从铅的矿物资源及二次资源直接制备超细粉体材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铅生产工业中,从铅矿物原料生产铅金属,进而深加工制备含铅材料的过程涉及多步高温、高能耗工序,尤其铅火法炼铅过程,SO_2、铅尘等的产生对环境污染大。因此,进一步开展铅提取和材料制备技术的基础研究是发展经济和社会可持续发展的迫切要求。
     目前,我国铅蓄电池耗铅量占到总耗铅量的70%,氧化铅粉体是铅酸蓄电池中常用的活性物质。为此,本论文以方铅矿精矿为原料,采用“浸出-选择性除杂-化学合成”三步法,系统研究了制备超细PbO粉体的新工艺流程。分析了不同体系下方铅矿精矿浸出过程,通过腐蚀电化学测试和溶液化学计算探讨了浸出过程有关机理,考察了从浸出产物氯化铅合成超细β-PbO粉体过程中各个因素对硫酸铅和前驱体粒度的影响及前驱体热分解反应的具体历程。
     研究结果表明,碳铵体系下方铅矿精矿浸出率偏低,最高不超过60%。腐蚀电化学测试,强化浸出实验结合X射线衍射分析表明浸出过程中PbCO_3固体钝化膜的形成是影响浸出率不高的主要原因。三氯化铁体系下浸出方铅矿精矿,浸出速度快,浸出率高,最高可达97.39%。浸出液“冷却—结晶—过滤”过程具有良好的除杂功效。溶液化学计算结果表明该浸出过程中PbCl_2主要以[PbCl_4]~(2-)络合物的形式存在于溶液中,[Cl~-]_T=0.918mol/L时PbCl_2能较好的呈固态析出,[Cl~-]_T>0.918mol/L,PbCl_2固体因氯络合作用而溶解,随体系温度升高,[Pb~(2+)]_(Tmi)点下降,是冷却结晶析出PbCl_2晶体的化学原理。腐蚀电化学分析结果进一步验证了饱和氯化钠介质中氯络合作用的发生。从浸出产物氯化铅合成超细β-PbO粉体过程中各个因素对硫酸铅和前驱体粒度均有不同程度的影响。前驱体物质(碳酸铅和碱式碳酸铅的混合物)在不同温度下热分解反应可分别得到稳定的中间产物PbO_x、Pb_3O_4和β-PbO。制得的β-PbO粉体为黄色斜方晶系,且不含其它杂质峰,粉末颗粒呈片状,平均粒径为4.102μm,为超细粉体,纯度高。
     另外,二次铅资源的生产是铅生产工业的另一重要组成部分,国内尚处于初步发展阶段,探索新的再生铅生产工艺具有重要的理论意义和现实意义。本论文以废旧铅蓄电池铅膏为原料,通过“铅膏碳酸化转化-溶解-化学合成”的方法初步探讨了从铅膏直接制备超细
In the modern lead industry, the production of lead involves fire metallurgy to produce crude lead from lead concentrates and electrolysis of the crude lead to produce electrolytic lead, then deep processing to prepare lead materials. Owing to the emission of SO_2 and lead vapour as well as lead filled dust during processes of lead metallurgy and electrolysis, so there is serious pollution to environment. Under the current pressures of strict environmental regulations, it is necessary to seek other methods to produce lead materials. In this paper, a new approach to direct produce lead monoxide from galena concentrates has been proposed.PbO powders as an active material of lead acid batteries are prepared from galena concentrates through three-step, including leaching, selective purification and chemical synthesized. This process without pollution not only simplifies the traditional process of the production of PbO, but enhances the efficiency of processing lead mineral resources.In this thesis, two sorts of leaching systems both ammonium carbonate system and ferric chloride system were investigated respectively. The results of leaching experiments in ammonium carbonate system indicate that leaching rate is not more than 60%. The reason for lower leaching rate is the formation of passivation film which is composed of PbCO_3 crystal from X-ray diffraction analysis. Comparatively, in ferric chloride system leaching rate can reach 97.39% just for 40 minutes. It is further found that the process of cooling, crystallization and filtration has the function of purification. By means of solution chemistry calculation, it demonstrates that [PbCl_4]~(2-) is the dominant species for the reaction product of PbCl_2, which begins to dissolve around pCl_(op) 0.04 ([Cl~-]_T=0.918mol/L). The results of corrosion electrochemistry present that corrosion current increases with the increase of ferric chloride concentration, but passivation phenomenon would be appeared while the ferric concentration is above of 6×10~(-4) mol/L. And corrosion current in sodium chloride solution is higher than without it, which shows that chloride ions greatly contribute to the improvement of leaching rate duo
    to complexation of chloride. /? -PbO prepared in this thesis is rhombic. There is no other product from X-ray diffraction analysis with the average particle size of /?-PbO of 4.102um, and it is flaky powder from scanning electron microscope spectrum. Intermediate samples, including PbOx, PbsO4 and p -PbO, can exist stably in the process of calcining the precursor at different temperature.On the other hand, the production of secondary lead resources is also important to all of lead industry, which is in the initial stage of development in China. In this thesis, three-step process for ultrafine powder of PbSO4, including carbonation transformation of lead pastes in sodium carbonate solution, chemical dissolving and method of chemical sedimentation, has been presented. Orthogonal designing was applied to study the correlation of factors connected with conversion rate. The results shows that their influencing order is: Na2CO3 concentration > reaction temperature > reaction time > stirring speed, and the optimum conversion condition is also obtained. The characters of calcining reaction for lead pastes transformed by carbonation were studied by TG-DTA. The results expressed that lead sulfate in lead pastes can be transferred into lead carbon, completely, which makes the calcining temperature of lead pastes decrease from 880.56°C to 357.86°C and avoid emission of SO2 during disposing waste lead storage batteries by fire metallurgy, as well as diminish energy use. With the lead pastes after transformation dissolved by fluosilicate acid, and then synthesized by the method of chemical sedimentation, orthorhombic lead sulfate would be prepared. There is no other product from X-ray diffraction analysis and its average particle size is about 3.224um.
