抗鸡传染性支气管炎病毒单链抗体原核表达质粒的构建及其间接ELISA筛选方法的建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单链抗体(single-chain variable fragment, scFv)是由一条人工合成的亲水性的弹性肽链连接物将抗体的重链可变区和轻链可变区连接形成的单链蛋白,具有与天然抗体中的抗原结合位点相似的结构,保持了与天然抗体大致相似的特异性和抗原结合力。我国是一个养鸡大国,鸡的各类疾病,尤其是病毒性疾病严重危害着养鸡业的发展,降低了经济效益,甚至造成巨大的经济损失。为此,开发出免疫保护率高、安全性好、成本低廉、适于商业化生产抗病毒药物是非常重要的应对措施。单链抗体具有分子量小、便于经济有效地生产、易于基因工程改造等特点,因此比完整长度的单克隆抗体具有更大的优势和发展前景。在国内外已报道的几十种抗体片段分子中,单链抗体占35%,是目前研究较多、发展较快的重组抗体之一。然而,相较于抗人类病毒的单链抗体,抗动物病毒单链抗体的研究相对匮乏,而针对禽类病毒的单链抗体研究更是少之又少。本研究利用pOPE101-XP载体系统,构建了抗鸡传染性支气管炎病毒(IBV)单链抗体基因的原核表达质粒,并通过反应条件优化,建立了筛选单链抗体的间接酶联免疫吸附试验(ELISA),主要分为以下两部分内容:
     第一部分:
     直接提取免疫鸡脾脏总RNA,采用RT-PCR方法扩增抗IBV单链抗体cDNA第一链,设计特异性引物,采用PCR方法扩增出抗IBV单链抗体的VH和VL基因,利用重叠延伸PCR方法将VH和VL通过一条Linker连接成VH-Linker-VL,构建scFv。将scFv基因克隆于表达载体pOPE101-XP,构建重组质粒pOPE101-XP-scFv,双酶切鉴定。转化感受态细胞E.coli JM109(DE3),构建pOPE101-XP-scFv/JM109(DE3),菌落PCR鉴定为阳性的克隆送检测序并作序列分析。挑选阳性克隆经IPTG诱导表达,提取周质腔可溶性scFv,SDS-PAGE检验表达结果。测序结果显示成功构建抗鸡传染性支气管炎病毒单链抗体,SDS-PAGE证明可溶性单链抗体表达成功。
     第二部分:
     将鸡传染性支气管炎病毒M41株接种SPF鸡胚进行病毒增殖,收获的尿囊液通过透析袋浓缩后,用超速离心和蔗糖密度梯度离心方法对病毒进行纯化。SDS-PAGE和Western blotting鉴定病毒后,紫外分光光度法测病毒浓度以及待测样品中scFv表达产物的浓度。
     用提纯的鸡传染性支气管炎病毒M41株作为抗原包被ELISA板,筛选与之有特异性结合的周质腔提取物中的scFv。通过反应条件的优化建立筛选抗鸡传染性支气管炎病毒单链抗体的间接ELlSA方法。本实验确定的间接ELISA各项反应参数是:包被抗原1:20稀释(61.36μg/mL),4℃包被过夜;2%脱脂奶粉37℃封闭1h;含可溶性单链抗体的待测样品1:100稀释(142.7μg/mL),37℃作用2h;MYC鼠单抗1:2000稀释,37℃作用2h;羊抗鼠抗抗体1:4000稀释,37℃作用1h。敏感性实验显示样品中的scFv浓度的最低检出量为17.83μg/mL;特异性实验显示筛选出的scFv只与IBV发生特异性结合;重复性实验的板内变异系数为2.56%,板间变异系数为2.78%,表明该筛选方法比较稳定。
Single-chain fragments variable (scFvs) contain the complete antigen binding site, which includes the variable heavy (VH) and variable light (VL) domains, of an antibody. The VH domain is linked to a VL domain by an introduced flexible polypeptide Linker. An scFv is capable of binding its target antigens with an affinity similar to that of the parent monoclonal antibody. China is a large chicken-farming country, all kinds of chicken diseases, especially viral diseases seriously affect the prospects of chicken industry, reduce the economic benefit and even cause huge economic losses. Therefore, it is of very importance to develop antiviral drugs which have ideal immunity effect, good safety and low cost. ScFvs are becoming popular therapeutic alternatives to full length monoclonal antibodies since they are smaller, most of them can be produced more economically and are easily amendable to genetic manipulation. Of the dozens of antibody fragments that have entered clinical studies at home and abroad, 35 percent are scFvs. It is one of the most rapidly developing recombinant antibodies. However, compared with human source scFvs, animal source scFvs are barely studied, and poultry scFvs research are even much rarer. This study used pOPE101-XP as vector, obtained anti-Avian Infectious Bronchitis Virus(IBV) scFvs, and established an indirect enzyme-linked immuno sorbent assay (ELISA) for anti-IBV scFv screening.
