海表层叶绿素和溢油机载海洋荧光激光雷达实验与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要由五部分组成。第一部分引言简要介绍了机载海洋荧光激光雷达的应用状况、国际和国内动态以及未来发展趋势。
     第二部分机载海洋荧光激光雷达现场测量海表层叶绿素浓度实验研究是继续国家“十五”863资源与环境技术领域专题项目“航空遥感多传感器集成与应用技术系统”的研究内容。在该部分,首先,简要回顾了叶绿素浓度的反演理论,并在此基础上发展了利用激光雷达信号剖面提取激光和荧光的海水衰减系数对反演理论进行改进的算法;其次,介绍了两次机载飞行实验的实验海域、海况并着重对实验数据进行了处理、分析,获得了实验海域的叶绿素浓度分布情况;然后,对第二次飞行实验的结果与星载传感器(MODIS)同步测量的叶绿素浓度进行了初步对比和印证,取得了较好的结果。
     后三部分则属于国家“十一五”863资源环境技术领域专题课题“机载多通道激光雷达海面油污染监测技术”的研究内容。其中,第三部分激光雷达海表面溢油监测系统的设计主要介绍了激光诱导荧光原理、系统硬件和软件设计。硬件设计包括激光发射、光学接收、分光系统、光电转换、数据采集和供电等部分。软件设计包括数据采集、处理和显示功能的编写思路和算法流程设计。
     第四部分主要介绍了油膜厚度反演和油种类识别算法。利用MATLAB语言编写的程序,我们还对国外文献中的激光雷达数据进行了处理和分析,对各种反演算法进行了讨论,为选取可靠的溢油参数提取算法和系统设计提供了依据。
     第五部分介绍了实验室油荧光光谱探测系统,并获得了不同种类油(轻油和重油)的荧光光谱,利用该光谱数据验证了论文第四部分涉及的主成分分析算法和光谱匹配算法的可靠性,为下一步机载海洋荧光激光雷达海表溢油监测系统的软硬件设计奠定了的基础。
     论文的最后部分对本论文的工作做了简要的总结,并指出了下一步工作需要努力的方向。
This essay is mainly consisted of five parts: The first part is introduction which narrates the applications of airborne oceanographic fluorescence lidar, the actualities at home and abroad, and the development in the future.
     The second part is the research for field detection of chlorophyll-a concentration in the sea surface layer which succeeds the item“Integrated Airborne Multi-sensor System for Marine Applications”, which belongs to the tenth five-year plan in National 863 Resource and Environment technique field. In this part, first, the theory for chlorophyll-a concentration retrieval is disserted. The precision of the theory is improved by calculating the seawater attenuation coefficients of chlorophyll-a fluorescence and Raman scattering using the lidar signal profiles; second, the ocean states for two field experiments are expressed, and the distribution of chlorophyll-a in those sea fields are retrieved and analyzed; third, the chlorophyll-a concentration of the second field experiment is compared and validated with the same products simultaneously measured by MODIS, which shows a good consistency.
     The latter three parts are contents of the item“Monitoring oil pollutants on the sea surface by an airborne multi-channel oceanographic fluorescence lidar”which belongs to the eleventh five-year plan. The third part introduces the principles of fluorescence, and the designs of the hardware and software lidar system. The hardware system includes the laser emitter, the optical receiver, the spectrometer, the photo-electric converter, the ADC, and the power supply. The software includes the algorithm patterns for data collection, process and display.
     The fourth part mainly specifies the algorithms for oil thickness retrieval and oil identification. Using the MATLAB codes, we process and analyze the lidar signals from foreign lidar system. Kinds of algorithms are discussed, and some conclusions are given.
     The fifth part introduces the system for oil fluorescence spectra detection in the laboratory. Some kinds of oil spectra on the market are given. The PCA and SM (Spectral Matching) algorithms in the fourth part are tested, which paves the way for the design of airborne system.
     The last part of this essay gives a brief summary of its work, and puts forward the improvements needed in the future.
引文
1.昌彦君,彭复员,朱光喜,杨述斌,朱耀庭,海洋激光测深技术介绍,地质科技情报,第20卷,第3期,2001年9月:91-94页。
    2. Brian Billard and Peter J.Wilsen,“Sea surface and depth detection in the WRELADS airborne depth sounder,”Appl. Opt. 25(13), pp2059-2066 (1986).
    3. Hengstermann, T., Reuter, R.,“Lidar fluorosensing of mineral oil spills on the sea surface,”Appl. Opt. 29, pp3218-3227 (1990).
    4. James H. Churnside, James J. Wilson,“Airborne lidar for fisheries applications”, Opt. Eng. 40(3), pp406-414 (2001).
    5. Luca Fiorani, Roberto Barbini, et al.,“COMBINATION OF LIDAR, MODIS AND SEAWIFS SENSORS FOR SIMULTANEOUS CHLOROPHYLL MONITORING”, EARSel eProceedings 3, pp8-17,1/2004.
