1型多聚ADP核糖合成酶与转录因子相互作用调控心血管系统基因转录的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心血管系统相关细胞(如心肌细胞、心脏成纤维细胞、血管平滑肌细胞、内皮细胞等)在各种致病因素(如心脏缺血再灌注损伤、心脏负荷增加、神经内分泌系统激活、炎症系统激活、感染、老龄化等)的作用下均会产生过量的活性氧或活性氮分子,出现氧化应激。这些活性氧/氮分子影响了细胞内正常的基因转录调控,从而导致一系列基因/蛋白质表达异常。蛋白质的异常表达是心血管疾病发生发展及功能损害的基础,而各种致病因素刺激所导致的细胞氧化应激则是触发基因/蛋白质异常表达的“起始信号”。因此找到能直接被氧化应激所激活,并且具有多基因转录调节能力的核蛋白/转录因子将为心血管疾病的治疗探索提供一条新途径。
     Ⅰ型多聚ADP核糖合成酶(poly(ADP-ribose)polymerase 1,PARP-1,EC 2.4.2.30)是一种存在于除酵母外所有真核细胞内、分子量为113-116KD的核蛋白酶;在细胞维持其染色体稳定、DNA复制、细胞凋亡、死亡以及基因转录等活动中均起着重要的作用。作为一种蛋白酶,PARP-1将NAD~+中的ADP核糖转移到受体蛋白(包括多种转录因子以及PARP-1自身等)上形成多聚ADP核糖链,从而改变了受体蛋白的生物学活性,影响其生物学效应的发挥。新近的研究发现PARP-1在心肌缺血再灌注损伤、心肌病、心力衰竭、高血压、动脉粥样硬化等多种心血管疾病发生发展过程中发挥了重要的致病作用。在这些疾病中,PARP-1主要是通过对转录因子的调节作用调控相关基因/蛋白质的表达。本项研究围绕PARP-1与不同转录因子的相互作用机制深入探讨了PARP-1调控心血管系统相关基因转录的分子机制,所得结果为心血管疾病的发病机制研究提供了新的理论和实验依据。
     第一部分血管紧张素Ⅱ促进心脏成纤维细胞中c-Jun/c-Fos多聚ADP核糖化的机制研究
     目的:c-Jun/c-Fos(活化因子1,AP1)通过调节心脏成纤维细胞中细胞外基质蛋白的过度表达在血管紧张素Ⅱ诱导的心脏纤维化过程中发挥了重要作用。本部分主要目的是研究在培养的心脏成纤维细胞中血管紧张素Ⅱ促进c-Jun/c-Fos转录激活的机制。
     方法及结果:通过western blot和免疫共沉淀的方法,我们证实在培养的心脏成纤维细胞中c-Jun和c-Fos可以被PARP-1多聚ADP核糖化修饰。Southwestern blot和EMSA研究显示:将细胞核抽提物与NAD~+和活化的DNA共孵育能显著增加c-Jun和AP1的DNA结合能力;同时将c-Fos和/或c-Jun纯蛋白与PARP-1纯蛋白、NAD~+和活化的DNA共孵育也能显著增加c-Jun和AP1的DNA结合能力。血管紧张素Ⅱ处理激活了细胞内的PARP-1,从而增加了c-Fos和c-Jun的多聚ADP核糖化水平,进而促进了c-Jun和AP1的DNA结合。PARP-1抑制剂PJ34或PARP-1 siRNA能显著抑制血管紧张素Ⅱ诱导的c-Jun和AP1的DNA结合能力的增加,减少AP1靶基因(包括胶原Iα1和ⅢIα1,基质金属蛋白酶(MMP)-9和其组织抑制因子TIMP-1)的表达。
     结论:本研究显示c-Jun和c-Fos可以被PARP-1多聚ADP核糖化修饰,而这种修饰能明显促进c-Jun和AP1的DNA结合。在心脏成纤维细胞中,血管紧张素Ⅱ通过激活PARP-1增加了c-Jun和c-Fos的多聚ADP核糖化水平,从而增强了AP1下游靶基因的转录。
     第二部分PARP-1在心脏成纤维细胞中通过对PPAR-γ的多聚ADP核糖化作用抑制PPAR-γ转录激活和脂连素表达的机制研究
     目的:本部分主要目的是研究大鼠心脏成纤维细胞中PARP-1与过氧化物酶体增生物激活受体γ(PPAR-γ)相互作用调控脂连素及其受体转录的机制。
     方法及结果:使用western blot和实时定量RT-PCR的方法,我们检测了培养的心脏成纤维细胞中脂连素及其受体的表达情况。Southwestern blot和EMSA实验用于研究PPARγ的DNA结合能力。结果显示,心脏成纤维细胞中表达有脂连素和脂连素受体1。PARP抑制剂3AB或PJ34,或PARP-1 siRNA不仅能显著增加心脏成纤维细胞中脂连素和脂连素受体1的表达,还能增加其在3T3-L1脂肪细胞、心肌组织和白色脂肪组织中的表达。研究表明,PPARγ能够被PARP-1多聚ADP核糖化修饰,这种修饰作用显著抑制了PPARγ的DNA结合能力。抑制PARP-1能够增强PPARγ的DNA结合和转录激活,从而促进脂连素及PPARγ其他下游基因(如CD36,lipoprotein lipase和leptin)的转录水平。
     结论:在心脏成纤维细胞中,PARP-1通过对PPARγ的多聚ADP核糖化修饰作用抑制了PPARγ的转录激活和其下游基因脂连素及其受体的表达。
     第三部分不稳定心绞痛患者外周血单个核细胞中PARP-1的激活和过度表达促进炎性细胞因子TNF-α和IL-6表达的机制研究
     目的:炎性细胞因子的大量表达在不稳定心绞痛的发病过程中发挥了重要作用。研究表明PARP-1参与了对炎性细胞因子的转录调控。本部分的主要目的是研究不稳定心绞痛患者外周血单个核细胞中PARP-1的激活与患者血浆中炎性细胞因子肿瘤坏死因子(TNF)-α和白介素(IL)-6释放水平的关系,并阐明PARP-1通过NF-κB途径促进炎性细胞因子表达的机制。
     方法及结果:26名BraunwaldⅢB级不稳定心绞痛患者,25名稳定型心绞痛患者及25名健康志愿者被纳入本研究。使用ELISA及实时定量RT-PCR法检测血浆及外周血单个核细胞中TNF-α和IL-6的表达水平。使用western blot、EMSA等方法检测外周血单个核细胞中PARP-1的活性和表达,以及NF-κB的DNA结合能力。分离健康志愿者外周血单个核细胞进行体外细胞培养,研究PARP-1促进NF-κB转录激活的机制。结果显示,不稳定心绞痛患者外周血单个核细胞中PARP-1的活性和表达明显高于稳定型心绞痛患者和健康对照组,并且PARP-1的活性和表达水平与患者TNF-α和IL-6的表达水平呈显著正相关。同时不稳定心绞痛患者外周血单个核细胞中调控炎性因子转录的主要转录因子NF-κB的DNA结合能力也显著增强。在体外培养的外周血单个核细胞中,PARP抑制剂或PARP-1 siRNA能够显著抑制炎性刺激物脂多糖(LPS)诱导产生的NF-κB的的激活和炎性细胞因子TNF-α和IL-6的表达。Supershift研究表明PARP-1参与了NF-κB与DNA的结合。在核抽提物中加入PARP-1纯蛋白能进一步增加NF-κB的DNA结合能力。
     结论:不稳定心绞痛患者外周血单个核细胞中PARP-1活性和表达显著增加。过度表达的PARP-1促进了PARP-1/NF-κB复合体的形成,增强了NF-κB的DNA结合能力,进而促进了NF-κB下游基因TNF-α和IL-6的转录。
Experimental evidence has demonstrated that reactive oxygen and nitrogen speciesare over-generated in cardiomyocytes,cardiac fibroblasts,smooth muscle cells,endothelial cells,and infiltrating inflammatory cells during a wide range of cardiovasculardiseases,such as circulatory shock,myocardial ischemic-reperfusion injury,myocardialhypertrophy and heart failure,cardiomyopathies,cardiovascular aging,atherosclerosis,and hypertension.Reactive oxygen and nitrogen species induce cellular DNA damage andconsequently activate poly (ADP-ribose) polymerase 1 (PARP-1),a multifunctionalnuclear enzyme present in eukaryotes.Upon binding to DNA damage breaks,PARP-1successively transfer ADP-ribose moiety of nicotinamide dinucleotide (oxidized,NAD~+)to a variety of target proteins.This process of poly(ADP-ribosyl)ation is an importantpost-translational modification of proteins.PARP-1 has been implicated in multiplecellular functions,including DNA repair,maintenance of genomic integrity,cellreplication and differentiation,and transcriptional regulation.A growing body of evidencesuggests that PARP-1 plays an important role in pathogenesis of various cardiovasculardiseases.In related animal models of these diseases,the activation of PARP-1 paticipatesin the transcriptional regulation of numerous genes,which eventually inducecardiovascular dysfunction associated with cardiovascular diseases.Although PARP-1 isimplicated in the transcriptional regulation of many genes through collaboration withtranscription factors,the mechanism underlying PARP-1 regulates transcription of genesinvolved in cardiovascular system,remains unclear.This study focuses on the mechanismthat PARP-1 interacts with several transcription factors AP1,PPARγand NF-κB,toregulate transcription of genes related with cardiovascular system.
