-275.
    [45]. Olson S. E., DeSimio M. P., Derriso M. M., Beam Forming of Lamb Waves for Structural HealthMonitoring. Journal of Vibration and Acoustics,2007.129(6):730-738.
    [46]. Raghavan A., Cesnik C. E. S., Finite-dimensional piezoelectric transducer modeling for guidedwave based structural health monitoring. Smart Materials and Structures,2005.14(6):1448-1461.
    [47]. Balasubramanyam R., A finite-difference simulation of ultrasonic Lamb waves in metal sheetswith experimental verification. Journal of Physics D: Applied Physics,1996.29(1):147-155.
    [48].孙卫涛,杨慧珠,舒继武,非均匀介质弹性波动方程的不规则网格有限差分方法.计算力学学报,2004.21(2):135-142.
    [49]. Wang L., Shen J., Scattering of elastic waves by a crack in a isotropic plate. Ultrasonics,1997.35(6):451-457.
    [50]. Cho Y., Rose J. L., A boundary element solution for a mode conversion study on the edgereflection of Lamb waves. Journal of the Acoustical Society of America,1996.99(4):2097-2109.
    [51]. Sohn Y., Krishnaswamy S., Mass spring lattice modeling of the scanning laser source technique.Ultrasonics,2002.39(8):543-551.
    [52]. Yim H., Sohn Y., Numerical simulation and visualization of elastic waves using mass-springlattice model. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2000.47(3):549-558.
    [53]. Delsanto P. P., Whitcombe T., Chaskelis H. H., et al., Connection machine simulation of ultrasonicwave propagation in materials. I: the one-dimensional case. Wave Motion,1992.16(1):65-80.
    [54]. Delsanto P. P., Schechter R. S., Mignogna R. B., Connection machine simulation of ultrasonicwave propagation in materials III: The three-dimensional case. Wave Motion,1997.26(4):329-339.
    [55]. Dawe D. J., Use of the finite strip method in predicting the behaviour of composite laminatedstructures. Composite Structures,2002.57(1-4):11-36.
    [56]. Dawe D. J., Finite strip models for vibration of mindlin plates. Journal of Sound and Vibration,1978.59(3):441-452.
    [57]. Roy M. D., Gopalakrishnan S., A spectral finite element model for analysis of axial-flexural-shearcoupled wave propagation in laminated composite beams. Composite Structures,2003.59(1):67-88.
    [58].彭海阔,孟光,基于谱元法的梁结构中Lamb波传播特性研究.噪声与振动控制,2009.29(6):62-66.
    [59]. Lee B. C., Staszewski W. J., Lamb wave propagation modelling for damage detection: I.Two-dimensional analysis. Smart Materials and Structures,2007.16(2):249-259.
    [60]. Lee B. C., Staszewski W. J., Lamb wave propagation modelling for damage detection: II. Damagemonitoring strategy. Smart Materials and Structures,2007.16(2):260-274.
    [61]. Han S. J., Palazotto A. N., Leakeas C. L., Finite-Element Analysis of Lamb Wave Propagation in aThin Aluminum Plate. Journal of Aerospace Engineering,2009.22(2):185-197.
    [62]. Lowe M. J. S., Diligent O., Low-frequency reflection characteristics of the S0Lamb wave from arectangular notch in a plate. Journal of the Acoustical Society of America,2002.111(1):64-74.
    [63]. Lowe M. J. S., Cawley P., Kao J. Y., et al., The low frequency reflection characteristics of thefundamental antisymmetric Lamb wave a0from a rectangular notch in a plate. Journal of theAcoustical Society of America,2002.112(6):2612-2622.
    [64]. Diligent O., Grahn T., Bostrom A., et al., The low-frequency reflection and scattering of the S0Lamb mode from a circular through-thickness hole in a plate: Finite Element, analytical andexperimental studies. Journal of the Acoustical Society of America,2002.112(6):2589-2601.
