睡眠剥夺对慢性应激抑郁模型大鼠单胺递质及腺苷的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:腺苷作为一种神经调质,可以通过与受体结合调节各种神经递质的释放。此外,越来越多的人认为腺苷是一种睡眠因子,主要通过与其受体结合在睡眠调节中起作用。有研究认为腺苷及其受体与抑郁及抗抑郁过程有一定关系。睡眠剥夺可以发挥快速抗抑郁效应,但其中的神经生物学机制至今未明,目前的研究多集中于单胺类神经递质系统,我们认为睡眠剥夺快速抗抑郁的过程可能是多物质相互作用、共同参与的过程。即然如此,腺苷是否参与了睡眠剥夺的快速抗抑郁过程呢?在此过程中,腺苷在不同脑区的含量是否有所变化呢?它与单胺递质的变化情况有何关系?目前尚无这方面的报道。本研究拟通过对慢性应激抑郁模型大鼠进行连续72小时快眼动睡眠剥夺(rapid eye movement sleep deprivation,REMSD)观察大鼠不同脑区单胺类神经递质以及腺苷、肌苷含量的改变,旨在探讨腺苷在睡眠剥夺快速抗抑郁起效机制中可能的作用。
     目的:观察睡眠剥夺对慢性应激抑郁模型大鼠不同脑区组织匀浆液中单胺递质及腺苷、肌苷含量的影响。
     材料和方法:实验动物为Sprague Dawley 2-3月龄雄性大鼠,随机分为正常对照组,抑郁模型组,抑郁模型+72小时快眼动睡眠剥夺组(以下称REMSD组),抑郁模型组+72小时大平台对照组(以下称大平台对照组),每组8只。应激造模采用慢性轻度不可预见性应激(chronic mild unpredicted stress, CMUS)和分养两种经典模型结合的方式来建立抑郁模型,REMSD组采用小平台水环境法,用大平台水环境做对照,排除水环境的影响。采用强迫游泳的方法记录大鼠在24℃-25℃水温中连续5min强迫游泳的不动时间,观察大鼠抑郁行为及情绪的变化;采用高效液相色谱仪紫外检测器(high-performance liquid chromatography with Photodiode Array Detector,HPLC-PAD)检测大鼠海马、下丘脑、纹状体脑区匀浆液中腺苷(adenosine)、肌苷(inosine)含量的变化,采用高效液相色谱仪-荧光检测器(high-performance liquid chromatography with fluorescence detection,HPLC-FLD)检测大鼠海马、下丘脑、纹状体脑区单胺类神经递质的含量。实验结果用EXCEL 2003和SPSS 13.0统计软件进行分析处理。结果以均数±标准误(X±SE)表示,采用单因素方差分析(ANOVA)和t检验(T-test)进行组间均数比较,P<0.05为差异显著。
     结果:1.经过21天慢性应激后,抑郁模型组与REMSD组大鼠5min强迫游泳的不动时间与应激前相比显著延长;抑郁模型大鼠经过72小时REMSD后5min强迫游泳的不动时间显著减少;而大平台对照组大鼠经过21天慢性应激后5min强迫游泳的不动时间与应激前相比差别却无显著性(造模失败),经过72小时大平台水环境处理后大鼠5min强迫游泳的不动时间与慢性应激后相比差别依旧无显著性。
     2.正常对照组海马去甲肾上腺素(norepinephrine, NE)含量为(0.7854±0.2230)ng/mg,与抑郁模型组海马NE含量(0.7039±0.2256)ng/mg相比差异不显著(P﹥0.05),REMSD组海马NE含量(0.9589±0.2056)ng/mg显著高于抑郁模型组(P﹤0.05);正常对照组海马5-羟色胺(Serotonin, 5-HT)含量为(0.2502±0.1253)ng/mg,抑郁模型组海马5-HT含量(0.1562±0.0696)ng/mg与之相比显著减少(P﹤0.05), REMSD组海马5-HT含量(0.3903±0.0996)ng/mg与抑郁模型组相比显著增高,差别有极显著性(P﹤0.001);利用HPLC-FLD未能检测出海马多巴胺(dopamine, DA)含量。
     3.正常对照组下丘脑NE含量为(4.7066±1.2337)ng/mg,与抑郁模型组下丘脑NE含量(4.3204±0.9312)ng/mg相比差异不显著(P﹥0.05),REMSD组下丘脑NE含量(4.9031±0.9962)ng/mg与抑郁模型组相比有一定程度的升高,但无显著性差异;正常对照组下丘脑5-HT含量为(0.4850±0.0878)ng/mg,抑郁模型组含量(0.3350±0.1923)ng/mg与之相比有一定程度的减少,但无显著性差异,REMSD组下丘脑5-HT含量为(0.7088±0.2903)ng/mg与抑郁模型组相比显著增高(P﹤0.01);利用HPLC-FLD仅能检测到正常对照组下丘脑的DA含量(3.8347±2.3783)ng/mg,其它几组未检测出。
     4.利用HPLC-FLD未能检测出各组纹状体脑区NE的含量;正常对照组纹状体脑区5-HT含量为(0.4612±0.3313)ng/mg, REMSD组为(0.3474±0.1677)ng/mg,两者相比差别无显著性(P﹥0.05),利用HPLC-FLD未能检测出抑郁模型组纹状体脑区5-HT的含量;正常对照组纹状体DA含量为(10.6081±2.8886)ng/mg,抑郁模型组为(10.3086±0.3029)ng/mg,与正常对照组相比差别无显著性(P﹥0.05),REMSD组纹状体DA含量为(15.3682±2.6326)ng/mg,较抑郁模型组显著增高,差别有极显著性(P=0.000)。