     PartⅠAngiotensinⅡpromotes poly (ADP-ribosyl) ation ofc-Jun/c-Fos in cardiac fibroblasts
     Aims:c-Jun/c-Fos (activator protein 1,AP1) contributes importantly to AngⅡ-inducedcardiac fibrosis through induction of extracellular matrix protein over-expression in cardiacfibroblasts.This study aims to explore the mechanism by which AngⅡpromotesc-Jun/c-Fos transactivation in cultured rat cardiac fibroblasts.
     Methods and results:In this study,we demonstrated that c-Fos and c-Jun werepoly(ADP-ribosyl)ated in cultured cardiac fibroblasts.Southwestern blot and EMSA assaysshowed that incubation of nuclear extracts with NAD~+ and active DNA increased the basalDNA binding activities of c-Jun (31.0±1.0%,P<0.01) and AP1 (14.2±3.1%,P<0.01);incubation of recombinant c-Fos or/and c-Jun with PARP-1,NAD~+ and active DNAincreased the basal DNA binding activities of c-Jun (48.3±4.2%,P<0.01) and AP1(21.2±1.5%,P<0.01).Treatment with Ang II promoted PARP-1 activation and enhancedpoly (ADP-ribosyl)ation of c-Fos (14.1+1.1%,P<0.01) and c-Jun (15.5±5.6%,P<0.01).AngⅡalso increased the basal DNA binding activities of c-Jun (13.5±2.4%,P<0.01) andAP1 (18.7±3.5%,P<0.01) in cultured cells.Inhibition of PARP-1 by PJ34 or siRNAeffectively prevented Ang II-induced increases in the DNA binding of c-Jun and AP1,anddecreased AP1-driven transcription (including collagenⅠα1 andⅢα1,MMP-9 andTIMP-1).
     Conclusions:This study illustrated that c-Jun and c-Fos were poly(ADP-ribosyl)ated byPARP-1,and poly(ADP-ribosyl)ation enhanced the DNA binding of AP1.Ang II promotedpoly(ADP-ribosyl)ation of c-Jun and c-Fos through activation of PARP-1 and,subsequently,enhanced AP1-driven transcription in cardiac fibroblasts.
     PartⅡPARP-1 suppresses adiponectin expression throughpoly(ADP-ribosyl)ation of PPARγin cardiac fibroblasts
     Aims:Our aim was to explore the mechanism underlying the transcriptional regulation ofadiponectin and its receptors (AdipoR) in cultured rat cardiac fibroblasts.
     Methods and results:Using western blot and real-time RT-PCR assays,the expression ofadiponectin and its receptors was determined.Using southwestern blot and electrophoreticmobility shift assays,the DNA binding activity of peroxisome proliferator activatedreceptorγ(PPARγ) was determined.The results showed that adiponectin and AdipoR1were highly expressed in cultured rat cardiac fibroblasts.Inhibition of poly(ADP-ribose)polymerase 1 (PARP-1) by 3-aminobenzamide,PJ34,or PARP-1 siRNA markedlyincreased the transcription of adiponectin and AdipoR1 in cultured fibroblasts,mature 3T3-L1 adipocytes,rat myocardium,and white adipose tissue.PPARγwaspoly(ADP-ribosyl)ated by PARP-1 in cardiac fibroblasts under basal conditions.Poly(ADP-ribosyl)ation of PPARγprevented its binding to DNA.Inhibition of PARP-1enhanced the DNA binding and transactivation of PPARγand increased the transcription ofPPARγ-target genes including CD36,lipoprotein lipase,and leptin in cultured fibroblasts.
     Conclusions:PARP-1 inhibits adiponectin and AdipoR1 expression as well as PPARγtransactivation through poly (ADP-ribosyl)ation of PPARγin cultured rat cardiacfibroblasts.
     PartⅢActivation and Overexpression of PARP-1 in
     Circulating Mononuclear Cells Promote TNF-a and IL-6Expression in Patients with Unstable Angina
     Aims:Proinflammatory cytokines are involved in the development of unstable angina (UA).Poly(ADP-ribose) polymerase-1 (PARP-1) contributes importantly to regulating the transcriptionof inflammatory cytokines.This study aims to investigate the relationship of PARP-1 in circulatingmononuclear cells (MNCs) and plasma TNF-αand IL-6 in UA patients and to elucidate themechanism that PARP-1 promotes TNF-αand IL-6 expression via NF-κB pathway.Methods and results:Twenty six Braunwald class IIIB UA patients,25 stable anginapatients and 25 healthy volunteers were enrolled in this study.Plasma TNF-αand IL-6were determined with ELISA.Circulating MNCs were analyzed for PARP activity,PARP-1expression and NF-κB DNA binding activity.MNCs from healthy subjects were cultured toinvestigate the direct effects of PARP-1 on NF-κB DNA binding activity and the expressionof TNF-αand IL-6.PARP activity and PARP-1 expression in circulating MNCs wereincreased and positively correlated with plasma TNF-αand IL-6,respectively,in UApatients.Spontaneous NF-κB activation in MNCs was demonstrated in UA patients.Incultured MNCs from healthy subjects,inhibition of PARP-1 preventedlipopolysaccharide-induced increase in DNA binding activity of NF-κB and the expressionof TNF-αand IL-6.Supershift assay demonstrated that PARP-1 was a component ofNF-κB/DNA complex.Addition of recombinant human PARP-1 protein to nuclear extractsof MNCs significantly increased the DNA binding activity of NF-κB.
     Conclusions:Activation and overexpression of PARP-1 are demonstrated in circulatingMNCs of UA patients.Overexpressed PARP-1 promotes PARP-1/NF-κB/DNA complexformation,thereby enhancing the expression of TNF-αand IL-6 in circulating MNCs ofUA patients.
引文
[1] Pacher P, Szabo C. Role of the peroxynitrite-poly(ADP-ribose) polymerase pathway in human disease. Am J Pathol. 2008; 173(1):2-13.
    [2] Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 2003;138:532-543.
    [3] Ungva ri Z, Gupte SA, Recchia FA, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 2005;3:221-229.
    [4] Komja ti K, Besson VC, Szabo C. Poly(ADP-ribose) polymerase inhibitors as potential therapeutic agents in stroke and neurotrauma. Curr Drug Targets CNS Neurol Disord 2005;4:179-194.
    [5] Pacher P, Schulz R, Liaudet L, Szabo C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 2005;26:302-310.
    [6] Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase-l(PARP-l) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 2007;25:235-260.
    [7] Gero D, Szabo C. Role of the peroxynitrite-poly (ADP-ribose) polymerase pathway in the pathogenesis of liver injury. Curr Pharm Des 2006;12:2903-2910.
    [8] Virag L, Szabo C. et al. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. 2002, 54:375-429.
    [9] Cardaropoli S ,Silvagno F ,Morra E , et al . Infectious and inflammatory stimuli decrease endothelial nitric oxide sythase activity in vitro [J ] . J hypertens ,2003 ,21 (11):210322110.
    [10]Hidemitsu Nakajima, Hiroshi Nagaso, Nobukazu Kakui Critical role of the automodification of poly (ADP-ribose) polymerase-1 in nuclear factor-(?) B-dependent gene expression in primary cultured mouse glial cells. J. Biol. Chem, 2004, 279, 42774-42778
    [11]Yiyang Xia,David Lo,et al. RelB Modulation of I(?)Bα Stability as a Mechanism of Transcription Suppression of Interleukin-1α(IL-1α), IL-1β, and Tumor Necrosis Factor Alpha in Fibroblasts.Molecular and Cellular Biology,1999,19:7688-96
    [12]Koh Ono,Akira Matsumori,et al.Cytokine gene expression after myocardial infarctio in rat hearts:possible implication in left ventricular remoldeling.Circulation,Jul 1998;98:149-156
    [13]黄恺。多聚ADP核糖化酶与RTEF1a间的相互作用及其影响。临床心血管病杂志,2003,11:671-42.