    6. Hickman G. D., Hogg, J. E.,“Application of an airborne pulsed laser for near-shore bathymetric measurements,”Remote Sens. of Env. 1, Elsevier, New York, pp47-58 (1969).
    7. L. R. Poole, W. E. Esaias,“Water Raman normalization of airborne laser fluorosensor measurements: a computer model study,”Appl. Opt. 21(20), pp3756-3761 (1982).
    8. Robert W.L., Thomas, Gary C. Guenther,“Water Surface Detection Strategy for an Airborne Laser Bathymeter,”SPIE,1990, 1302 Appl. Opt. X, pp597-605.
    9. Measures, R. M., and M. Bristow,“The Development of a Laser Fluorosensor for Remote Environmental Probing,”Joint Conference on Sensing of Environmental Pollutants, Palo Alto, Nov. 1971, AIAAA Paper 71-112; Can. Aeron. Space J., 17, pp421-422 (1971).
    10. Fantasia, J. F., T. M. Hard, and H. C. Ingrao, An Investigation of Oil Fluorescence as a Technique for Remote Sensing of Oil Spills, Report No. DOT-TSC-USCG-71-7, Transportation Systems Center, Dept. of Transportation, Cambridge, Mass (1971).
    11. Fantasia, J. F., and H. C. Ingrao,“Development of Experimental Airborne Laser Remote Sensing System for the Detection and Classification of Oil Spills,”Proc. of the 9th Intern. Symp. on Remote Sensing of the Environment, 15-19 April 1974, Paper 10700-1-X, pp1711-1745 (1974).
    12. C. Wayne Wright, Frank E. Hoge, et al.,“Next-generation NASA airborne oceanographic lidar system”, Appl. Opt. 40(3), pp336-342 (2001).
    13. Marc Lennon, Sergey Babichenko, Nicolas Thomas, Vincent Mariette, Grégoire Mercier and Aleksei Lisin,“DETECTION AND MAPPING OF OIL SLICKS IN THE SEA BY COMBINEDUSE OF HYPERSPECTRAL IMAGERY AND LASER INDUCED FLUORESCENCE,”EARSeL eProceedings 5, issue/2006.
    14. Lennon M, S Babichenko, N Thomas, V Mariette & G Mercier,“Oil slick detection and characterization by satellite and airborne sensors: experimental results with SAR, Hyperspectral and Lidar data,”In: IEEE IGARSS’2005, Seoul, Korea, 25-29 July 2005.
    15. Lennon M, N Thomas, V Mariette, S Babichenko & G Mercier,“Operational quantitative mapping of oil pollutions at sea by joint use of a Hyperspectral Imager and a Fluorescence Lidar System on-board a fixed-wing aircraft,”In: IEEE OCEANS’2005, Brest, France, 20-23 June 2005.
    16. Brown, C., Marois, R., M. Fingas,“Airborne oil spill sensor testing: progress and recent developments,”Canada, USA, 1997.
    17. Babichenko S, A Dudelzak, J Lapimaa, A Lisin, L Poryvkina & A Vorobiev,“Locating water pollution and shore discharges in coastal zone and inland waters with FLS lidar,”EARSeL eProceedings, 5(1), pp32-41 (2006).
    18. Klyshko, D. N. , Fadeev, V. V. , Sov. Phys. Dokl, 1978. (English translation from Dokl. Acad Nauk SSSR, 238(2): 320)
    19. Frank E. Hoge, R. N. Swift, J. K. Yungel,“Feasibility of airborne detection of laser-induced fluorescence emission from green terrestrial plants,”Appl. Opt., 22(19), pp2991-3000 (1983).
    20.贺岩,吴东,机载海洋激光雷达测量叶绿素a浓度、悬移质浓度和浅海深度的性能估计,中国海洋大学学报,第34卷,第4期,2004年7月:649-654页。
    21.魏志强,机载海洋荧光雷达测量海表层叶绿素浓度的实验和算法研究,中国海洋大学硕士学位论文,2004。
    22. Fadeev. V. V., Rubin, Kust, S. V., Petrosyan V. S, et al., In“Coplex investigations of ocean nature,”The first conference of Moscow State university on problems of world ocean, Moscow, pp213-220 (1975).
    23. M.Bristow, D. Nielsen, D. Bundy, R. Furtek, et al.,“Airborne laser fluorosensor of surface water chlorophyll a,”Environment Protection Agency, Las Vegas, EPA-600(4): 79-048 (1979).
    24. Bristow M. Nielsen D. Bundy D,“Use of water Raman emission to correct airborne laser fluorescence data effects of water optical attenuation,”Appl. Opt., 20, 2889-2906 (1981).
    25. Frank E. Hoge, R. N. Swift, J. K. Yungel,“Feasibility of airborne detection of laser-induced fluorescence emission from green terrestrial plants,”Appl. Opt., 22(19), 2991-3000 (1983).
    26. Frank E. Hoge, C. Wayne Wright, et al.,“Airborne laser-induced oceanic chlorophyllfluorescence: solar-induced quenching corrections by use of concurrent downwelling irradiance measurements,”Appl. Opt., 37(15), pp3222-3226 (1998).