     5.正常对照组海马腺苷含量为(138.7945±27.1076)ng/mg,抑郁模型组含量(101.3403±28.0018)ng/mg与之相比显著减少(P﹤0.05), REMSD组海马腺苷含量为(69.3919±9.7863)ng/mg,与抑郁模型组相比亦显著减少(P﹤0.05);正常对照组海马肌苷含量为(25.5273±6.6599)ng/mg,抑郁模型组含量(17.9310±5.5740)ng/mg与之相比显著减少(P﹤0.05),REMSD组海马肌苷含量(10.0350±1.5874)ng/mg与抑郁模型组相比亦显著减少(P﹤0.05)。
     6.正常对照组下丘脑腺苷含量为(96.6095±30.0754)ng/mg,抑郁模型组含量(64.3065±19.4130)ng/mg与之相比显著减少(P﹤0.05),REMSD组下丘脑腺苷含量(34.6534±6.0269)ng/mg与抑郁模型组相比亦显著减少(P﹤0.01);正常对照组下丘脑肌苷含量为(52.6599±13.1163)ng/mg,抑郁模型组含量(37.9938±3.7118)ng/mg与之比较显著减少(P﹤0.05),REMSD组下丘脑肌苷含量(27.6484±6.7490)ng/mg与抑郁模型组相比亦显著减少(P﹤0.01)。
     7.正常对照组纹状体腺苷含量为(180.7181±36.0231)ng/mg,抑郁模型组含量(137.0903±25.4030)ng/mg与之相比显著减少(P﹤0.05),REMSD组下丘脑腺苷含量(143.6780±43.0931)ng/mg与抑郁模型组相比差别不显著(P﹥0.05);正常对照组大鼠纹状体肌苷含量为(27.2072±6.2801)ng/mg,抑郁模型组含量(21.7120±5.1758)ng/mg与之相比有一定程度减少,但无显著性差异(P=0.077),REMSD组纹状体肌苷含量(13.8737±2.6891)ng/mg与抑郁模型组相比显著减少(P﹤0.01)。
     结论:1.72小时REMSD可以明显改善慢性轻度不可预见性应激引起的大鼠抑郁样行为;
     2.海马部位5-HT和NE含量的增高可能在REMSD快速抗抑郁过程中起着重要的作用;
     3.下丘脑部位5-HT含量的增高可能在REMSD快速抗抑郁过程中起一定的作用,但下丘脑NE神经传递可能在REMSD的抗抑郁过程中不起主要作用;
     4.海马部位和下丘脑部位的腺苷含量变化可能参与了REMSD的抗抑郁过程。上述结果提示:REMSD可以逆转CMUS抑郁模型大鼠的抑郁样行为,其快速抗抑郁作用可能与增强海马及下丘脑部位的5-HT神经传递有关,腺苷可能参与了REMSD的抗抑郁过程。
Backgrounds and Objective: Adenosine as a neuromodulator can modulate some neurotransmitters by integrating with adenosine receptors. On the other hand, adenosine is also thought to be a sleep factor.At present, a few studies indicate that adenosine and its receptors have some relations with the process of depression and antidepressant. It is known that sleep deprivation has an antidepressant-like effect. But up to now, the mechanisms of the acute antidepressant effect of sleep deprivation have not been clarified.Most of previous studies focused mainly on monoamine neurotransmitter systems. Some interactional factors may take part in this progress,we think. Is adenosine involved in sleep deprivation? Whether the concentration of adenosine in different encephalic regions change or not during the process? What are the relations between the adenosine and the monoamine neurotransmitters? There are questions remained at present.The current study is designed to investigate the effects of 72-hour REM (rapid eye movement) sleep deprivation on monoamines and adenosine in rats treated with chronic mild unpredicted stresses.