    [14]Huang K,Tidyman WE,Le KU,Kirsten E,Kun E,Ordahl CP.Analysis of nucleotide sequence-dependent DNA binding of poly(ADP-ribose)polymerase in a purified system.Biochemistry.2004 Jan 13;43(1):217-23.
    [15]Zhang,Z.,Hildebrandt,E.F.,Simbulan-Rosenthal,C.M.,and Anderson,M.G.Sequence- specific binding of poly(ADP-ribose)polymerase-1 to the human T cell leukemia virus type-I tax responsive element.Virology.2002 Apr 25;296(1):107-16.
    [16]Butler AJ,Ordahl CP.Poly(ADP-ribose)polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription.Mol Cell Biol 1999;19:296-306.
    [17]Amours D,Desnoyers D,Silva SD,Poirier GG.Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions.Biochem J 1999;342:249-268.
    [18]Hassa PO,Hottiger MO.The functional role of poly ADP-ribose)polymerase 1 as novel coactivator of NF-KB in inflammatory disorders.Cell Mol Life Sci 2002;59:1534-1553.
    [19]Anderson MG,Scoggin KE,Simbulan-Rosenthal CM,Steadman JA.Identification of poly(ADP-ribose)polymerase as a transcriptional coactivator of the human T-cell leukemia virus type 1 Tax protein.J Virol 2000;74:2169-2177.
    [20]Cervellera MN,Sala A.Poly(ADP-ribose)polymerase is a B-MYB coactivator.J Biol Chem 2000;275:10692-10696.
    [21]Meisterernst M,Stelzer G,Roeder RG.Poly(ADP-ribose)polymerase enhances activator-dependent transcription in vitro.Proc Natl Acad Sci USA 1997;94:2261-2265.
    [1]Sadoshima J,Xu Y,Slayter HS,Izumo S.Autocrine release of angiotensin H mediates stretch-induced hypertrophy of cardiac myocytes in vitro.Cell.1993 Dec 3;75(5):977-84.
    [2]Crawford DC,Chobanian AV,Brecher P.Angiotensin Ⅱ induces fibronectin expression associated with cardiac fibrosis in the rat.Circulation research.1994 Apr;74(4):727-39.
    [3]Weber KT,Sun Y,Tyagi SC,Cleutjens JP.Collagen network of the myocardium:function,structural remodeling and regulatory mechanisms.Journal of molecular and cellular cardiology.1994 Mar;26(3):279-92.
    [4]Iwami K,Ashizawa N,Do YS,Graf K,Hsueh WA.Comparison of ANG Ⅱ with other growth factors on Egr-1 and matrix gene expression in cardiac fibroblasts.The American journal of physiology.1996 Jun;270(6 Pt 2):H2100-7.
    [5]Chen J,Mehta JL.Angiotensin Ⅱ-mediated oxidative stress and procollagen-1 expression in cardiac fibroblasts: blockade by pravastatin and pioglitazone. Am J Physiol Heart Circ Physiol. 2006 Oct; 291(4): H1738-45.
    [6] Chinenov Y, Kerppola TK. Close encounters of many kinds: Fos-Jun interactions that mediate transcription regulatory specificity. Oncogene. 2001 Apr 30; 20(19): 2438-52.
    [7] Mechta-Grigoriou F, Gerald D, Yaniv M. The mammalian Jun proteins: redundancy and specificity. Oncogene. 2001 Apr 30; 20(19): 2378-89.
    [8] Vogt PK. Jun, the oncoprotein. Oncogene. 2001 Apr 30; 20(19): 2365-77.
    [9] Hess J, Angel P, Schorpp-Kistner M. AP-1 subunits: quarrel and harmony among siblings. J Cell Sci. 2004 Dec 1; 117(Pt 25): 5965-73.
    [10]Karin M. The regulation of AP-1 activity by mitogen-activated protein kinases. J Biol Chem. 1995 Jul 14; 270(28): 16483-6.
    [11]Puri PL, Avantaggiati ML, Burgio VL, Chirillo P, Collepardo D, Natoli G, et al. Reactive oxygen intermediates mediate angiotensin *********-induced c-Jun.c-Fos heterodimer DNA binding activity and proliferative hypertrophic responses in myogenic cells. The Journal of biological chemistry. 1995 Sep 22; 270(38): 22129-34.
    [12]Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev. 2002 Sep; 54(3): 375-429.
    [13]Pillai JB, Gupta M, Rajamohan SB, Lang R, Raman J, Gupta MP. Poly(ADP-ribose) polymerase-1-deficient mice are protected from angiotensin II-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol. 2006 Oct; 291(4): H1545-53.
    [14]Zingarelli B, Hake PW, O'Connor M, Denenberg A, Wong HR, Kong S, et al. Differential regulation of activator protein-1 and heat shock factor-1 in myocardial ischemia and reperfusion injury: role of poly(ADP-ribose) polymerase-1. Am J Physiol Heart Circ Physiol. 2004 Apr; 286(4): H1408-15.
    [15]Andreone TL, O'Connor M, Denenberg A, Hake PW, Zingarelli B. Poly(ADP-ribose) polymerase-1 regulates activation of activator protein-1 in murine fibroblasts. J Immunol. 2003 Feb 15; 170(4): 2113-20.
    [16]Meszaros JG, Gonzalez AM, Endo-Mochizuki Y, Villegas S, Villarreal F, Brunton LL. Identification of G protein-coupled signaling pathways in cardiac fibroblasts: cross talk between G(q) and G(s). American journal of physiology. 2000 Jan; 278(1): C154-62.
    [17]Nakajima H, Nagaso H, Kakui N, Ishikawa M, Hiranuma T, Hoshiko S. Critical role of the automodification of poly(ADP-ribose) polyraerase-1 in nuclear factor-kappaB- dependent gene expression in primary cultured mouse glial cells. The Journal of biological chemistry. 2004 Oct 8; 279(41): 42774-86.
    [18] Chang WJ, Alvarez-Gonzalez R. The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. The Journal of biological chemistry. 2001 Dec 14; 276(50): 47664-70.
    [19] Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Molecular and cellular biology. 1999 Jan; 19(1): 296-306.
    [20]Halazonetis TD, Georgopoulos K, Greenberg ME, Leder P. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA binding affinities. Cell. 1988 Dec 2; 55(5): 917-24.
    [21]Risse G, Jooss K, Neuberg M, Bruller HJ, Muller R. Asymmetrical recognition of the palindromic AP1 binding site (TRE) by Fos protein complexes. EMBO J. 1989 Dec 1; 8(12): 3825-32.
    [22] Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO. The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem. 2001 Dec 7; 276(49): 45588-97.
    [23]van Wamel JE, Ruwhof C, van der Valk-Kokshoorn EJ, Schrier PI, van der Laarse A. Rapid gene transcription induced by stretch in cardiac myocytes and fibroblasts and their paracrine influence on stationary myocytes and fibroblasts. Pflugers Arch. 2000 Apr; 439(6): 781-8.
    [24] Sadoshima J, Izumo S. Molecular characterization of angiotensin Ⅱ--induced hypertrophy of cardiac myocytes and hyperplasia of cardiac fibroblasts. Critical role of the AT1 receptor subtype. Circ Res. 1993 Sep; 73(3): 413-23.
    [25] Weber KT, Swamynathan SK, Guntaka RV, Sun Y. Angiotensin Ⅱ and extracellular matrix homeostasis. Int J Biochem Cell Biol. 1999 Mar-Apr; 31(3-4): 395-403.
    [26] Moriguchi Y, Matsubara H, Mori Y, Murasawa S, Masaki H, Maruyama K, et al. Angiotensin Ⅱ-induced transactivation of epidermal growth factor receptor regulates fibronectin and transforming growth factor-beta synthesis via transcriptional and posttranscriptional mechanisms. Circ Res. 1999 May 14; 84(9): 1073-84.
    [27]Sato H, Seiki M. Regulatory mechanism of 92 kDa type IV collagenase gene expression which is associated with invasiveness of tumor cells. Oncogene. 1993 Feb; 8(2): 395-405.
    [28]Nakabeppu Y, Nathans D. The basic region of Fos mediates specific DNA binding. Embo J. 1989 Dec 1; 8(12): 3833-41.