     1. Construction and prokaryotic expression of anti-IBV scFv.
     Chicken spleen mRNA was extracted after immunization by IBV H120. VH and VL genes were amplified by RT-PCR and PCR. ScFv gene was constructed by VH and VL chains via a Linker like VH-Linker-VL. The recombinant expression plasmid was constructed by inserting scFv into vector pOPE101-XP and was proved by sequencing. SDS-PAGE was used for analysis of the soluble scFv from periplasmic space after induced by IPTG. Sequencing result showed that anti-IBV scFv was successfully constructed. SDS-PAGE showed soluble scFv was successfully expressed.
     2. Amplification and purification of IBV-M41, and establishment of an indirect ELISA for anti-IBV scFv screening.
     IBV-M41 isolate was inoculated into 10-day SPF chicken embryos. The allantoic fluid (AAF) which was concentrated through dialysis bag was purified after ultracentrifugation and gradient centrifugation. The conclusion was identified by SDS-PAGE. Ultraviolet spectrophotometry was used to measure the concentration of IBV-M41. The concentration of anti-IBV scFv was detected by indirect ELISA.
     Purified IBV-M41 was used to immunize mice and coat ELISA plate in order to screen the specifically binding scFvs. An indirect ELISA screening method was established by optimizing the reaction condition: IBV-M41 was diluted with 20 fold (61.36μg/mL) as the coating antibody, coating in 4℃overnight; blocking in 37℃for 1 h by 2% skim milk powder; soluble scFv was diluted with 100 fold (142.7μg/mL), reacting in 37℃for 2 h; Myc-Tag Mouse mAb was diluted with 2000 fold, reacting in 37℃for 2 h; Peroxidase-conjugated Affinipure Goat Anti-Mouse IgG was diluted with 4000 fold, reacting in 37℃for 1 h. The lower limit of detectability was 17.83μg/mL confirmed by the sensitivity test. The scFv only reacted with IBV confirmed by specificity test. Repetitive experiments (coefficient of variation was 2.56 %, 2.78 %) showed stability of the method.
引文
[1]尹凤阁.鸡传染性支气管炎[J].河南畜牧兽医, 1992, 13(2): 1-4.
    [2] Cavangh D., Naqi S. A. Infectious Brochitis[M]. In: Saif A. M., Fadly Y. M., McDougald L. R., Swayne D. E. Eds. Diseases of Poultry (11th Eds.), Ames: Iowa State University Press, Ames, IA, USA, PP, 2003: 101-119.
    [3] Cavanagh D. Coronavirus Avian Infectious Bronchitis Virus[J]. Vet Res, 2007, 38: 281-297.
    [4] Schalm O. W., Beach J. R. Cultural Requirements of the Fowl-Coryza Bacillus[J]. J Bacteriol, 1936, 31(2): 161-169.
    [5] Winterfield R.W., Hitchner S. B. Etiology of an Infectious Nephritis-nephrosis Syndrome of Chickens[J]. Am J Vet Res, 1962, 23: 1273-1279.
    [6] Saif Y. M., Fadly A. M., Glisson J. R., McDouald L. R., Nolan L. K. Infectious Brochitis[M]. Diseases of Poultry, 2008:100-121.
    [7] Cook J. K. A., Orbell S. J., and Huggins M. B. A Survey of the Presence of a New Infectious Bronchitis Virus Designated 4/91 (793B)[J]. Veterinary Record, 1996, 138(8): 178-180.
    [8] Cavanagh H. D., Mawdit T. K., Sha W. K., et a1. Towards the Rountine Application of Nucleicacid Technology for Avian Disease Diagnosis[J]. Acta Veterinaria Hungarica, 1997, 45(3): 281-298.