    [65]. Rajagopal P., Lowe M. J. S., Angular influence on the scattering of fundamental shear horizontalguided waves by a through-thickness crack in an isotropic plate. The Journal of the AcousticalSociety of America,2008.124(4):2021-2030.
    [66]. Rajagopal P., Lowe M. J. S., Short range scattering of the fundamental shear horizontal guidedwave mode normally incident at a through-thickness crack in an isotropic plate. The Journal of theAcoustical Society of America,2007.122(3):1527-1538.
    [67]. Rajagopal P., Lowe M. J. S., Scattering of the fundamental shear horizontal guided wave by apart-thickness crack in an isotropic plate. The Journal of the Acoustical Society of America,2008.124(5):2895-2904.
    [68]. Wong C. K. W., Chiu W. K., Rajic N., et al., Can stress waves be used for monitoring sub-surfacedefects in repaired structures? Composite Structures,2006.76(3):199-208.
    [69]. Lu Y., Ye L., Su Z., et al., Quantitative assessment of through-thickness crack size based on Lambwave scattering in aluminium plates. NDT&E International,2008.41(1):59-68.
    [70]. Michaels J. E., Michaels T. E., Guided wave signal processing and image fusion for in situdamage localization in plates. Wave Motion,2007.44(6):482-492.
    [71]. Michaels J. E., Detection, localization and characterization of damage in plates with an in situarray of spatially distributed ultrasonic sensors. Smart Materials and Structures,2008.17(3):1-15.
    [72]. Coverley P. T., Staszewski W. J., Impact damage location in composite structures using optimizedsensor triangulation procedure. Smart Materials and Structures,2003.12(5):795-803.
    [73]. Lu Y., Ye L., Wang D., et al., Conjunctive and compromised data fusion schemes for identificationof multiple notches in an aluminium plate using lamb wave signals. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,2010.57(9):2005-2016.
    [74]. Su Z., Ye L., Bu X., A damage identification technique for CF/EP composite laminates usingdistributed piezoelectric transducers. Composite Structures,2002.57(1-4):465-471.
    [75]. Posenato D., Lanata F., Inaudi D., et al., Model-free data interpretation for continuous monitoringof complex structures. Advanced Engineering Informatics,2008.22(1):135-144.
    [76]. Zhao X., Gao H., Zhang G., et al., Active health monitoring of an aircraft wing with embeddedpiezoelectric sensor/actuator network: I. Defect detection, localization and growth monitoring.Smart Materials and Structures,2007.16(4):1208-1217.
    [77]. Su Z., Wang X., Chen Z., et al., A built-in active sensor network for health monitoring ofcomposite structures. Smart Materials and Structures,2006.15(6):1939-1949.
    [78]. Boashash B., Time-Frequency Signal Analysis: Methods and Applications. Longman CheshirePress,1992.
    [79]. Cawley P., Adams R., The location of defects in structures from measurements of naturalfrequencies. The Journal of Strain Analysis for Engineering Design,1979.14(2):49-57.
    [80]. Melhem H., Kim H., Damage Detection in Concrete by Fourier and Wavelet Analyses. Journal ofEngineering Mechanics,2003.129(5):571-577.
    [81]. Ruzzene M., Frequency-wavenumber domain filtering for improved damage visualization. SmartMaterials and Structures,2007.16(6):2116-2129.
    [82].他得安,刘镇清,超声无损检测中的二维快速Fourier变换及Wigner-Ville变换.无损检测,2001.23(7):313-316.
    [83].刘镇清,他得安,用二维傅里叶变换识别兰姆波模式的研究.声学技术,2000.19(4):212-214.
    [84]. Alleyne D., Cawley P., A two-dimensional Fourier transform method for the measurement ofpropagating multimode signals. Journal of the Acoustical Society of America,1991.89(3):1159-1168.
    [85]. Alleyne D., Cawley P., The interaction of Lamb waves with defects. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,1992.39(3):381-397.