    [29]Turner R, Tjian R. Leucine repeats and an adjacent DNA binding domain mediate the formation of functional cFos-cJun heterodimers. Science. 1989 Mar 31; 243(4899): 1689-94.
    [30]Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci. 2002 Sep; 59(9): 1534-53.
    [31] Huang D, Yang C, Wang Y, Liao Y, Huang K. PARP-1 suppresses adiponectin expression through poly(ADP-ribosyl)ation of PPARγ in cardiac fibroblasts. Cardiovasc Res. 2008 Sep 24.
    [32]Olabisi OA, Soto-Nieves N, Nieves E, Yang TT, Yang X, Yu RY, et al. Regulation of transcription factor NFAT by ADP-ribosylation. Mol Cell Biol. 2008 May; 28(9): 2860-71.
    [33]Macian F, Lopez-Rodriguez C, Rao A. Partners in transcription: NFAT and AP-1. Oncogene. 2001 Apr 30; 20(19): 2476-89.
    [34]Sundaram K, Nishimura R, Senn J, Youssef RF, London SD, Reddy SV. RANK ligand signaling modulates the matrix metalloproteinase-9 gene expression during osteoclast differentiation. Exp Cell Res. 2007 Jan 1; 313(1): 168-78.
    [35]Vincenti MP. The matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) genes. Transcriptional and posttranscriptional regulation, signal transduction and cell-type-specific expression. Methods Mol Biol. 2001; 151: 121-48.
    [36] Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999 May; 13(8): 781-92.
    [37] Bergman MR, Cheng S, Honbo N, Piacentini L, Karliner JS, Lovett DH. A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 (MMP-2) transcription by cardiac cells through interactions with JunB-Fral and JunB-FosB heterodimers.Biochem J.2003 Feb 1;369(Pt 3):485-96.
    [38]Zhang GX,Lu XM,Kimura S,Nishiyama A.Role of mitochondria in angiotensin Ⅱ-induced reactive oxygen species and mitogen-activated protein kinase activation.Cardiovasc Res.2007 Nov 1:76(2):204-12.
    [1] Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 2005;65:40-51.
    [2] MacKenna D, Summerour SR, Villarreal FJ. Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 2000;46:257-263.
    [3] Fujita K, Maeda N, Sonoda M, Ohashi K, Hibuse T, Nishizawa H, et al. Adiponectin protects against angiotensin Ⅱ-induced cardiac fibrosis through activation of PPAR-alpha. Arteriosclerosis, thrombosis, and vascular biology 2008;28:863-870.
    [4] Ishikawa Y, Akasaka Y, Ishii T, Yoda-Murakami M, Choi-Miura NH, Tomita M, et al. Changes in the distribution pattern of gelatin-binding protein of 28 kDa (adiponectin) in myocardial remodelling after ischaemic injury. Histopathology 2003;42:43-52.
    [5] Komaba H, Igaki N, Goto S, Yokota K, Takemoto T, Hirosue Y, et al. Adiponectin is associated with brain natriuretic peptide and left ventricular hypertrophy in hemodialysis patients with type 2 diabetes mellitus. Nephron 2007;107:cl03-108.
    [6] Staiger H, Kausch C, Guirguis A, Weisser M, Maerker E, Stumvoll M, et al. Induction of adiponectin gene expression in human myotubes by an adiponectin-containing HEK293 cell culture supernatant. Diabetologia 2003;46:956-960.
    [7] Yoda-Murakami M, Taniguchi M, Takahashi K, Kawamata S, Saito K, Choi-Miura NH, et al. Change in expression of GBP28/adiponectin in carbon tetrachloride- administrated mouse liver. Biochemical and biophysical research communications 2001;285:372-377.
    [8] Pineiro R, Iglesias MJ, GallegO R, Raghay K, Eiras S, Rubio J, et al. Adiponectin is synthesized and secreted by human and murine cardiomyocytes. FEBS letters 2005;579:5163-5169.
    [9] Ding G, Qin 0, He N, Francis-David SC, Hou J, Liu J, et al. Adiponectin and its receptors are expressed in adult ventricular cardiomyocytes and upregulated by activation of peroxisome proliferator-activated receptor gamma. Journal of molecular and cellular cardiology 2007;43:73-84.
    [10]Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. The Journal of biological chemistry 1995;270:26746-26749.
    [11]Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine 2002;8:1288-1295.
    [12]Thakur V, Pritchard MT, McMullen MR, Nagy LE. Adiponectin normalizes LPS-stimulated TNF-alpha production by rat Kupffer cells after chronic ethanol feeding. American journal of physiology 2006;290:G998-1007.
    [13]Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, et al. Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 2000;96:1723-1732.
    [14]Motoshima H, Wu X, Mahadev K, Goldstein BJ. Adiponectin suppresses proliferation and superoxide generation and enhances eNOS activity in endothelial cells treated with oxidized LDL. Biochemical and biophysical research communications 2004;315: 264-271.
    [15]Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 2003;423:762-769.
    [16]Kadowaki T, Yamauchi T. Adiponectin and adiponectin receptors. Endocrine reviews 2005;26:439-451.
    [17]Yamaguchi N, Argueta JG, Masuhiro Y, Kagishita M, Nonaka K, Saito T, et al. Adiponectin inhibits Toll-like receptor family-induced signaling. FEBS letters 2005;579:6821-6826.
    [18]Chinetti G, Zawadski C, Fruchart JC, Staels B. Expression of adiponectin receptors in human macrophages and regulation by agonists of the nuclear receptors PPARalpha, PPARgamma, and LXR. Biochemical and biophysical research communications 2004;314:151-158.
    [19]Choi KC, Ryu OH, Lee KW, Kim HY, Seo JA, Kim SG, et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochemical and biophysical research communications 2005;336:747-753.
    [20]Gero D, Szabo C. Poly(ADP-ribose) polymerase: a new therapeutic target? Current opinion in anaesthesiology 2008;21:111-121.
    [21] Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: endothelial dysfunction, as a common underlying theme. Antioxidants & redox signaling 2005;7:1568-1580.
    [22]Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Current vascular pharmacology 2005;3:221-229.
    [23] Pacher P, Obrosova IG, Mabley JG, Szabo C. Role of nitrosative stress and peroxynitrite in the pathogenesis of diabetic complications. Emerging new therapeutical strategies. Current medicinal chemistry 2005;12:267-275.
    [24] Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase 1 (PARP-1) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovascular drug reviews 2007;25:235-260.
    [25]Pillai JB, Gupta M, Rajamohan SB, Lang R, Raman J, Gupta MP.Poly(ADP-ribose) polymerase-1-deficient mice are protected from angiotensin Ⅱ-induced cardiac hypertrophy. Am J Physiol Heart Circ Physiol 2006;291:H1545-1553.
    [26]Hassa PO, Hottiger MO. The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders. Cell Mol Life Sci 2002;59:1534-1553.
    [27] Frost SC, Lane MD. Evidence for the involvement of vicinal sulfhydryi groups in insulin-activated hexose transport by 3T3-L1 adipocytes. The Journal of biological chemistry 1985;260:2646-2652.
    [28]Nakajima H, Nagaso H, Kakui N, Ishikawa M, Hiranuma T, Hoshiko S. Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB- dependent gene expression in primary cultured mouse glial cells. The Journal of biological chemistry 2004;279:42774-42786.
    [29] Chang WJ, Alvarez-Gonzalez R. The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. The Journal of biological chemistry 2001;276:47664-47670.
    [30]Takahashi M, Arita Y, Yamagata K, Matsukawa Y, Okutomi K, Horie M, et al. Genomic structure and mutations in adipose-specific gene, adiponectin. Int J Obes Relat Metab Disord 2000;24:861-868.
    [31]Iwaki M, Matsuda M, Maeda N, Funahashi T, Matsuzawa Y, Makishima M, et al. Induction of adiponectin, a fat-derived antidiabetic and antiatherogenic factor, by nuclear receptors. Diabetes 2003;52:1655-1663.
    [32] Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription. Molecular and cellular biology 1999;19:296-306.
    [33]Klotz L, Schmidt M, Giese T, Sastre M, Knolle P, Klockgether T, et al. Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 2005;175:4948-4955.
    [34] Evans RM, Barish GD, Wang YX. PPARs and the complex journey to obesity. Nat Med 2004;10:355-361.
    [35]Ouchi N, Kihara S, Arita Y, Maeda K, Kuriyama H, Okamoto Y, et al. Novel modulator for endothelial adhesion molecules: adipocyte-derived plasma protein adiponectin. Circulation 1999;100:2473-2476.