     Materials and Methods: Sprague-Dawley rats were divided into four groups randomly: 1) normal control group, 2)the depression-model group,3)depression-model +sleep deprivation group,4)depression-model +72 hours tank control group. Two classical models were adopted to build depression-model,one is chronic mild unpredicted stresses,and the other is sub-raising. The REMSD group used a small platform water environment, in order to remove the influence of water environment, a big platform was used as a control condition. Using the forced swimming test observe the change of the duration of immobility of rats which was immersed in the water of 25℃temperature for 5 min; using the high-performance liquid chromatography with Photodiode Array Detector detect the concentration of adenosine and inosine in hippocampus, hypothalamus and striatum; using the high-performance liquid chromatography with fluorescence detection detect concentration of monoamines. Excel 2003 and SPSS 13.0 statistical software were used for the analysis.
     Results:1)After chronic mild unpredicted stresses, the duration of immobility of rats increased in the groups which were adopted the treatment,corresponding,it decreased in the REMSD group after 72h rapid eye movement sleep deprivation.2)5-HT and NE levels were found to have significant differences in the hippocampus or hypothalamus among the different groups .The concentration of dopamine in hippocampus and hypothalamus couldn’t be detected by HPLC-FLD. The concentration of dopamine in striatum of REMSD group is higher than that of depression-model group.3)Adenosine and inosine levels were found to have significant differences in hippocampus or hypothalamus among the different groups.
     Conclusions:
     1.72 hours of REMSD could significantly improve the depressive behavior induced by chronic mild unpredicted stresses;
     2.REMSD increases 5-HT and NE concentrations in Hippocampus, which play an important role in rapid antidepressant;
     3.5-HT in hypothalamus seems to be related to the process of REMSD antidepressant, but not norepinephrine;
     4.The change of adenosine in Hippocampus and Hypothalamus may take part in the REMSD antidepressant process,
     These results suggest that the REMSD reverses chronic mild unpredictable stresses-induced depressive behavior in rats. The enhanced 5-HT transportation by REMSD is one of the reasons in rapid antidepressant effect,and adenosine may take parts in this process.
引文
[1].The World Health Report 2001, Mental Health: New Understanding, New Hope WHO, Geneva, 2001.
    [2].王金荣,王德平,沈渔邨等.中国七个地区情感性精神障碍流行病学调查.中华精神科杂志,1998,5(31):75-76.
    [3].肖凉,季建林,张寿宝等.城市人口中抑郁症状及抑郁症的发病率调查分析.中国行为医学科学,2000,9:200-201
    [4].Simon GE. Social and economic burden of mood disorder. Biol Psychiatry. 2003 Aug 1, 54(3): 208-215.
    [5].Baghai TC, Moller HJ, Rupprecht R.Recent Progress in pharmacological and non-pharmacol- ogical treatment options of major depression. Current Pharmaceutical Design. 2006, 12(4): 503- 515.
    [6].Henner G, Frank S. Therapeutic use of sleep deprivation in depression. Sleep Meicine Review.2002, 6(5):361-377.
    [7].Wirz Justice. Brightening Depression. Science.2004, 303:467-469.