    [86]. Hong J. C., Sun K. H., Kim Y. Y., Dispersion-based short-time Fourier transform applied todispersive wave analysis. Journal of the Acoustical Society of America,2005.117(5):2949-2960.
    [87]. Kwun H., Bartels K. A., Experimental observation of wave dispersion in cylindrical shells viatime-frequency analysis. Journal of the Acoustical Society of America,1995.97(6):3905-3907.
    [88]. Latif R., Aassif E., Maze G., et al., Analysis of the circumferential acoustic waves backscatteredby a tube using the time-frequency representation of Wigner-Ville. Measurement Science andTechnology,2000.11(1):83-88.
    [89]. Niethammer M., Jacobs L. J., Qu J., et al., Time-frequency representations of Lamb waves.Journal of the Acoustical Society of America,2001.109(5):1841-1847.
    [90].何存富,李颖,王秀彦,等,基于小波变换及Wigner-Ville变换方法的超声导波信号分析.实验力学,2005.14(4):584-588.
    [91]. Kim H., Melhem H., Damage detection of structures by wavelet analysis. Engineering Structures,2004.26(3):347-362.
    [92]. Daubechies I., Wavelet transform, time-frequency localization and signal analysis. IEEETransactions on Information Theory,1990.36(5):961-1005.
    [93].孙增寿,韩建刚,任伟新,基于小波分析的结构损伤检测研究进展.地震工程与工程振动,2005.25(2):93-99.
    [94]. Paget C. A., Grondel S., Levin K., et al., Damage assessment in composites by Lamb waves andwavelet coefficients. Smart Materials and Structures,2003.12(3):393-402.
    [95]. Kim Y. Y., Kim E. H., Effectiveness of the continuous wavelet transform in the analysis of somedispersive elastic waves. Journal of the Acoustical Society of America,2001.110(1):86-94.
    [96]. Li F., Meng G., Kageyama K., et al., Optimal mother Wavelet selection for lamb wave analyses.Journal of Intelligent Material Systems and Structures,2009.20(10):1147-1161.
    [97].严刚,周丽,孟伟杰,基于Lamb波与时频分析的复合材料结构损伤监测和识别.南京航空航天大学学报,2007.3(24):397-402.
    [98]. Pardo E., San Emeterio J. L., Rodriguez M. A., et al., Noise reduction in ultrasonic NDT usingundecimated wavelet transforms. Ultrasonics,2006.44(Supplement1):1063-1067.
    [99]. Lázaroa J. C., San Emeterio J. L., Ramos A., et al., Influence of thresholding procedures inultrasonic grain noise reduction using wavelets. Ultrasonics,2002.40(1-8):263-267.
    [100]. Jeong H., Jang Y. S., Wavelet analysis of plate wave propagation in composite laminates.Composite Structures,2000.49(4):443-450.
    [101]. Jeong H., Jang Y. S., Fracture source location in thin plates using the wavelet transform ofdispersive waves. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2000.47(3):612-619.
    [102]. Huang N. E., Shen S. S. P., Hilbert Huang transform and its applications. World ScientificPublishing Co. Pte. Ltd.,2005.
    [103]. Huang N. E., Long S. R., Shen Z., The mechanism for frequency downshift in nonlinear waveevolution. Advances in Applied Mechanics,1996.32:59-117.
    [104]. Huang N. E., Shen Z., Long S. R., et al., The empirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Societyof London. Series A: Mathematical, Physical and Engineering Sciences,1998.454(1971):903-995.
    [105]. Chen H. G., Yan Y. J., Jiang J. S., Vibration-based damage detection in composite wingboxstructures by HHT. Mechanical Systems and Signal Processing,2007.21(1):307-321.
    [106].李刚,石立华,王鑫伟,经验模态分解去噪技术及其在兰姆波检测中的应用.计量学报,2006.2(13):149-152.
    [107]. Deng Y., Wang W., Boundary-processing-technique in EMD method and Hilbert transform.Chinese Science Bulletin,2001.46(11):257-263.