    [36]Shibata R, Izumiya Y, Sato K, Papanicolaou K, Kihara S, Colucci WS, et al. Adiponectin protects against the development of systolic dysfunction following myocardial infarction. Journal of molecular and cellular cardiology 2007;42: 1065-1074.
    [37] Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circulation research 2005;96:939-949.
    [38]Hattori Y, Hattori S, Akimoto K, Nishikimi T, Suzuki K, Matsuoka H, et al. Globular adiponectin activates nuclear factor-kappaB and activating protein-1 and enhances angiotensin Ⅱ-induced proliferation in cardiac fibroblasts. Diabetes 2007;56:804-808.
    [39]Wang B,Jenkins JR,Trayhurn P.Expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture:integrated response to TNF-alpha.Am J Physiol Endocrinol Metab 2005;288:E731-740.
    [40]Qiao L,Maclean PS,Schaack J,Orlicky DJ,Darimont C,Pagliassotti M,et al.C/EBPalpha regulates human adiponectin gene transcription through an intronic enhancer.Diabetes 2005;54:1744-1754.
    [41]Park BH,Qiang L,Farmer SR.Phosphorylation of C/EBPbeta at a consensus extracellular signal-regulated kinase/glycogen synthase kinase 3 site is required for the induction of adiponectin gene expression during the differentiation of mouse fibroblasts into adipocytes.Molecular and cellular biology 2004;24:8671-8680.
    [42]Lee SJ,Yang EK,Kim SG.Peroxisome proliferator-activated receptor-gamma and retinoic acid X receptor alpha represses the TGFbetal gene via PTEN-mediated p70 ribosomal S6 kinase-1 inhibition:role for Zf9 dephosphorylation.Molecular pharmacology 2006;70:415-425.
    [43]Tan NS,Michalik L,Desvergne B,Wahli W.Multiple expression control mechanisms of peroxisome proliferator-activated receptors and their target genes.The Journal of steroid biochemistry and molecular biology 2005;93:99-105.
    [44]Miyamoto T,Kakizawa T,Hashizume K.Inhibition of nuclear receptor signalling by poly(ADP-ribose)polymerase.Molecular and cellular biology 1999;19:2644-2649.
    [1]Kato K,Matsubara T,Iida K,Suzuki O,Sato Y.Elevated levels of pro-inflammatory cytokines in coronary artery thrombi.Int J Cardiol 1999;70:267-73.
    [2]Biasucci LM,Liuzzo G Fantuzzi G,Caligiuri G,Rebuzzi AG,Ginnetti F,et al.Increasing levels of interleukin(IL)-1Ra and IL-6 during the first 2 days of hospitalization in unstable angina are associated with increased risk of in-hospital coronary events.Circulation 1999;99:2079-84.
    [3]Suzuki H,Kusuyama T,Sato R,Yokota Y,Tsunoda F,Sato T,et al.Elevation of matrix metalloproteinases and interleukin-6 in the culprit coronary artery of myocardial infarction.Eur J Clin Invest 2008;38:166-73.
    [4]Woodhouse BC,Dianov GL.Poly ADP-ribose polymerase-1:An international molecule of mystery.DNA Repair(Amst)2008;7:1077-86.
    [5]Pacher P,Szabo C.Role of poly(ADP-ribose)polymerase 1(PARP-1)in cardiovascular diseases:the therapeutic potential of PARP inhibitors.Cardiovasc Drug Rev 2007;25:235-60.
    [6]Kraus WL,Lis JT.PARP goes transcription.Cell 2003;113:677-83.
    [7]Hauschildt S,Scheipers P,Bessler W,Schwarz K,Ullmer A,Flad HD,et al.Role of ADP-ribosylation in activated monocytes/macrophages.Adv Exp Med Biol 1997;419:249-52.
    [8]Yao L,Huang K,Huang D,Wang J,Guo H,Liao Y.Acute myocardial infarction induced increases in plasma tumor necrosis factor-alpha and interleukin-10 are associated with the activation of poly(ADP-ribose)polymerase of circulating mononuclear cell.Int J Cardiol 2008;123:366-8.
    [9]Hassa PO,Hottiger MO.The functional role of poly(ADP-ribose)polymerase 1 as novel coactivator of NF-kappaB in inflammatory disorders.Cell Mol Life Sci 2002;59:1534-53.
    [10]Nakajima H, Nagaso H, Kakui N, Ishikawa M, Hiranuma T, Hoshiko S. Critical role of the automodification of poly(ADP-ribose) polymerase-1 in nuclear factor-kappaB- dependent gene expression in primary cultured mouse glial cells. J Biol Chem 2004; 279: 42774-86.
    [11]Braunwald E. Unstable angina. A classification. Circulation 1989; 80: 410-4.
    [12]Duthie SJ, Pirie L, Jenkinson AM, Narayanan S. Cryopreserved versus freshly isolated lymphocytes in human biomonitoring: endogenous and induced DNA damage, antioxidant status and repair capability. Mutagenesis 2002; 17: 211-4.
    [13]Hagberg H, Wilson MA, Matsushita H, Zhu C, Lange M, Gustavsson M, et al. PARP-1 gene disruption in mice preferentially protects males from perinatal brain injury. J Neurochem 2004; 90:1068-75.
    [14]McCullough LD, Zeng Z, Blizzard KK, Debchoudhury I, Hurn PD. Ischemic nitric oxide and poly (ADP-ribose) polymerase-1 in cerebral ischemia: male toxicity, female protection. J Cereb Blood Flow Metab 2005; 25: 502-12.
    [15]Liuzzo G, Santamaria M, Biasucci LM, Narducci M, Colafrancesco V, Porto A, et al. Persistent activation of nuclear factor kappa-B signaling pathway in patients with unstable angina and elevated levels of C-reactive protein evidence for a direct proinflammatory effect of azide and lipopolysaccharide-free C-reactive protein on human monocytes via nuclear factor kappa-B activation. J Am Coll Cardiol 2007; 49: 185-94.
    [16]Lukasiuk K, Kaczmarek L, Condorelli DF. Inducible and constitutive transcription factor NF-kappa B-like DNA binding activities in rat brain cells cultured in vitro. Neurochem Int 1995; 26:173-8.
    [17]Pahan K, Sheikh FG, Namboodiri AM, Singh I. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 1997; 100: 2671-9.
    [18]Ozeren A, Aydin M, Tokac M, Demircan N, Unalacak M, Gurel A, et al. Levels of serum IL-1beta, IL-2, IL-8 and tumor necrosis factor-alpha in patients with unstable angina pectoris. Mediators Inflamm 2003; 12: 361-5.
    [19]Csiszar A, Pacher P, Kaley G, Ungvari Z. Role of oxidative and nitrosative stress, longevity genes and poly(ADP-ribose) polymerase in cardiovascular dysfunction associated with aging. Curr Vasc Pharmacol 2005; 3: 285-91.
    [20]Berger NA. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 1985; 101: 4-15.
    [21]Dubois-Rande JL, Artigou JY, Darmon JY, Habbal R, Manuel C, Tayarani I, et al. Oxidative stress in patients with unstable angina. Eur Heart J 1994; 15:179-83.
    [22] Victor VM, De la Fuente M. Immune cells redox state from mice with endotoxin-induced oxidative stress. Involvement of NF-kappaB. Free Radic Res 2003; 37:19-27.
    [23]Lonskaya I, Potaman VN, Shlyakhtenko LS, Oussatcheva EA, Lyubchenko YL, Soldatenkov VA. Regulation of poly(ADP-ribose) polymerase-1 by DNA structure-specific binding. J Biol Chem 2005; 280:17076-83.
    [24] Soldatenkov VA, Chasovskikh S, Potaman VN, Trofimova I, Smulson ME, Dritschilo A. Transcriptional repression by binding of poly(ADP-ribose) polymerase to promoter sequences. J Biol Chem 2002; 277: 665-70.
    [25]Liu W, Zhu ZQ, Wang W, Zu SY, Zhu GJ. Crucial roles of GATA-2 and SP1 in adrenomedullin-affected expression of tissue factor pathway inhibitor in human umbilical vein endothelial cells exposed to lipopolysaccharide. Thromb Haemost 2007; 97: 839-46.
    [26]Hassa PO, Buerki C, Lombardi C, Imhof R, Hottiger MO. Transcriptional coactivation of nuclear factor-kappaB-dependent gene expression by p300 is regulated by poly(ADP)-ribose polymerase-1. J Biol Chem 2003; 278: 45145-53.
    [27]Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO. The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem 2001; 276: 45588-97.