    [9] Igniatovic J., Gall I. L. Immune Responses to Structural Protein Infectious Bronchitis Virus[J]. Avian Pathology, 1995, 24: 313-332.
    [10]王锡祯,王泽华.鸡传染性支气管炎及其防治[M]. 2009.
    [11]王红宁,甘孟侯,王林川,等.禽传染性支气管炎(新变型)综合防治研究进展[J].中国家禽, 2003, 25(23): 49-50.
    [12] Boursnell M. E., Brown T. D., Foulds I. J., et al. Completion of the Sequence of the Coronavirus Avian Infectious Bronchitis Virus [J]. J Gen Virol, 1987, 68: 57-77.
    [13]陈萍,王红宁,胡慧琼,黄勇,柳萍.应用不连续密度梯度离心纯化禽传染性支气管炎冠状病毒[J].中国兽医杂志, 2007, 43(7): 26-27.
    [14]殷震,刘景华,方定一.动物病毒学[M]. 1997.
    [15] Boursnell M. E. G., Brown T. D. K., Skinner M. Completion of the Sequence of the Genome of the Coronavirus Avian Infectious Bronchitis Virus[M]. 1987.
    [16] Kustem J. G., Niestem H. G. M., Lenstra J. A., et a1. Phylogeny of Antigenic Variants of Avian Comonavirus IBV[J]. Virology, 1989, 169: 217-221.
    [17]武志强,杨奇伟,付朝阳,等.单抗ELISA在鸡传染支气管炎病毒型中的应用[J].中国畜禽传染病, 1997, 19(3):48-50.
    [18]刘娟.鸡传染性支气管炎研究进展[J].畜禽业, 2007(2): 8-9.
    [19]李建军.鸡肾型传染性支气管炎的流行特点与防治[J].禽病防治, 2006, 23(24): 28-29.
    [20]刘振湘.鸡传染性支气管炎的诊断及综合防治研究[J].江西农业学报, 2007(7): 76-78.
    [21]刘祥,刘金华.鸡传染性支气管炎病毒分子生物学研究进展[J].动物医学进展, 2004(5): 1-4.
    [22]齐新永,朱坤喜.肾病一肾炎型鸡传染性支气管炎的病理学研究[J].中国兽医科学, 2006, 36(1): 52-56.
    [23]李康然,梁梅芳,韦平,等.鸡传染性支气管炎病毒肾致病株的分离和鉴定[J].广西农学院学报, 1990, 9(1): 45-54.
    [24]李康然,韦平,梁梅芳.用气管环培养中和实验对鸡传染性支气管炎病毒进行血清定型[J].广西农学院学报, 1991, 10(3): l-6.
    [25]陈俊杰,陈萍.鸡传染性支气管炎分子生物学诊断研究[J].安徽农业科学, 2007, 35(16): 4859-4862.
    [26]徐晓静.鸡传染性支气管炎分子生物学研究进展[J].畜牧与饲料科学, 2005(2): 28-30.
    [27] McKinley E. T., Hilt D. A., Jackwood M. W. Avian Coronavirus Infectious Bronchitis Attenuated Live Vaccines Undergo Selection of Subpopulations and Mutations Following Vaccination[J]. Vaccine, 2008, 26(10): 1274-1284.
    [28]谢景伟,陈峰,谢青梅,马静云,毕英佐.鸡传染性支气管炎病毒分子流行病学研究进展[J].动物医学进展, 2008, 29(8): 75-78.
    [29] Grassi G., Kohn H., Dapas B., et al. Comparison between Recombinant Baculo and Adenoviral-vectors as Transfer System in Cardiovascular Cells[J]. Arch Virol, 2006, 151: 255-271.
    [30] K?hler G., Milstein C.Continuous Cultures of Fused Cells Secreting Antibody of Predefined Specificity[J]. Nature, 1975, 256(5517): 495-497.
    [31]陈小红,邹毅.单链抗体及其应用[J].实用医学杂志, 1999, 15(4) : 1-5.
    [32] Skerra A., Plückthun A. Assembly of a Functional Immunoglobulin Fv Fragment in Escherichia coli[J]. Science, 1988, 240(4855): 1038-1041.
    [33] Bird R. E., Hardaman K. D., Jacobson J.W., et al. Single Chain Antigen Binding Proteins[J]. Science, 1988, 240(4877): 423-426.