    [108]. Zhang H., Fan S., Lu D., Application of Hilbert-Huang transform to arrival time extraction ofmulti-mode lamb waves. Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement andDiagnosis,2008.28(3):216-219.
    [109]. Quek S. T., Tua P. S., Wang Q., Detecting anomalies in beams and plate based on theHilbert-Huang transform of real signals. Smart Materials and Structures,2003.12(3):447-460.
    [110]. Gustafsson M. G., Nonlinear clutter suppression using split spectrum processing and optimaldetection. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,1996.43(1):109-124.
    [111]. Gustafsson M. G., Stepinski T., Split spectrum algorithms rely on instantaneous phase information-a geometrical approach. IEEE Transactions on Ultrasonics, Ferroelectrics, and FrequencyControl,1993.40(6):659-665.
    [112]. Bosch I., Vergara L., Miralles R., New insights and extensions of split-spectrum algorithms froman optimum distributed detection perspective. IEEE International Ultrasonic Symposium,2005.3(19-21):1797-1800.
    [113]. Benammar A., Drai R., Guessoum A., Detection of delamination defects in CFRP materials usingultrasonic signal processing. Ultrasonics,2008.48(8):731-738.
    [114]. Ericsson L., Stepinski T., Cut spectrum processing: a novel signal processing algorithm forultrasonic flaw detection. NDT&E International,1992.25(2):59-64.
    [115]. Karpur P., Shankar P. M., Rose J. L., et al., Split spectrum processing: Determination of theavailable bandwidth for spectral splitting. Ultrasonics,1988.26(4):204-209.
    [116]. Shankar P. M., Karpur P., Newhouse V. L., et al., Split-spectrum processing: analysis of polaritythreshold algorithm for improvement of signal-to-noise ratio and detectability in ultrasonic signals.IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,1989.36(1):101-108.
    [117]. Newhouse V. L., Bilgutay N. M., Saniie J., et al., Flaw-to-grain echo enhancement bysplit-spectrum processing. Ultrasonics,1982.20(2):59-68.
    [118]. Karpur P., Shankar P. M., Rose J. L., et al., Split spectrum processing: determination of theavailable bandwidth for spectral splitting. Ultrasonics,1988.26(4):204-209.
    [119]. Karpur P., Shankar P. M., Rose J. L., et al., Split spectrum processing: optimizing the processingparameters using minimization. Ultrasonics,1987.25(4):204-208.
    [120]. Rose J. L., Karpur P., Newhouse V. L., Utility of split-spectrum processing in ultrasonicnondestructive evaluation. Materials Evaluation,1988.46(1):114-122.
    [121]. Drai R., Sellidj F., Khelil M., et al., Elaboration of some signal processing algorithms in ultrasonictechniques: application to materials NDT. Ultrasonics,2000.38(1-8):503-507.
    [122]. Su Z., Ye L., Identification of Damage Using Lamb Waves: From Fundamentals to Applications.Springer-Verlag Berlin Heidelberg,2009.
    [123]. Harri K., Guillaume P., Vanlanduit S., On-line damage detection on a wing panel usingtransmission of multisine ultrasonic waves. NDT&E International,2008.41(4):312-317.
    [124]. Giurgiutiu V., Jingjing B., Zhao W., Active sensor wave propagation health monitoring of beanand plate structures. Proceedings of the SPIE International Symposium on Smart Structures andMaterial,2001.
    [125]. Michel L., Daniel B., Structural health monitoring system based on diffracted Lamb wave analysisby multiresolution processing. Smart Materials and Structures,2001.10(3):504-511.
    [126]. Diamanti K., Soutis C., Hodgkinson J. M., Piezoelectric transducer arrangement for the inspectionof large composite structures. Composites Part A: Applied Science and Manufacturing,2007.38(4):1121-1130.
    [127]. Lu Y., Ye L., Su Z., Crack identification in aluminium plates using Lamb wave signals of a PZTsensor network. Smart Materials and Structures,2006.15(3):839-849.