    [28]Kameoka M, Ota K, Tetsuka T, Tanaka Y, Itaya A, Okamoto T, et al. Evidence for regulation of NF-kappaB by poly(ADP-ribose) polymerase. Biochem J 2000; 346 Pt 3:641-9.
    [29]Ha HC, Hester LD, Snyder SH. Poly(ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci U S A 2002;99:3270-5.
    [30]Chang WJ,Alvarez-Gonzalez R.The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly(ADP-ribose)polymerase 1.J Biol Chem 2001;276:47664-70.
    [1] Althaus FR, Richter C. ADP-ribosylation of proteins. Enzymology and biological significance. Mol Biol Biochem Biophys 1987;37:231-237.
    [2] Burzio LO, Riquelme PT, Koide SS. ADP ribosylation of rat liver nucleosomal core histones. J Biol Chem 1979;254:3029-3037.
    [3] Riquelme PT, Burzio LO, Koide SS. ADP ribosylation of rat liver lysine-rich histone in vitro. J Biol Chem 1979;254:3018-3028.
    [4] Suzuki H, Quesada P, Farina B, Leone E. In vitro poly(ADP-ribosyl)ation of seminal ribonuclease. J Biol Chem 1986;261:6048-6055.
    [5] Chiarugi A. Poly(ADP-ribose) polymerase: killer or conspirator? The suicide hypothesis revisited. Trends Pharmacol Sci 2002;23(3):122-129.
    [6] Woodhouse BC, Dianov GL. Poly ADP-ribose polymerase-1: an international molecule of mystery. DNA Repair (Amst) 2008;7(7):1077-1086.
    [7] Schreiber V, Dantzer F, Ame JC, de Murcia G. Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 2006;7(7):517-528.
    [8] Ame, JC, Spenlehauer C, de Murcia G. A recent and comprehensive review on the various PARP isoforms. The PARP superfamily. Bioessays 2004;26:882-893.
    [9] Nguewa PA, Fuertes MA, Valladares B, Alonso C, Perez JM. Poly(ADP-ribose) polymerases: homology, structural domains and functions. Novel therapeutical applications. Prog Biophys Mol Biol 2005;88:143-172.
    [10] Virag L, Szabo C. The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 2002;54:375-429.
    [11] Jagtap P, Szabo C. Poly(ADP-ribose) polymerase and the therapeutic effects of its inhibitors. Nat Rev Drug Discov 2005;4(5):421-40.
    [12]Ikejima M, Noguchi S, Yamashita R, Ogura T, Sugimura T, Gill DM, Miwa M. The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. J Biol Chem 1991;265:21907-21913.
    [13]Gradwohl G, Menessier de Murcia G, Molinete M, Simonin F, Koken M, Hoeijmakers JHJ, deMurcia G The second zinc finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. Proc Natl Acad Sci USA 1990;87:2990-2994.
    [14]Buki KG, Bauer PI, Hakam A, Kun E. Identification of domains of poly(ADP-ribose) polymerase for protein binding and self-association. J Biol Chem 1995; 270:3370-3377.
    [15] Bauer PI, Buki KG, Hakam A, Kun E. Macromolecular association of ADP-ribosyltransferase and its correlation with enzymic activity. Biochem J 1990;270:17-26.
    [16] Mendoza-Alvarez H, Alvarez-Gonzalez R. Poly(ADP-ribose) polymerase is a catalytic dimer and the automodification reaction is intermolecular. J Biol Chem 1993;268:17575-17580.
    [17]Panzeter P, Althaus FR. DNA strand break-mediated partitioning of poly(ADP-ribose) polymerase function. Biochem 1994;33:9600-9605.
    [18]Le Cam E, Fack F, Menissier-de Murcia J, Cognet JAH, Barbin A, Sarantoglou V, Revet B, Delain E, de Murcia G. Conformational analysis of a 139 base-pair DNA fragment containing a single-stranded break and its interaction with human poly(ADP-ribose) polymerase. J Mol Biol 1994;235:1062-1071.
    [19]Domenighini M, Rappuoli R. Three conserved consensus sequences identify the NA-binding site of ADP-ribosylating enzymes, expressed by bacteria, T-even bacteriophages, and eucaryotes. Mol Microbiol 1996;21:667-674.
    [20]Marsischky GT, Wilson BA, Collier RJ. Role of glutamic acid 988 of human poly(ADP-ribose) polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins. J Biol Chem 1995;270:3247-3254.
    [21]B(?)rkle A. Physiology and pathophysiology of poly(ADP-ribosyl)ation. Bioessays 2001;23(9):795-806.
    [22]Davidovic L, Vodenicharov M, Affar EB, Poirier GG Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 2001;268:7-13.
    [23] Amours D, Desnoyers D, Silva SD, Poirier GG. Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 1999;342:249-268.
    [24]Ferro AM, Olivera, BM. Poly(ADP-ribosylation) in vitro. Reaction parameters and enzyme mechanism. J Biol Chem 1982;257:7808-7813.
    [25] Hunter T. The Croonian Lecture 1997. The phosphorylation of proteins on tyrosine: its role in cell growth and disease. Philos Trans R Soc London B Biol Sci 1998;353:583-605.
    [26]Panzeter PL, Realini CA, Althaus FR. Noncovalent interactions of poly(adenosine diphosphate ribose) with histones. Biochemistry 1992;31:1379-1385.
    [27]Nozaki UT, Masutani M, Akagawa T, Sugimura T, Esuni H. Non-covalent interaction between poly(ADP-ribose) and cellular proteins: an application of a poly(ADP-ribose)-western blotting method to detect poly(ADP-ribose) binding on protein-blotted filter. Biochem Biophys Res Commun 1994;198:45-51.
    [28]Malanga M, Pleschke JM, Kleczkowska HE, Althaus FR. Poly(ADP-ribose) binds to specific domains of p53 and alters its DNA binding functions. J Biol Chem 1998;273:11839-11843.
    [29] Ying W, Alano CC, Gamier P, Swanson RA. NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res 2005;79:216-223.
    [30]Ha HC, Snyder SH. Poly(ADP-ribose) polymerase is a mediator of necrotic cell death by ATP depletion. Proc Natl Acad Sci USA 1999;96:13978-13982.
    [31]Yu SW, Wang H, Poitras MF, Coombs C, Bowers WJ, Federoff HJ, Poirier GG, Dawson TM, Dawson VL. Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 2002;297:259-263.
    [32]Modjtahedi N, Giordanetto F, Madeo F, Kroemer G. Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 2006;16:264-272.
    [33] Alano CC, Ying W, Swanson RA. Poly(ADP-ribose) polymerase-1 mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 2004; 279:18895-18902
    [34] Ying W, Gamier P, Swanson RA. NAD+ repletion prevents PARP-1 induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commmun 2003;308:809-813.
    [35]Hong SJ, Dawson TM, Dawson VL. Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signalling. Trends Pharmacol Sci 2004;25:259-264.
    [36]Hassa PO, Hottiger MO. The functional role of poly ADP-ribose)polymerase 1 as novel coactivator of NF-kB in inflammatory disorders. Cell Mol Life Sci 2002;59:1534-1553.
    [37]Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 2004;119:803-814.
    [38]Tulin A, Spradling A. Chromatin loosening by poly(ADP)-ribose polymerase (PARP) at Drosophila puff loci. Science 2003;299:560-562.
    [39]Huletsky A, de Murcia G, Muller S, Hengartner M, Menard L, Lamarre D, Poirier, GG. The effect of poly(ADP-ribosyl)ation on native and H1-depleted chromatin. A role of poly (ADP-ribosyl)ation on core nucleosome structure. J Biol Chem 1989;264:8878-8886.
    [40] Poirier GG, de Murcia G, Jongstra-Bilen J, Niedergang C, Mandel P. Poly (ADP-ribosyl)ation of polynucleosomes causes relaxation of chromatin structure. Proc Natl Acad Sci USA 1982; 79:3423-3427.
    [41]Mathis G, Althaus FR. Release of core DNA from nucleosomal core particles following (ADP-ribose)n-modification in vitro. Biochem Biophys Res Commun 1987;143: 1049-1054.
    [42]Realini CA, Althaus FR. Histone shuttling by poly (ADP-ribosylation). J Biol Chem 1992;267:18858-18865.
    [43] Anderson MG, Scoggin KE, Simbulan-Rosenthal CM, Steadman JA. Identification of poly(ADP-ribose) polymerase as a transcriptional coactivator of the human T-cell leukemia virus type 1 Tax protein. J Virol 2000;74:2169-2177.