    [34] Nina E. Weisser, J. Christopher Hall. Applications of Single-chain Variable Fragment Antibodies in Therapeutics and Diagnostics[J]. Biotechnology Advances, 2009, 27: 502-520.
    [35] Gurdeep Singh Athwal. The Emergence of Antibody Fragments and Derivatives[J]. Biophama, 2009: 46-48.
    [36] Buchner J., Pastan I., Brinkmann U. A Method for Increasing the Yield of Properly Folded Recombinant Fusion Proteins: Single Chain Immunotoxins from Renaturation of Bacterial Inclusion Bodies[J]. Anal Biochem, 1992, 205(2): 263-270.
    [37] Gurdeep Singh Athwal. The Emergence of Antibody Fragments and Derivatives[J]. Biophama, 2009: 46-48.
    [38] Christoph E. Hagemeyer, Constantin von zur Muhlen, Dominik von Elverfeldt, et al. Single-chain Antibodies as Diagnostic Tools and Therapeutic Agents[J]. Intravascular Biology Meeting, 2008: 1012-1019.
    [39] Huston J. S., Levinson D., Mudgett-Hunter M., Tai M. S., Novotny J., Margolies M. N., et al. Protein Engineering of Antibody Binding Sites: Recovery of Specific Activity in an Anti-digoxin Single-chain Fv Analogue Produced in Escherichia coli[J]. Proc Natl Acad Sci USA, 1988, 85: 5879-5883.
    [40]徐佳,韩宗玺,杨光,等.抗鸡传染性支气管炎病毒核蛋白单链抗体的构建及初步鉴定[J].中国预防兽医学报, 2009, 31: 800-804.
    [41] Orlandi R., Gussow D.H., Jones P.T., et al. Cloning Immunoglobulin Variable Domains for Expression by the Polymerase Chain Reaction[J]. Proc Natl Acad Sci USA, 1989, 86(10): 3833-3837.
    [42] Froyen G., Hendrix D., Ronsse I., Fiten P., Martens E., Billiau A. Effect of VH and VL Consensus Sequence-specific Primers on the Binding and Neutralizing Potential of a Single-chain FV Directed towards HuIFN-gamma[J]. Mol Immunol, 1995, 32(7): 515-521.
    [43] Leisy D. J., Lewis T. D., Leong J. A., et al. Transduction of Cultured Fish Cells with Recombinant Baculovirus[J]. J Gen Virol, 2003, 84(5): 1173-1178.
    [44]王希良,黄云辉,朱锡华.噬菌体呈现技术在人抗体库中的研究策略[J].免疫学杂志, 2000, 4(16): 309-312.
    [45] Larrick J. W., Fty K E. PCR Amplification of Antibody Genes[J]. Methods: A companion to Methods in Enzymology, 1990, 2(2): 106-114.
    [46] Colcher D., Bird R., Roselli M., et al. In Vivo Tumor Targeting of a Recombinant Single Chain Antigen Binding Protein[J]. J Natl Cancer Inst, 1990, 82(14): 1191-1197.
    [47] Holmes D. S., Quigley M. A Rapid Boiling Method for the Preparation of Bacterial Plasmids [J]. Anal Biochem, 2005, 114(1): 193-197.
    [48] Holliger P., Hudson P. J. Engineered Antibody Fragments and the Rise of Single Domains[J]. Nat Biotechnol, 2005, 23 (9): 1126-1136.
    [49] Martin C., Rojas G., Mitchell J., Vincent K., Wu J., McCafferty J., et al. A Simple Vector System to Improve Performance and Utilisation of Recombinant Antibodies[J]. BMC Biotechnol, 2006, 6: 46.
    [50] Bradbury A. R. The Use of Phage Display in Neurobiology[J]. Curr Protoc Neurosci, 2010, Chapter 5: Unit 5.12.
    [51] Bratkovic T. Progress in Phage Display: Evolution of the Technique and Its Application[J]. CellMol Life Sci, 2010, 67(5): 749-767.
    [52] Naz R. K. Development of Genetically Engineered Human Sperm Immunocontraceptives[J]. J Reprod Immunol, 2009, 83(1-2): 145-150.
    [53] Hackel B., Huang D., Bubolz J., Wang X., Shusta E. Production of Soluble and Active Transferrin Receptor-targeting Single-chain Antibldy Usiing Saccharomyces Cerevisiae[J]. Pharm Res, 2006, 23: 790-797.