    27. Frank E. Hoge, Paul E. Lyon, et al.,“Chlorophyll biomass in the global oceans: airborne lidar retrieval using fluorescence of both chlorophyll and chromophoric dissolved organic matter,”Appl. Opt., 44(14), pp2857-2862 (2005).
    28. F. E. Hoge and R. N. Swift,“Airborne simultaneous spectroscopic detection of laser-induced water raman backscatter and fluorescence from chlorophyll a and other naturally occurring pigments,”Appl. Opt., 20, pp2272-2281 (1983).
    29. Vedernikov V. I. , Vshyvcev, V. S. , Demidov, A. A. ,et al. Oceanology (Academy of Sciences of the USSR) (English translation from Oceanology , 1990, 30: 848), American Geophysical Union, 30: 628-640.
    30. Frank E. Hoge, Robert N. Swift, et al.,“Fluorescence of Dissolved Organic Matter: A Comparison of North Pacific and North Atlantic Oceans During April 1991,”JOURNAL OF GEOPHYSICAL RESEARCH, VOL 98, NO. C12, PAGES 22779-22787, DECEMBER 15, 1993.
    31. Greg Reeves (Arjay Engineering Ltd), Leroy Laverman (University of California),“Introduction to Fluorescence for Oil in Water Monitoring”.
    32. Holger Spanggard (holger.spanggard@risoe.dk),“INTRODUCTION TO FLUORESCENCE,”The Danish Polymer Centre, Risoe National Laboratory.
    33. Violetta Drozdowska, Sergey Babichenko, Aleksey Lisin,“Natural water fluorescence characteristics based on lidar investigations of a surface water layer polluted by an oil film; the Baltic cruise– May 2000,”OCEANOLOGIA, 44 (3), pp339-354 (2002).
    34.管晟,油膜激光荧光谱实验研究,青岛海洋大学硕士学位论文,2001。
    35. F. E. Hoge, and R. N. Swift,“Oil film thickness measurement using airborne laser-induced water Raman backscatter,”Appl. Opt., 19(19), pp3269-3281 (1980).
    36. Susumu YAMAGISHI, Kazuo HITOMI, et al.,“SCIENTIFIC APPROACH TO IMPROVE SLICKS MONITORING USING A FLUORESCENCE LIDAR,”FROM THE NAKHODKA T THE ERIKA: EXCHANGE OF EXPERIENCE IN AT-SEA RESPONSE TO OFFSHORE OIL SPILLS BY PASSING SHIPS, Brest, France, 6th-7th July 2000.
    37.管晟,吴东,张博,刘智深,海洋激光荧光雷达海面油膜种类鉴别研究,青岛海洋大学学报,第32卷,第2期,2002年3月:305-311页。
    38. Yingzi Du, Chein-I Chang, et al.,“New hyperspectral discrimination measure for spectral characterization,”Opt. Eng., 43(8), pp1777-1786 (2004).
    39. Stefan A. Robila (robilas@mail.montclair.edu), Andrew Gershman,“Spectral Matching Accuracy in Processing Hyperspectral Data,”Department of Computer Science Montclair State University Montclair, NJ, USA.
    40. Introduction to Hyperspectral Imaging, http://www.microimages.com.
    41. J. H. Lumme (juho.lumme@hut.fi),“CLASSIFICATION OF VEGETATION AND SOIL USING IMAGING SPECTROMETER DATA,”Institute of Photogrammetry and Remote Sensing, Helsinki University of Technology, P.O.Box 1200, FIN-02015 HUT, Finland.
    42. G. Girouard, A. Bannari (abannari@uottawa.ca), et al.,“Validated Spectral Angle Mapper Algorithm for Geological Mapping: Comparative Study between Quickbird and LandSt-TM,”Remote Sensing and Geomatics of the Environment Laboratory, Department of Geography, University of Ottawa (Ontario) K1N 6N5.
    43. Tatiana A. Dolenko, Victor V. Fadeev, et al.,“Fluorescence diagnostics of oil pollution in coastal marine waters by use of artificial neural networks,”Appl. Opt., 41(24), pp5155-5166 (2002).
    44林彬,安居白,海面溢油油种激光遥感ANN探测方法的研究,海洋环境科学,第23卷,第1期,2004年2月:47-49页。
    45.周志华,曹存根主编,《神经网络及其应用》,北京:清华大学出版社,2004。
    46.刘修国,罗小波,自组织神经网络在遥感影像分类中的应用研究,国土资源遥感,第4期,总第62期,2004年12月:14-18页。
    47. Andrew Ng,“Principal components analysis,”CS229 Lecture notes Part XI.
    48. Jonathon Shlens,“A Tutorial on Principal Components Analysis,”Systems Neurobiology Laboratory, Salk Institute for Biological Studies La Jolla, CA92037 and Institute for Nonlinear Science, University of California, San Diego La Jolla, CA 92093-0402.
    49. Lindsay I Smith,“A tutorial on Principal Components Analysis,”February 26, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700