    [44] Cervellera MN, Sala A. Poly(ADP-ribose) polymerase is a B-MYB coactivator. J Biol Chem 2000;275:10692-10696.
    [45]Nie J, Sakamoto S, Song D, Qu Z, Ota K, Taniguchi T. Interaction of Oct-1 and automodification domain of poly(ADP-ribose) synthetase. FEBS Lett 1998;424:27-32.
    [46] Butler AJ, Ordahl CP. Poly(ADP-ribose) polymerase binds with transcription enhancer factor 1 to MCAT1 elements to regulate muscle-specific transcription.Mol Cell Biol 1999;19:296-306.
    [47]Miyamoto T,Kakizawa T,Hashizume K.Inhibition of nuclear receptor signalling by poly(ADP-ribose)polymerase.Mol Cell Biol 1999;19:2644-2649.
    [48]Soldatenkov VA,Chasovskikh S,Potaman VN,Trofimova I,Smulson ME,Dritschilo A.Transcriptional repression by binding of poly(ADP-ribose)polymerase to promoter sequences.J Biol Chem 2002;277:665-670.
    [49]Lee D,Kim JW,Kim K,Joe CO,Schreiber V,Menissier-De Murcia J,Choe J.Functional interaction between human papillomavirus type 18 E2 and poly(ADP-ribose)polymerase-1.Oncogene 2002;21:5877-5885.
    [50]Akiyama T,Takasawa S,Nata K,Kobayashi S,Abe M,Shervani NJ,Ikeda T,Nakagawa K,Unno M,Matsuno S,Okamoto H.Activation of Reg gene,a gene for insulin-producing beta-cell regeneration:poly(ADP-ribose)polymerase binds Reg promoter and regulates the transcription by autopoly(ADP-ribosyl)ation.Proc Natl Acad Sci USA 2001;98:48-53.
    [51]Ha HC,Hester LD,Snyder SH.Poly(ADP-ribose)polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia.Proc Natl Acad Sci USA 2002;99:3270-3275.
    [52]Plaza S,Aumercier M,Bailly M,Dozier C,Saule S.Involvement of poly(ADP-ribose)-polymerase in the Pax-6 gene regulation in neuroretina.Oncogene 1999;18:1041-1051.
    [53]Rolli V,Ruf A,Augustin A,Schulz GE,Me nissier-de Murcia J,de Murcia G.Poly(ADP-ribose)polymerase:structure and function.In From DNA Damage and Stress Signalling to Cell Death:Poly ADP-Ribosylation Reactions,New York:Oxford University Press 2000;pp:35-79.
    [54]Zhang Z,Hildebrandt EF,Simbulan-Rosenthal CM,Anderson MG.Sequence-specific binding of poly(ADP-ribose)polymerase-1 to the human T cell leukemia virus type-Ⅰ tax responsive element.Virology 2002;296:107-116.
    [55]黄恺.多聚ADP核糖化酶与RTEF1 a间的相互作用及其影响.临床心血管病杂志 2003:11:671-674.
    [56]Huang Kai, Tidyman WE, Ordahl CP, et al. Analysis of nucleotide sequence- dependent DNA binding of poly(ADP-ribose) polymerase in a purified system. Biochemistry 2004;43:217-223.
    [57] Oliver FJ, Menissier-de MJ, et al. Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice.EMBO J 1999;18:4446-4454.
    [58]Carrillo A, Monreal Y, Ramirez P, et al.Transcription regulation of TNF-alpha-early response genes by poly(ADP-ribose) polymerase-1 in murine heart endothelial cells. Nucleic Acids Res 2004;32:757-766.
    [59]Chiarugi A, Moskowitz MA. Poly(ADP-ribose) polymerase-1 activity promotes NF-kappaB-driven transcription and microglial activation: implication for neurodegenerative disorders. J Neurochem 2003;85(2):306-317.
    [60]Meisterernst M, Stelzer G, Roeder RG. Poly(ADP-ribose) polymerase enhances activator-dependent transcription in vitro. Proc Natl Acad Sci USA 1997;94:2261-2265.
    [61]Tulin A, Stewart D, Spradling AC. The Drosophila heterochromatic gene encoding poly(ADP-ribose) polymerase (PARP) is required to modulate chromatin structure during development. Genes Dev 2002;16:2108-2119.
    [62] Andreone TL, Connor MO, Denenberg A. Poly(ADP-Ribose) Polymerase-1 Regulates Activation of Activator Protein-1 in Murine Fibroblasts. The Journal of Immunology 2003;170:2113-2120.
    [63] Veres B, Radnai B, Gallyas F Jr. Regulation of kinase cascades and transcription factors by a poly (ADP-ribose) polymerase-1 inhibitor, 4-hydroxyquinazoline, in lipopolysaccharide induced inflammation in mice. J Pharmacol Exp Ther 2004;310: 247-255.
    [64]Kauppinen TM, Chan WY, Suh SW, Wiggins AK, Huang EJ, Swanson RA. Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proc Natl Acad Sci USA 2006;103:7136-7141.
    [65]Ferdinandy P, Schulz R. Nitric oxide, superoxide, and peroxynitrite in myocardial ischaemia-reperfusion injury and preconditioning. Br J Pharmacol 2003;138:532-543.
    [66] Ungva ri Z, Gupte SA, Recchia FA, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 2005;3:221-229.
    [67] Komja ti K, Besson VC, Szabo C. Poly(ADP-ribose) polymerase inhibitors as potential therapeutic agents in stroke and neurotrauma. Curr Drug Targets CNS Neurol Disord 2005;4:179-194.
    [68] Pacher P, Schulz R, Liaudet L, Szabo C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol Sci 2005;26:302-310.
    [69] Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase-l(PARP-l) in cardiovascular diseases: the therapeutic potential of PARP inhibitors. Cardiovasc Drug Rev 2007;25:235-260.
    [70] Gero D, Szabo C. Role of the peroxynitrite-poly (ADP-ribose) polymerase pathway in the pathogenesis of liver injury. Curr Pharm Des 2006;12:2903-2910.
    [71] Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: Renaissance half a century after the discovery of allopurinol. Pharmacol Rev 2006b;58:87-114.
    [72] Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev 2007;87:315-424.
    [73]Griendling KK, Sorescu D, Ushio-Fukai M. NAD(P)H oxidase: Role in cardiovascular biology and disease. Circ Res 2000;86:494-501.
    [74]Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P. Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr Vasc Pharmacol 2005;3:221-229.
    [75] Szabo C. Cardioprotective effects of poly(ADP-ribose) polymerase inhibition. Pharmacol Res 2005a;52:34-43.
    [76] Szabo G, Bahrle S. Role of nitrosative stress and poly(ADP-ribose) polymerase activation in myocardial reperfusion injury. Curr Vasc Pharmacol 2005;3:215-220.
    [77]Hayashi Y, Sawa Y, Fukuyama N, Miyamoto Y, Takahashi T, Nakazawa H, Matsuda H. Leukocyte-depleted terminal blood cardioplegia provides superior myocardial protective effects in association with myocardium-derived nitric oxide and peroxynitrite production for patients undergoing prolonged aortic crossclamping for more than 120 minutes. J Thorac Cardiovasc Surg 2003;126:1813-1821.
    [78]Hayashi Y, Sawa Y, Ohtake S, Fukuyama N, Nakazawa H, Matsuda H, Peroxynitrite formation from human myocardium after ischemia-reperfusion during open heart operation. Ann Thor Surg 2001;72:571-576.
    [79]To th-Zsa mboki E, Horvath E, Vargova K, Pankotai E, Murthy K, Zsengeller Z, Barany T, Pek T, Fekete K, Kiss RG, Preda I, Lacza Z, Gero D, Szabo C. Activation of poly(ADP-ribose) polymerase by myocardial ischemia and coronary reperfusion in human circulating leukocytes. Mol Med 2006;12:221-228.
    [80] Morrow DA, Baran K, Krakover R, Dauerman H, Murphy SA, Kumar S, McCabe CH, Brickman CM, Salzman AL. Safety, pharmacokinetics, and pharmacodynamics of a single intravenous administration of INO-1001 in subjects with ST-elevated myocardial infarction(STEMI) undergoing primary percutaneous coronary intervention: results of the TIMI37A trial. J Am Coll Cardiol 2007, 202A
    [81]Schulz R. Intracellular targets of matrix metalloproteinase-2 in cardiac disease: Rationale and therapeutic approaches. Ann Rev Pharmacol Toxicol 2007;47:211-242.