    [54]邓亮.单链抗体表达研究进展[J].实用医学杂志, 2009, 25(2): 321-322.
    [55] Ren F., Li B., Zhang N., Cao M., Dan W., Zhang S. Expression, Purification and Characterization of Anti-BAFF Antibody Secreted from the Yeast Pichia Pastoris[J]. Biotechnol Lett, 2008, 30: 1075-1080.
    [56] Bruenke J., Fischer B., Barbin K., Schreiter K., Wachter Y., Mahr K., et al. A Recombinant Bispecific Single-chain Fv Antibody against HLA Class II and FcgammaRIII (CD16) Triggers Effective Lysis of Lymphoma Cells[J]. Br J Haematol, 2004, 125: 167-179.
    [57] Mayfield S. P , Franklin S. E., Lerner R. A. Expression and Assembly of a Fully Active Antibody in Algae[J]. Proc Natl Acad Sci USA, 2003, 100: 438-442.
    [58] Makvandi-Nejad S., Mclean M., Hirama T., Almquist K., MacKenzie C., Hall J. Transgenic Tobacco Plants Expressing a Dimeric Single-chain Variable Fragment (scFv) Antibody Against Samonella Enterica Serotype Paratyphi B[J]. Transgenic Res, 2005, 14: 785-792.
    [59] Natsume A., Wakitani M., Yamane-Ohnuki N., Shoji-Hosaka E., Niwa R., Uchida K., et al. Ducose Removal from Complex-type Oligosaccharide Enhances the Antibody-dependent Cellular Cytotoxicity of Single-gene-encoded Bispecific Antibody Comprising of TwoSingle-chain Antibodies Linked to the Antibody Constant Region[J]. J Biochem, 2006, 140: 359-368.
    [60] Andersen D. C., Reilly E. D. Production Technologies for Monoclonal Antibodies and Their Fragments[J]. Curr Opin Biotechnol, 2004, 15: 456-462.
    [61]王弘,梁艳,杨金易,刘细霞,张宏斌,雷红涛,沈玉栋,孙远明.抗克伦特罗单链抗体表达载体的构建与鉴定[J].生物工程学报, 2008, 24(8): 1470-1474.
    [62] Wang H., Dai J., Li B., Fan K., Peng L., Zhang D., et al. Expression, purification, and Characterization of an Immunotoxin Containing a Humanized Anti-CD25 Single-chain Fragment Variable Antibody Fused to a Modified Trruncated Pseudomonas Exotoxin A[J]. Protein Expr Purif, 2008, 58: 140-147.
    [63] Chen C., Snedecor B., Nishihara J., Joly J., McFarland N., Anderson D., et al. High-level Accumulation of a Recombinant Antibody Fragment in the Periplasm of Escherichia coli Requires a Triple-mutant (degP prc spr) Host Strain[J]. Biotechnol Bioeng, 2004, 85: 463-473.
    [64] Gasser B., Mattanovich D. Antibody Production with Yeasts and Filamentous Fungi: on the Road to Large Scale[J]? Biotechnol Lett, 2007, 29: 201-212.
    [65] Eldin P., Pauza M. E., Hieda Y., et al. High-level Secretion of Two Antibody Single Chain Fv Fragments by Pichia Pastoris[J]. J Immunol Meth, 1997, 201(1): 67-75.
    [66] Ma J. K. C., Drake P. M. W., Chargelegue D., Obregon P., Prada A. Antibody Processing and Engineering in Plants, and New Strategies for Vaccine Production[J]. Vaccine, 2005, 23: 1814-1818.
    [67] Pujol M., Ramírez N. I., Ayala M., Gavilondo J. V., Valdés R., Rodríguez M., Brito J., Padilla S.,Gómez L., Reyes B., Peral R., Pérez M., et al. An Integral Approach towards a Practical Application for a Plant-made Monoclonal Antibody in Vaccine Purification[J]. Vaccine, 2005, 23: 1833-1837.
    [68] Gurdeep Singh Athwal. The Emergence of Antibody Fragments and Derivatives[J]. Biophama, 2009: 46-48.
    [69] Sapats S., Gould G., Trinidad L., et al. An ELISA for Detection of Infectious Bursal Disease Virus and Differentiation of Very Virulent Strains Based on Single Chain Recombinant Chicken Antibodies[J]. Avian Pathol, 2005, 34: 449-455.