    [128]. Roemer M. J., Ge J., Liberson A., et al., Autonomous impact damage detection and isolationprediction for aerospace structures. Aerospace Conference,2005.(5-12):3592-3600
    [129]. Su Z., Wang X., Chen Z., et al., A hierarchical data fusion scheme for identifying multi-damage incomposite structures with a built-in sensor network. Smart Materials and Structures,2007.16(6):2067-2079.
    [130].张海燕,吕东辉,袁瀚贝,超声检测中的兰姆波层析成像.声学技术,2004.3(2):138-145.
    [131]. Hay T. R., Royer R. L., Gao H., et al., A comparison of embedded sensor Lamb wave ultrasonictomography approaches for material loss detection. Smart Materials and Structures,2006.15(4):946-951.
    [132]. Prasad S. M., Balasubramaniam K., Krishnamurthy C. V., Structural health monitoring ofcomposite structures using Lamb wave tomography. Smart Materials and Structures,2004.13(5):73-79.
    [133]. Leonard K. R., Hinders M. K., Lamb wave tomography of pipe-like structures. Ultrasonics,2005.43(7):574-583.
    [134]. Leonard K. R., Malyarenko E. V., Hinders M. K., Ultrasonic Lamb wave tomography. InverseProblems,2002.18(6):1795-1808.
    [135]. Rosalie C., Chan A., Chiu W. K., et al., Structural health monitoring of composite structures usingstress wave methods. Composite Structures,2005.67(2SPEC. ISS.):157-166.
    [136]. Hou J., Leonard K. R., Hinders M. K., Automatic multi-mode Lamb wave arrival time extractionfor improved tomographic reconstruction. Inverse Problems,2004.20(6):1873-1888.
    [137]. Wang D., Ye L., Lu Y., et al., Probability of the presence of damage estimated from an activesensor network in a composite panel of multiple stiffeners. Composites Science and Technology,2009.69(13):2054-2063.
    [138]. Michaels J. E., Michaels T. E., Enhanced differential methods for guided wave phased arrayimaging using spatially distributed piezoelectric transducers. AIP Conference Proceedings,2005.837-844.
    [139]. Zhao X., Qian T., Mei G., et al., Active health monitoring of an aircraft wing with an embeddedpiezoelectric sensor/actuator network: II. Wireless approaches. Smart Materials and Structures,2007.16(4):1218-1225.
    [140]. Wang D., Ye L., Lu Y., A probabilistic diagnostic algorithm for identification of multiple notchesusing digital damage fingerprints (DDFs). Journal of Intelligent Material Systems and Structures,2009.20(12):1439-1450.
    [141]. Wang D., Ye L., Lu Y., et al., A damage diagnostic imaging algorithm based on the quantitativecomparison of Lamb wave signals. Smart Materials and Structures,2010.19(6):1-12.
    [142]. Wang D., Ye L., Su Z., et al., Probabilistic damage identification based on correlation analysisusing guided wave signals in aluminum plates. Structural Health Monitoring,2010.9(2):133-144.
    [143]. Fink M., Time reversed acoustics. Physics Today,1997.50(3):34-40.
    [144]. Fink M., Prada C., Acoustic time-reversal mirrors. Inverse Problems,2001.17(1):1-38.
    [145]. Ing R. K., Fink M., Time-reversed lamb waves. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,1998.45(4):1032-1043.
    [146].张海燕,孙修立,曹亚萍,等,基于时间反转理论的聚焦Lamb波结构损伤成像.物理学报,2010.59(10):7111-7119.
    [147]. Park H. W., Sohn H., Law K. H., et al., Time reversal active sensing for health monitoring of acomposite plate. Journal of Sound and Vibration,2007.302(1-2):50-66.
    [148]. Sohn H., Park H. W., Law K. H., et al., Damage detection in composite plates by using anenhanced time reversal method. Journal of Aerospace Engineering,2007.20(3):141-151.