    [82]Turko IV, Murad F. Protein nitration in cardiovascular diseases. Pharmacol Rev 2002;54:619-634.
    [83]Bai P, Mabley JG, Liaudet L, Virag L, Szabo C, Pacher P. Matrix metalloproteinase activation is an early event in doxorubicin-induced cardiotoxicity. Onco Rep 2004;11:505-508.
    [84] Pacher P, Liaudet L, Bai P, Virag L, Mabley JG, Hasko G, Szabo C. Activation of poly(ADP-ribose) polymerase contributes to development of doxorubicin-induced heart failure. J Pharmacol Exp Ther 2002b;300:862-867.
    [85] Pacher P, Liaudet L, Mabley JG, Cziraki A, Hasko G, Szabo C. Beneficial effects of a novel ultrapotent poly(ADP-ribose) polymerase inhibitor in murine models of heart failure. Int J Mol Med 2006a;17:369-375.
    [86] Pacher P, Liaudet L, Mabley J, Komjati K, Szabo C. Pharmacologic inhibition of poly(adenosine diphosphate-ribose) polymerase may represent a novel therapeutic approach in chronic heart failure. J Am Coll Cardiol 2002c;40:1006-1016.
    [87] Molnar A, Toth A, Bagi Z, et al. Activation of poly(ADP-ribose) polemerase pathway in human heart failure. Mol Med 2006;12:143-52.
    [88]Xiao CY, Chen M, Zsengeller Z, Li H, Kiss L, Kollai M, Szabo C. Poly(ADP-Ribose) polymerase promotes cardiac remodeling, contractile failure, and translocation of apoptosis-inducing factor in a murine experimental model of aortic banding and heart failure. J Pharmacol Exp Ther 2005;312:891-898.
    [89]Pillai JB, Gapta M, Rajamohan SB, et al. Poly (ADP-ribose) polymerase-1 deficient mice are protected from angiotensin Ⅱ-induced cardiac hypertrophy. Am J Physio Heart Circ Physiol. 2006;291:1545-1553.
    [90]Booz GW. PARP inhibitors and heart failure-Translational medicine caught in the act. Congest Heart Fail 2007;13:105-112.
    [91]Csiszar A, Pacher P, Kaley G, Ungvari Z. Role of oxidative and nitrosative stress, longevity genes and poly(ADP-ribose) polymerase in cardiovascular dysfunction associated with aging. Curr Vasc Pharmacol 2005;3:285-291.
    [92]Escobales N, Crespo MJ. Oxidative-nitrosative stress in hypertension. Curr Vasc Pharmacol 2005;3:231-246.
    [93]Radovits T, Seres L, Gero D, Berger I, Szabo C, Karck M, Szabo G. Single dose treatment with PARP inhibitor INO-1001 improves aging-associated cardiac and vascular dysfunction. Exp Gerontol 2007;42:676-685.
    [94]Pacher P, Mabley JG, Soriano FG, Liaudet L, Komjati K, Szabo C. Endothelial dysfunction in aging animals: The role of poly(ADP-ribose) polymerase activation. Br J Pharmacol 2002e;135:1347-1350.
    [95] Pacher P, Mabley JG, Soriano FG, Liaudet L, Szabo C. Activation of poly(ADP-ribose) polymerase contributes to the endothelial dysfunction associated with hypertension and aging. Int J Mol Med 2002f;9:659-664.
    [96]Balakumar P, Singh M. Possible role of poly(ADP-ribose) polymerase in pathological and physiological cardiac hypertrophy. Methods Findings Expl Clin Pharmacol 2006;28:683-689.
    [97] Pacher P, Szabo C. Role of peroxynitrite in the pathogenesis of cardiovascular complications of diabetes. Curr Opin Pharmacol 2006;6:136-141.
    [98]Pillai JB, Russell HM, Raman J, Jeevanandam V, Gupta MP. Increased expression of poly(ADP-ribose) polymerase-1 contributes to caspase-independent myocyte cell death during heart failure. Am J Physiol Heart Circ Physiol 2005b;288:486-496.
    [99]de Jonge N, van Wichen DF, van Kuik J, Kirkels H, Lahpor JR, Gmelig-Meyling FH, van den Tweel JG, de Weger RA. Cardiomyocyte death in patients with end-stage heart failure before and after support with a left ventricular assist device: low incidence of apoptosis despite ubiquitous mediators. J Heart Lung Transplant 2003;22:1028-1036.
    [100] Pillai JB, Isbatan A, Imai S, Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2 alpha deacetylase activity. J Biol Chem 2005;280:43121-43130.
    [101] Szabo C, Pacher P, Zsengeller Z, Vaslin A, Komjati K, Benko R, Chen M, Mabley JG, Kollai M. Angiotensin Ⅱ-mediated endothelial dysfunction: role of poly(ADP-ribose) polymerase activation. Mol Med 2004;10:28-35
    [102] Garcia Soriano F, Virag L, Jagtap P, Szabo E, Mabley JG, Liaudet L, Marton A, Hoyt DG, Murthy KG, Salzman AL, et al. Diabetic endothelial dysfunction: the role of poly(ADP-ribose) polymerase activation. Nat Med 2001;7:108-113.
    [103] Mabley JG, Soriano FG. Role of nitrosative stress and poly(ADP-ribose) polymerase activation in diabetic vascular dysfunction. Curr Vasc Pharmacol 2005;3:247-252.
    [104] Pacher P, Liaudet L, Soriano FG, Mabley JG, Szabo E, Szabo C. The role of poly(ADP-ribose) polymerase activation in the development of myocardial and endothelial dysfunction in diabetes. Diabetes 2002d;51:514-521.
    [105] Pacher P, Szabo C. Role of poly(ADP-ribose) polymerase-1 activation in the pathogenesis of diabetic complications: Endothelial dysfunction, as a common underlying theme. Antioxid Redox Signal 2005;7:1568-1580.
    [106] Soriano FG, Pacher P, Mabley J, Liaudet L, Szabo C. Rapid reversal of the diabetic endothelial dysfunction by pharmacological inhibition of poly(ADP-ribose) polymerase. Circ Res 2001;89:684-691.
    [107] Szabo C, Zanchi A, Komjati K, Pacher P, Krolewski AS, Quist WC, LoGerfo FW, Horton ES, Veves A. Poly(ADP-ribose) polymerase is activated in subjects at risk of developing type 2 diabetes and is associated with impaired vascular reactivity. Circulation 2002a;106:2680-2686.
    [108]Steinhubl SR. Why have antioxidants failed in clinical trials? Am J Cardiol 2008; 101:14-19.
    [109] Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM. Oxidative DNA damage and repair in experimental atherosclerosis are reversed by dietary lipid lowering. Circ Res 2001;88:733-739.
    [110] Martinet W, Knaapen MW, De Meyer GR, Herman AG, Kockx MM. Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques. Circulation 2002;106:927-932.
    [111]Blundell G, Jones BG, Rose FA, Tudball N. Homocysteine mediated endothelial cell toxicity and its amelioration. Atherosclerosis 1996;122:163-172.
    [112]Radovits T, Lin LN, Zotkina J, Gero D, Szabo C, Karck M, Szabo G Poly(ADP-ribose) polymerase inhibition improves endothelial dysfunction induced by reactive oxidant hydrogen peroxide in vitro. Eur J Pharmacol. 2007;564:158-166.
    [113]Hans CP, Zerfaoui M, Naura A, Troxclair D, Strong JP, Matrougui K, Boulares H. Thieno[2,3-c]isoquinolin-5-one (TIQ-A), a potent poly(ADP-ribose) polymerase inhibitor, promotes atherosclerotic plaque regression in high fat diet-fed ApoE-deficient mice: effects on inflammatory markers and lipid content. J Pharmacol Exp Ther. 2009;329:150-158
    [114]Oumouna-Benachour K, Hans CP, Suzuki Y, Naura A, Datta R, Belmadani S, Fallon K, Woods C, Boulares AH. Poly(ADP-ribose) polymerase inhibition reduces atherosclerotic plaque size and promotes factors of plaque stability in apolipoprotein E-deficient mice: effects on macrophage recruitment, nuclear factor-kappaB nuclear translocation, and foam cell death. Circulation 2007;115:2442-2450.
    [115] von Lukowicz T, Hassa PO, Lohmann C, Boren J, Braunersreuther V, Mach F, Odermatt B, Gersbach M, Camici GG, Stahli BE, Tanner FC, Hottiger MO, Luscher TF, Matter CM. PARP1 is required for adhesion molecule expression in atherogenesis. Cardiovasc Res 2008;78:158-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700