    [70] Bhatia S., Gangil R., Gupta D. S., et al. Single-chain Fragment Variable Antibody against the Capsid Protein of Bovine Immunodeficiency Virus and Its Use in ELISA[J]. Journal of Virological, 2010, 167: 68-73.
    [71] Foord A. J., Muller J. D., Yu M., et al. Production and Application of Recombinant Antibodies to Foot-and-mouth Disease Virus Non-structural Protein 3ABC[J]. Immunol Methods, 2007, 321: 142-151.
    [72] Lu Z., Zhang X., Fu Y., et al. Expression of the Major Epitope Regions of 2C Integrated with the 3AB Non-structural Protein of Foot-and-mouth Disease Virus and Its Potential for Differentiating Infected From Vaccinated Animals[J]. Virol Methods, 2010.
    [73] Wen W. H., Liu J. Y., Qin W. J., et al. Targeted Inhibition of HBV Gene Expression by Single-chain Antibody Mediated Small Interfering RNA Delivery[J]. Hepatology, 2007, 46: 84–94.
    [74] Ignjatovic J., Gould G., Trinidad L., Sapats S. Chicken Recombinant Antibodies againstInfectious Bursal Disease Virus are Able to Form Antibody Virus Immune Complex[J]. Avian Pathology, 2006, 35: 293-301.
    [75] Zhang T., Wang C. Y., Zhang W., Gao Y. W., et al. Generation and Characterization of a Fusion Protein of Single-chain Fragment Variable Antibody against Hemagglutinin Antigen of Avian In?uenza Virus and Truncated Protamine[J]. Vaccine, 2010, 28: 3949-3955.
    [76] Song E., Zhu P,. Lee S. K., et al. Antibody Mediated in vivo Delivery of Small Interfering RNAs via Cell-surface Receptors[J]. Nat Biotechnol, 2005, 23: 709-717.
    [77] Pyo H. M., Kim I. J., Kim S. H., et al. Escherichia coli Expressing Single-chain Fv on the Cell Surface as a Potential Prophylactic of Porcine Epidemic Diarrhea Virus[J]. Vaccine, 2009, 27:2030-2036.
    [78] Jun H. R., Pham C. D., Lim S. I., et al. An RNA-hydrolyzing Recombinant Antibody Exhibits an Antiviral Activity against Classical Swine Fever Virus[J]. Biochem Biophys Res Commun, 2010, 395: 484-489.
    [79] LobováD., Cízek A., Celer V. The Selection of Single-chain Fv Antibody Fragments Specific to Bhlp 29.7 Protein of Brachyspira Hyodysenteriae[J]. Folia Microbiol (Praha), 2008, 53: 517-520.
    [80] Wemmer S., Mashau C., Fehrsen J., et al. Chicken ScFvs and Bivalent ScFv-CH Fusions Directed against HSP65 of Mycobacterium Bovis[J]. Biologicals, 2010, 38: 407-414.
    [81] Meyer T., Stratmann-Selke J., Meens J., et al. Isolation of ScFv Fragments Specific to OmpD of Salmonella Typhimurium[J]. Vet Microbiol, 2010.
    [82] Abi-Ghanem D., Waghela S. D., Caldwell D. J., et al. Phage Display Selection andCharacterization of Single-chain Recombinant Antibodies against Eimeria Tenella Sporozoites[J]. Vet Immunol Immunopathol, 2008, 121: 58-67.
    [83] Zimmermann J., Saalbach I., Jahn D., et al. Antibody Expressing Pea Seeds as Fodder for Prevention of Gastrointestinal Parasitic Infections in Chickens[J]. BMC Biotechnol, 2009, 9: 79.
    [84] Carlson J. R. A New Means of Inducibly Inactivating a Cellular Protein[J]. Mol Cell Biol, 1988, 8: 2638.
    [85] Greenman J., Jones E., Wright M. D., et al. The Use of Intracellular Single Chain Antibody Fragments to Inhibit Specifically the Expression of Cell Surface Molecules[J]. J Immunol Meth, 1996, 194(2): 169-180.
    [86] Persic L., Righi M., Roberts A., et al. Targeting Vectors for Intracellular Immunisation[J]. Gene, 1997, 187(1): 1-8.
    [87] Raag R., Whitlow M. Single chain Fvs[J]. FASEB J, 1995, 9(1): 73-80.