    [149]. Park H. W., Kim S. B., Sohn H., Understanding a time reversal process in Lamb wave propagation.Wave Motion,2009.46(7):451-467.
    [150].王强,袁慎芳,主动Lamb波结构健康监测中信号增强与损伤成像方法.航空学报,2008.29(4):1061-1067.
    [151].王强,袁慎芳,邱雷,等,基于时间反转理论及压电阵列技术的损伤图像监测方法.测控技术,2008.27(2):8-10.
    [152].孙亚杰,袁慎芳,蔡建,基于超声相控阵的材料结构健康监测实验研究.宇航学报,2008.29(4):1393-1396.
    [153].孙亚杰,袁慎芳,邱雷,等,基于Lamb波相控阵和图像增强方法的损伤监测.航空学报,2009.30(7):1325-1330.
    [154]. Sundararaman S., Adams D. E., Rigas E. J., Structural Damage Identification in Homogeneousand Heterogeneous Structures Using Beamforming. Structural Health Monitoring,2005.4(2):171-190.
    [155]. Giurgiutiu V., Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer ActiveSensors for Structural Health Monitoring. Journal of Intelligent Material Systems and Structures,2005.16(4):291-305.
    [156]. Yu L., Giurgiutiu V., In situ optimized PWAS phased arrays for Lamb wave structural healthmonitoring. Journal of Mechanics of Materials and Structures,2007.2(3):459-487.
    [157]. Konar A., Computational intellingence: principles, techniques, and applications. Springer-VerlagBerlin Heidelberg,2005.
    [158]. Masri S. F., Smyth A. W., Chassiakos A. G., et al., Application of Neural Networks for Detectionof Changes in Nonlinear Systems. Journal of Engineering Mechanics,2000.126(7):666-676.
    [159]. Zang C., Imregun M., Structural Damage Detection using Artificial Neural Networks andMeasured FRF Data Reduced via Principal Component Projection. Journal of Sound andVibration,2001.242(5):813-827.
    [160]. Wu X., Ghaboussi J., Garrett J. H., Use of neural networks in detection of structural damage.Computers&Structures,1992.42(4):649-659.
    [161].彭鸽,袁慎芳,基于主动监测技术的结构冲击损伤BP神经网络识别.仪器仪表学报,2005.26(6):574-581.
    [162]. Su Z., Ye L., An intelligent signal processing and pattern recognition technique for defectidentification using an active sensor network. Smart Materials and Structures,2004.13(4):957-969.
    [163]. Su Z., Ye L., Lamb wave-based quantitative identification of delamination in CF/EP compositestructures using artificial neural algorithm. Composite Structures,2004.66(1-4):627-637.
    [164]. Su Z., Ye L., Lamb Wave Propagation-based Damage Identification for Quasi-isotropic CF/EPComposite Laminates Using Artificial Neural Algorithm: Part I-Methodology and DatabaseDevelopment. Journal of Intelligent Material Systems and Structures,2005.16(2):97-111.
    [165]. Lu Y., Ye L., Su Z., et al., Artificial Neural Network (ANN)-based crack identification inaluminum plates with lamb wave signals. Journal of Intelligent Material Systems and Structures,2009.20(1):39-49.
    [166]. Zou Y., Tong L., Steven G. P., Vibration-based model-dependent damage (delamination)identification and health monitoring for composite structures--a review. Journal of Sound andVibration,2000.230(2):357-378.
    [167]. Lee C., Rose J. L., Cho Y., A guided wave approach to defect detection under shelling in rail.NDT&E International,2009.42(3):174-180.
    [168]. Li J., Rose J. L., Excitation and propagation of non-axisymmetric guided waves in a hollowcylinder. Journal of the Acoustical Society of America,2001.109(2):457-464.
    [169]. Shin H. J., Rose J. L., Guided waves by axisymmetric and non-axisymmetric surface loading onhollow cylinders. Ultrasonics,1999.37(5):355-363.