    [8].Elhwuegi AS. Central monoamines and their role in major depression.Prog Neuropsychopha- rmacol Biol Psychiatry. 2004, 28(3): 435–451.
    [9].Ursin R. Serotonin and sleep.Sleep Med Rev.2002, 6(1): 57-69.
    [10].Wilson S. Antidepressants and sleep: a qualitative review of the literature.Drugs. 2005, 65 (7): 927-947.
    [11].Bjorvatn B, Gronli J, Hamre F, et al. Effects of sleep deprivation on extracellular serotonin in hippocampus and frontal cortex of the rat.Neuroscience. 2002, 113 (2):323-330.
    [12].许崇涛,李慧,林凌云等.快眼动睡眠剥夺对抑郁模型大鼠自主活动及海马5-羟色胺含量的影响.中国行为医学科学.2004,13(4):381-383.
    [13].Ressler KJ, Nemeroff CB. Role of norepinephrine in the pathophysiology and treatment of mood disorders. Biol Psychiatry. 1999 Nov 1; 46(9): 1219-1233.
    [14].Alan F.Schatzeberg, Joseph J.Shildkraut. Recent studies on norepinephrine systems in mood disorders. Psychopharmacology,The fourth generation of progress.2000,31:325-331
    [15].Basheer R, Magner M, McCarley RW et al. REM sleep deprivation increases the levels of tyrosine hydroxylase and norepinephrine transporter mRNA in the locus coeruleus. BrainRes Mol Brain Res. 1998,57(2): 235-240.
    [16].Asberg M, Wagner A. Biochemical effects of antidepressant treatment-studies of monoamine metabolites in cerebrospinal fluid and platelet [3H]imipramine binding. Ciba Found Symp. 1986, 123: 57-83.
    [17].Post RM, Gerner RH, Carman JS. Effects of a dopamine agonist piribedil in depressed patients: relationship of pretreatment homovanillic acid to antidepressant response. Arch Gen Psychiatry. 1978 May; 35(5): 609-15.
    [18].Gerner RH, Post RM, Gillin JC. Biological and behavioral effects of one night’s sleep deprivation in depressed patients and normals. Journal of Psychiatric Research 1979,(15): 21-40.
    [19].Benedetti F, Barbini B, Campori E. Dopamine agonist amineptine prevents the antidepressant effect of sleep deprivation. Psychiatry Res. 1996 Dec 20, 65(3): 179-84.
    [20].Benedetti F, Campori E, Barbini B. Dopaminergic augmentation of sleep deprivation effects in bipolar depression. Psychiatry Res. 2001 Nov 30; 104(3): 239-46.
    [21].王永中,奚涛.中枢神经系统腺苷受体.国外医学,生理,病理科学与临床分册.2002,22(5):490-493.
    [22].刘大志,朱兴族.腺苷在脑缺血过程中的双重作用.生命科学.2005,17(3):227-230.
    [23].Kaster MP, Rosa AO, Rosso MM. Adenosine administration produces an antidepressant-like effect in mice: evidence for the involvement of A1 and A2a receptors. Neurosci. Lett. 2004, 355 (1-2):21-24.
    [24].EI Yacoubi M, Ledent C, Parmentier M et al. Adenosine A2a receptor antagonists are potential antidepressants: evidence based on pharmacology and A2a eceptor knockout mice. Br. J. Pharmacol. 2001, 134 (1): 68-77.
    [25].Van Calker D and Biber K. The role of glial adenosine receptors in neural resilience and the neurobiology of mood disorders. Neurochem Res. 2005, 30(10):1205–1217.
    [26].Lopes LV,Cunha RA, Kull B, et,al.Adenosine A2a receptor facilitation of hippocampal synaptic transmission is dependent on tonic A1 receptor inhibition. Neuroscience. 2002, (112) :319– 329.
    [27].Rebola N, Rodrigues RJ, Lopes LV,et al.Adenosine A1 and A2a receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rathippocampus. Neuroscience. 2005, 133(1):79-83.
    [28].许晶,李晓秋.慢性应激抑郁模型的建立及其评价.中国行为医学科学,2003,12(1):14-17.
    [29].Kim H,Whang WW,Kim HT.Expression of neuropeptide Y and eholeeystokinin in the rat brain by chronic mild stress.Brain Res.2003 Sep 5:983(l-2):201-8.