    [88] Yokota T., Milenic D.E , Whitlow M., et al. Rapid Tumor Penetration of a Single-chain Fv and Comparison with Other Immunoglobulin Forms[J]. Cancer Res, 1992, 52(12): 3402-3408.
    [89] Milenic D.E., Yokota T., Filpula D.R., et al. Construction, Binding Properties, Metabolism, and Tumor Targeting of a Single Chain Fv Derived from the Pancarcinoma Monoclonal Antibody CC49[J]. Cancer Research, 1991, 51(23 Pt 1): 6363-6371.
    [90] Reiter Y., Wright A. F., Tonge D. W., et al. Recombinant Single-chain and Disulfide-stabilized Fv-immunotoxins that Cause Complete Regression of a Human Colon Cancer Xenograft in Nude Mice[J]. Int J Cancer, 1996, 67(1): 113-123.
    [91] Francisco J. A., Gawlak S. L., Siegall C. B. Construction, Expression, and Characterization ofBD1-G28-5 sFv, a Single-chain Anti-CD40 Immunotoxin Containing the Ribosome-inactivating Protein Bryodin 1[J]. J Biol Chem, 1997, 272(39): 24165-24169.
    [92] Schmidt M., Hynes N. E., Groner B., et al. A Bivalent Single Chain Antibody Toxin Specific for ErbB-2 and the EGF Receptor[J]. Int J Cancer, 1996, 65: 538-546.
    [93] Fitzer Attas C. J., Schindler D. G., Waks T., et al. Direct T Cell Activation by Chimeric Single Chain Fv-Syk Promotes Syk-Cbl Association and Cbl Phosphorylation[J]. J Biol Chem, 1997, 272(13): 8551-8557.
    [94]陈红兵,许杨.应用体外重组PCR技术构建鸡单链抗体基因的研究[J].中国预防兽医学报, 2003, 25(3): 175-178.
    [95]邹泽红.螨抗原蛋白含量的快速测定方法—紫外分光光度法[J].现代临床医学生物工程学杂志. 2004, 10(2): 158-159.
    [96] Nina E. Weisser, J. Christopher Hall. Applications of Single-chain Variable Fragment Antibodies in Therapeutics and Diagnostics[J]. Biotechnology Advances, 2009, 27: 502-520.
    [97] Davies E. L., Smith J. S., Birkett C. R., et al. Selection of Specific Phage-display Antibodies Using Libraries Derived from Chicken Immunoglobulin Genes[J]. J Immunol Methods, 1995, 186(1): 125-135.
    [98] Yamanaka H. I., Inoue T,. keda-Tanaka O. Chicken Monoclonal Antibody Isolated by a Phage Display[J]. Immmunol, 1996, 157: 1156-1162.
    [99] Andris-Widhopf J., Rader C., Steinberger P., et al. Methods for the Generation of Chicken Monoclonal Antibody Fragments by Phage Display[J]. J Immunol Methods, 22000, 242(1-2): 159-181.
    [100]辛朝安,任涛,罗开健,等.疑似鹅源副粘病毒病感染诊断初报[J].养禽与禽病防治, 1997, 16(1): 5.
    [101]王永坤,田慧芳,周继宏,等.鹅源副粘病毒病的研究[J].中国畜禽传染病, 1998, 20(增刊): 130-134.
    [102]张训海,秦福根,王成苗,等.鹅副粘病毒的分离与鉴定[J].安徽技术师范学院学报, 2001, 15(4): 33-35.
    [103]吴仁蔚,胡思顺,肖运才,等.检测禽流感病毒抗体的重组核蛋白间接ELISA方法的建立[J].畜牧兽医学报, 2006, 37(10): 1067-1072.
    [104]樊淑华,吴凤笋,李文刚,等.猪伪狂犬重组抗原间接ELISA诊断方法的建立[J].中国兽医杂志, 2007, 43(5): 3-5.
    [105]刘华雷,王永坤,严维巍,等.鹅源副粘病毒F蛋白基因的克隆和序列分析[J].中国预防兽医学报, 2000, 22(6): 404-407.
    [106]杨汉春.动物免疫学[M].中国农业大学出版社, 2003.
    [107]赵蕾,林源,李本强,朱建国.基因工程小分子抗体及其在动物疾病研究中的应用[J].中国兽药杂志, 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700