    [170]. Huang N. E., Shen Z., Long S. R., A new view of nolinear water waves: The Hilbert Spectrum.Annual Review of Fluid Mechanics,1999.31(1):417-457.
    [171]. Yang Y., Yu D., Cheng J., A roller bearing fault diagnosis method based on EMD energy entropyand ANN. Journal of Sound and Vibration,2006.294(1-2):269-277.
    [172]. Deng Y., Wang W., Qian C., et al., Boundary-processing-technique in EMD method and Hilberttransform. Chinese Science Bulletin,2001.46(11):954-960.
    [173]. Peng Z. K., Tse P. W., Chu F. L., An improved Hilbert-Huang transform and its application invibration signal analysis. Journal of Sound and Vibration,2005.286(1-2):187-205.
    [174]. Lee B. C., Staszewski W. J., Sensor location studies for damage detection with Lamb waves.Smart Materials and Structures,2007.16(2):399-408.
    [175]. Lin X., Yuan F. G., Diagnostic Lamb waves in an integrated piezoelectric sensor/actuator plate:analytical and experimental studies. Smart Materials and Structures,2001.10(5):907-913.
    [176].彭海阔,孟光,李富才,一种基于压电晶片阵列的板结构损伤识别方法.振动与冲击,2009.28(9):56-59.
    [177]. Yang Y., Cascante G., Anna Polak M., Depth detection of surface-breaking cracks in concreteplates using fundamental Lamb modes. NDT&E International,2009.42(6):501-512.
    [178].张伟伟,王志华,宏马,含缺陷管道超声导波检测信号的相关性分析.暨南大学学报:自然科学与医学版,2009.30(3):269-272.
    [179]. Li F., Meng G., Ye L., et al., Dispersion analysis of Lamb waves and damage detection foraluminum structures using ridge in the time-scale domain. Measurement Science and Technology,2009.20(9):1-10.
    [180]. Aussel J. D., Split-spectrum processing with finite impulse response filters of constantfrequency-to-bandwidth ratio. Ultrasonics,1990.28(4):229-240.
    [181]. Diamanti K., Soutis C., Hodgkinson J. M., Lamb waves for the non-destructive inspection ofmonolithic and sandwich composite beams. Composites Part A: Applied Science andManufacturing,2005.36(2SPEC. ISS.):189-195.
    [182]. Santoni G. B., Yu L., Xu B., et al., Lamb wave-mode tuning of piezoelectric wafer active sensorsfor structural health monitoring. Journal of Vibration and Acoustics, Transactions of the ASME,2007.129(6):752-762.
    [183]. Karpur P., Canelones O. J., Split spectrum processing: A new filtering approach for improvedsignal-to-noise ratio enhancement of ultrasonic signals. Ultrasonics,1992.30(6):351-357.
    [184]. Gustafsson M. G., Stepinski T., Studies of split spectrum processing, optimal detection, andmaximum likelihood amplitude estimation using a simple clutter model. Ultrasonics,1997.35(1):31-52.
    [185].崔海坡,温卫东,崔海涛,含孔复合材料层合板在压缩载荷下的三维逐渐损伤.机械工程学报,2006.42(8):89-94.
    [186].张厚江,陈五一,陈鼎昌,碳纤维复合材料钻孔出口椭圆形分层缺陷的研究.机械工程学报,2004.40(12):145-149.
    [187]. Ip K. H., Tse P. W., Tam H. Y., Extraction of patch-induced Lamb waves using a wavelettransform. Smart Materials and Structures,2004.13(4):861-872.
    [188]. Rose L. R. F., Wang C. H., Mindlin plate theory for damage detection: Source solutions. Journalof the Acoustical Society of America,2004.116(1):154-171.
    [189]. Lowe M. J. S., Diligent O., Reflection of the fundamental Lamb modes from the ends of plates.AIP Conference Proceedings,2001.557(1):89-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700