    [30].Michael J Detke,Irwin Lucki.Detection of serotonergic and noradrenergic antidepressants in the rat forced swimming test: the effects of water depth. Behavioural Brain Research.1996,73 43-46.
    [31].Faustino Lopez-Rodriguez,Charles Wilson,Nigel Maidmentet et al.Extracellular Serotonin in the Rat Hippocampus during REM Sleep Deprivation. Sleep Researeh Online 2003,5(3):115-122.
    [32].林凌云,李慧,许崇涛.HPLC-荧光检测法测定大鼠脑组织中单胺类神经递质及相关物质.华西药学杂志,2007,22(5):557-559
    [33].MadePalli KL , Trichur RR.An isocratic assay for norepinephrine , dopamine ,5-hydroxytryptamine using their native fluorescence by high-performance liquid chromatography with fluorescence detection in discrete brain areas of rat.Analytical Biochemistry.1997,246:166-170.
    [34].刘师莲,张兆莲,刘贤锡等.大鼠脑组织单胺类递质及其代谢产物的检测方法研究.山东大学学报(医学版),2002,40(5):472-473.
    [35].刘艳,罗祖明,叶丽川等.局灶性脑缺血再灌注后脑腺苷含量和烯醇化酶的动态变化.中国临床康复,2004,8(10):1863-1865.
    [36].Cuello AC.Brain microdissection techniques.International Brain research organization. 1983,66-127.
    [37].Steffen V,Vizuete ML,Machado A et al.The effect of a vitamine-deficient on amino acid levels in the substantia nigra,striatum and hippocampus of rats.Life Science,1994,54:375-379.
    [38].Pariante CM. Depression, stress and the adrenal axis. J Neuroendocrinol, 2003,15(8): 811-812.
    [39].Nestler EJ, Gould E, Manji H. Preclinical models: status of basic research in depression. Biol Psychiatry,2002 Sep 15; 52(6): 503-528.
    [40].李晓秋,许晶.抑郁动物模型的研究进展.中华精神科杂志,2002,35(3):184-186.
    [41].Davood F,Nazanin M.Antidepressant-like effect of harmane and otherβ-carbolines in the mouse forced swiming test.Europsychopharmacology,2006,16:324-328
    [42].胡靖,付宝忠.三环类药物及人参皂甙抗抑郁作用的研究.黑龙江医学,2003,27(4): 268-269.
    [43].Youngblood BD,Zhou J,Smagin GN et al.Sleep deprivation by the“flower pot”technique and spatial reference memory.Physiol Behav,1997,61:249-256
    [44].Vincent C,Roger D,Porsolt et al.Early behavioral screening for antidepressants and anxiolytics.Drug development research,2006,67:729-742.
    [45].Pineyro G, Blier P. Autoregulation of Serotonin Neurons: Role in Antidepressant Drug Action.pharmarcological reviews,1999,51(3):534-591
    [46].Bier, Ward NM.Is there a role for 5-HT1A agonists in the treatment of depression?Biol Psychiatry,2003,53:193-203.
    [47].于频主编.系统解剖学第四版.人民卫生出版社.2001,357.
    [48].Rajkowska J.Depression:what we can learn from postmortem studies.Neurosci,2003,4:273 -284
    [49].Stockmeier CA.Involvement of serotonin indepression:evidence from postmortem and imaging studies of serotonin receptors and the serotonin transporter. Psychiatr Res, 2003,37(5):357-373
    [50].Pineyro G, Blier P. Autoregulation of Serotonin Neurons: Role in Antidepressant Drug Action.pharmarcological reviews,1999,51(3):534-591.
    [51].Lopez-Rodriguez F, Wilson CL, Maidment NT, et al. Total sleep deprivation increases extracellular serotonin in the rat hippocampus. Neuroscience. 2003;121(2):523-530
    [52].Hensler JG.Regulation of 5-HT1A receptor function in brain following agonist or antidepressant administration.Life Sci,2003,72:1665-1682
    [53].Marazziti D,Baroni S,Masala I et al.Correltion between plateletalpha(2)-adrenoreceptors and system severity in major depression.Neuropsycholibioligy,2001,44:122-125
    [54].Invernizzi RW,Garattini S.Role of presynaptic alpha2-adrenoceptoes in antidepressant action: recent findings from microdialysis studies.Prog Neuro Psychopharmacol Biol Psychiatry, 2004,28(5):819-827
    [55].Rosel P, Arranz B, San L et al. Altered 5-HT(2A) binding sites and second messengerinositol trisphosphate (IP(3)) levels in hippocampus but not in frontal cortex from depressed suicide victims. Psychiatry Res. 2000; 99(3): 173-181.
    [56].Mongeau R, Blier P, de-Montigny C. The serotonergic and noradrenergic systems of the hippocampus: their interactions and the effects of antidepressant treatments. Brain Res Bra. 1997 Apr; 23(3): 145-149.
    [57].Alanko L,Urrila A,Stenberg D et al.Adenosine,energy metabolism,and sleep.Scientific World Journal.2003,20:790-798
    [58].Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus.Neurosci 1996,16:2365-2372.
    [59].EI Yacoubi M, Ledent C, Parmentier M et al. Adenosine A2a receptor antagonists are potential antidepressants: evidence based on pharmacology and A2a receptor knockout mice. Br. J. Pharmacol. 2001, 134 (1): 68-77.
    [60].Shinsuke S,Hitoshi M,Takashi K et al.Expression pattern of FOS in orexin neurous during sleep induced by an adenosine A2a receptor agonist.Behavioural Brain Reserash, 2006,170:277-286
    [61].Okada M, Nutt DJ, Murakami T et al. Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release.The Journal of Neuroscience. 2001, 21(2):628-640.
    [62].孙万春,朱兴族.基底神经节中多巴胺和腺苷受体二聚化及其药理学意义.生命科学,2004,16(4)193-197.
    [63].Ticho SR, Radulovacki M. Role of adenosine in sleep and temperature regulation in the preoptic area of rats. Pharmacol. Biochem Behav,1991,40: 33–40.
    [64].Huang ZL,Qu WM,Eguchi N et al.Adenosine A2a,but A1,receptors mediate the arousal effect of the caffeine.Nat neurosci,2005,19:1-2.
    [65].Retey JV,Adam A,Jung HH et al.A functional genetic variation of adenosine deaminase affects the duration and intensity of deep in humans.Proc Natl Sci,2005,102:15676-15681.
    [66].S Ferre,Z L Huang,S R Goldberg et al.Adenosine A2a receptors in ventral striatum hypothalamus and nociceptive circuitry implication for drug addiction,sleep and pain.Progress in neurobiology,2007,10:1016-1032.
    [67].傅昌芳,洪宗元.前列腺素D2的睡眠调节作用.中国临床药理学与治疗学,2005,10(12): 1321-1325
    [68].Basheer R, Strecker RE, Thakkar MM, et al. Adenosine and sleep-wake regulation. Prog Neurobiol.2004, 73(6):379-396.
    [69].Porkka-Heiskanen T,Strecher RE,Mccarley RW.Brain sitespecificity of extracellular adenosine concentration changes during sleep deprication and spontaneous sleep:an in vivo microdialysis study.Neuroscience,2000,99:507-517.
    [70].Kobayashi T,Washiyama K,Ikeda K.Inhibition of G protein-activated inwardly rectifying K+ channels by the antidepressant paroxetine.Pharmacol Sci,2006,102(3):278-287
    [71].Williams JA,vincent SR,Reiner PB.Nitris oxide production in rat thalamus changes with behavioral state,local depolarization,and brain-stem stimulation.Neurosci,1997,17,420-427
    [72].Kalinchuk AV,Hokkanen M,Stenberg D et al.The role of nitis oxide in regulation of sleep need.Sleep,2003,26:A32
    [73].Baldwin SA,Mackey JR,Cass CE et al.Nucleoside transporters:molecular biology and implications for therapeutic development.Mol.Med.Today,1999,5,216-224
    [74].Maroslaw M,John E,Elena V et al.Enzy of adenosine metabolism in the brain:diurnal rhythm and the effect of sleep deprivation.Neurochemistry,2003,85:348-357
    [75].Zeitzer JM,Maidment NT,Behnke EJ et al.Extracellular adenosine in the human brain during sleep deprivation:an in vivo microdialysis study.Sleep,2006,29(4): 455-461.
    [76].Giovanni Zamboni,Christine AJ,Rosa Domeniconi et al. Specific changes in cerebral second messenger accumulation underline REM sleep inhibition induced by the exposure to low ambient temperature.Brain Research,2004,10(22),62-70.
    [1].刘大志,朱兴族.腺苷在脑缺血过程中的双重作用.生命科学.2005,17(3):227-230.
    [2].Landolt H-P, Sleep homeostasis:A role for adenosine in humans,Biochem Pharmacol. 2008,24(2):9719-9729.
    [3].Basheer R, Strecker RE, Thakkar MM, et al. Adenosine and sleep-wake regulation. Prog Neurobiol.2004, 73(6):379-396.
    [4].Meghji p,Adenosine production and metabolism.Academic Press,1991:25-41.
    [5].Fredholm BB,Ljzerman AP,Jacobson KA et al.Intemational union of pharmacology.XXV. nomenclature and classification of adenosine receptors.Pharmacol Rev 2001,53:527-552.
    [6].王永中,奚涛.中枢神经系统腺苷受体.国外医学,生理,病理科学与临床分册.2002,22(5):490-493.
    [7].Hayaishi O,Urade Y,Huang ZL et al.Genes for prostaglandin d synthase and receptor as well as adenosine A2a receptor are involved in the homeostatic regulation of NREM sleep.Arch Ital Biol 2004,142:533-539.
    [8].Zhi-li Huang,Yoshihiro Urade,Osamu Haysishi.Prostaglandins and adenosine in the regulation of sleep and wakefulness.Neursciences,2007,7:1-7.
    [9].Porkka-Heiskanen T,Strecher RE,Mccarley RW.Brain sitespecificity of extracellularadenosine concentration changes during sleep deprication and spontaneous sleep:an in vivo microdialysis study.Neuroscience,2000,99:507-517.
    [10].Alanko L,Heiskanen S,Stenberg D et al.Adenosine kinade and 5-nucleotidase activity after prolong wakefulness in the cortex and the basal forebrain of rat.Neurochem, 2003,42: 449-54
    [11].Alanko L,Heiskanen S,Stenberg D et al.Nitrobezylathioinosine(NBMPR) binding and nucleoside transpoter ENT1 mRNA expression after prolonged and recovery aleep in the cortex and basal forebrain.Sleep Res,200312,299-304
    [12].Kalinchuk AV,Hokkanen M,Stenberg D et al.The role of nitis oxide in regulation of sleep need.Sleep,2003,26:A32
    [13].M Schepens,V matto,D Stenberg et al.Glutamatergic stimulation of the basal forebrain elevates extracellular adenosine and increase the subsequent sleep. Neurosci,2007,147: 811-823
    [14].Benington LH,kodali SK,Heller HC.Stimulation of A1 adenosine receptors mimics the electroencephalographic effects of sleep deprivation.Brain Res,1995,692:79-85.
    [15].Basheer R, Arrigoni E, Thatte HS, Greene RW et al. Adenosine induces inositol 1,4,5-trisphosphate receptor-mediated mobilization of intracellular calcium stores in basal forebrain cholinergic neurons.Neurosci 2002,22:7680-7686.
    [16].Thakkar MM, Winston S, McCarley RW. A1 receptor and adenosinergic homeostatic regulation of sleep-wakefulness: effects of antisense to the A1 receptor in the cholinergic basal forebrain. Neurosci 2003, 23:4278-4287.
    [17].Blanco-Centurion C, Xu M, Murillo-Rodriguez E et al.Adenosine and sleep homeostasis in the basal forebrain. Neurosci 2006,26:8092-8100.
    [18].Urade Y,Eguchi N,Zhi-Li Huang et al.Sleep regulation in adenosine A2a receptor-deficient mice.Neurology,2003,61:S94-S96.
    [19].Hong ZY,Eguchi N,Hayaishi O et al.An adenosine A receptor agonist induces sleep by increasing GABA release in the tuberomammillary necleus to inhibit histaminergic systems in rats.Neurochem,2005,92:1542-1549.
    [20].Hitoshi M,Shinsuke S,Seiji N et al.Expression pattern of FOS in orexin neurons during sleep induced by an adenosine A2a receptor agonist. Behavioural brain research,2006, 170:277-286.
    [21]Fredholm BB,Battig K,Holmen J et al.Action of caffeine in the brain with special reference to factors that contribute to its widespread use.Pharmacol Rev,1999,51:83-133.
    [22]Huang ZL,Qu WM,Chen JF et al.Asenosine A2a, but not A1receptors mediate the arousal effect of caffeine.Nat Neurosci,2005,8:858-859.
    [23].Ledent C,Costentin J,Vaugeois JM et al.Caffeine reduces hypnotic effects of alcohol through adenosine A2a receptor blockade. Neuropham,2003,45:977-985.
    [24].Stenberg D,Litonius E,Halldner L et al.Sleep and homeostatic regulation in mice lacking the adenosine A1 receptor.Sleep Res,2003,12:283-290.
    [25].Eguchi N,Sakata M,Chen JF et al.Lack of sleep rebound after sleep deprivation in adenosine A2a receptor-deficient mice.Society for Neuroscience,2003,22:616-621.
    [1].冯飞,许崇涛.微透析技术及其在脑组织中的应用.汕头大学医学院学报,2008,21(1):55-57.
    [2].Leith NJ,Barrett RJ. Effect of chronic amphetamine or reserpine on selfstimulation responding:animal model of depression.Psychophamacology,1980,72(1):9-15.
    [3].冯飞,许崇涛.利血平抑郁模型的剂量探讨.汕头大学医学院学报,2007,20(4):223-225.
    [4].Ponzio F, Achilli G. Depletion of recovery of neuronal monoamine storage in rats of different ages treated with reserpine.Neurobiology of aging,1984, 5:101-104.
    [5].Dinesh D,Amandeep S.Antidepressant-like activity of Glycyrrhiza glabra L in mouse models of immobility tests.Biological Psychiatry,2006,30:449-454
    [6].Davood F,Nazanin M.Antidepressant-like effect of harmane and otherβ-carbolines in the mouse forced swim test.Europsychopharmacology,2006,16:324-328
    [7].Eric A,Dacid Q,Yan L et al.Depressive behavior in mice due to immune stimulation is accompanied by reduced neural activity in brain regions involved in positively motivated behavior.Biol Psychiatry,2006,60:803-811.
    [8].Rebola N, Rodrigues RJ, Lopes LV,et al.Adenosine A1 and A2a receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience.2005,133(1):79-83.
    [9].Okada M, Nutt DJ, Murakami T et al. Adenosine receptor subtypes modulate two major functional pathways for hippocampal serotonin release.The Journal of Neuroscience. 2001, 21(2):628-640.
    [10].Elhwuegi AS. Central monoamines and their role in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2004, 28(3): 435-451.
    [11].张金玲,许崇涛.不同剂量腺苷对大鼠自发活动的影响.汕头大学医学院学报,2006,(19):211-213.
    [12].黄庆军,郝新玲,Thomas R.Minor.脑内白介素-1β介导利血平引起的大鼠行为性抑郁.中国行为医学科学,2003,5(12):491-492
    [13].Huang Qingjun,Hao Xinling,Thomas R Minor. Adenosine A2a receptor mediates reserpine-induced depression in rats.心理学报2002,35(1)106-111.
    [14].匡培根,石晶.缺血再灌注时大鼠脑细胞外液中腺苷含量的变化.中华神经科杂志1997,30(3):165-168.
    [15].于海明,王百忍,鞠躬等.大鼠侧脑室置管方法的改良.神经解剖学杂志,2005,21(2)207-211.
    [16].任华丽,王燕,陈宝元.腺苷与阻塞性睡眠呼吸暂停综合征.国外医学呼吸系统分册2003,23(2):73-75.
    [17].Tetsuya Okada,Zhi-Li Huang,Naomi Eguchi et al.Dominant localization of adenosine deaminase in leptomeninges and involvement of the enzyme in sleep. Biochemical and Biophysical Research Communications 2003,312:29-34.
    [18].王永中,奚涛.中枢神经系统腺苷受体.国外医学,生理,病理科学与临床分册.2002,22(5):490-493.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700