引文
[1] 郝润蓉,方锡义,钮少冲.碳硅锗分族.北京:科学出版社,1998.451—452
    [2] 《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社,2003.18
    [3] 周国宝.关于铅锌工业发展的思考.有色金属工业,2003(9):11-13
    [4] H. Y. Sohn, D. B. George. Advance in Sulfide Smelting(The Second volume).Beijing: Metallurgy Industry Press, 1991:118-132
    [5] 陈世琯.铜锌铅火法冶金现状及21世纪初展望.上海有色金属,1997,18(4)
    [6] 赵天从.无污染有色冶金.北京:科学出版社,1992:34
    [7] M. Kobayashi. A critical review of the ferric chloride leaching of galena. Canadain Metalurgicall. Quarterly, 1990, 29(3):201-211
    [8] Mark Pritzker. Model for the ferric chloride leaching of galena. Metallurgicals TranB, 1998, 29(B):953-959
    [9] Z. Bastle. X-ray pHotoelectron spectroscopy study of galena dissolution in ferricchloride media. Journal of Material Science Letters, 1993(12):789-790
    [10] P. Balaz. Influence of solid state properties on ferric chloride leaching of mechanically activiated galena. Hydrometallurgy, 1996
    [11] J. E. Dutrizac and T. T. Chen. The effect of the elemental sulfur reaction product on the leaching of galena in ferric chloride medial. Metallurgial Transactions B, 1990(21):935-942
    [12] 田秋占等.三氯化铁浸出硫化铅精矿炼铅新工艺.北京科技大学学报,1996,
    [13] J. E. Dutrizac and T. T. Chen. The leaching of galena in ferric sulfate media. Metallurgical and Materials Transactions (B), 1995(26):219-227
    [14] Wright, Kate, Hillier, Ian H., Vaughan, David J., Vincent, Mark A. Cluster models of the dissociation of water on the surface of galena (PbS). Chemical Physics Letters, 1999, 299(6):527-531
    [15] A. Alan. The ferric fluosilicate leaching of lead concentrates. Metallurgy Transactions B, 1994, 25:473
    [16] 司云森,杨显万.氟硅酸溶液中方铅矿的阳极氧化动力学.有色金属,2002,54(4):59-62
    [17] 魏永,王俊忠,姜琪.氟硅酸及其盐的有关知识.昆明理工大学学报,2001,26(3):98-100
    [18] 王俊忠,魏永,姜琪.氟硅酸性质.昆明理工大学学报,2001,26(3):93-96
    [19] 王俊忠,魏永.H_2SiF_6-Fe_2(SiF_6)_3-H_2O系中方铅矿的浸出热流学.有色矿冶,2001,17(3):28-30
    [20] 陈维平,龚建森,陈范才.PbSiF_6-Fe_2(SiF_6)_3体系电沉积的电化学.中国有色金属学报.1996,6(3):43-45
    [21] Y. Awakura, et al. Metallurgy. Transactions, 11B, 1980:377
    [22] R. K. Paragura, et al. Metallurgy. Transactions, 19B, 1988:59
    [23] Ya-Jun Gong and Jia-Yong Chen. Kinetics of conversion of galena into lead carbonate in ammonium carbonate solution in the presence of cupric ion. Hydrometallurgy, 1993, 33:177-195
    [24] Gong Qian and Gong Yajun. Oxidation of galena in ammonium carbonate solution and applied reactor. Transactions of Nonferrous of China. 1995, 5(3):41-44
    [25] 陆克源,于红,安振涛,陈家镛.清洁工艺生产铅.化学进展,1998,10(3):343—346
    [26] 东北工学院有色重金属冶炼教研室.北京:冶金工业出版社,1976:485
    [27] 张保平,唐莫堂.氨浸法在湿法炼锌中的优点及展望.江西有色金属研究。有色金属,1992,44(4)
    [28] 杨显万,邱定蕃.湿法冶金.北京:冶金工业出版社
    [29] 陈家镛等.湿法冶金的研究与进展.北京:冶金工业出版社
    [30] 《铅锌冶金学》编委会.铅锌冶金学.北京:科学出版社,2003.19
    [31] 王绍文,梁富智,王纪曾.固体废弃物资源化技术与应用.北京:冶金工业出版社,2003(12):90-108
    [32] 任伯峰.我国铅市场的回顾预展望.世界有色金属,2000,(6):33~35
    [33] 兰兴华,殷建华.发展中的中国再生铅工业.中国资源综合利用,2000,(08):28~30
    [34] 周正华.从废旧蓄电池中无污染火法冶炼再生铅及合金.上海有色金属,2002,23(4):156-163
    [35] Vikram Gopal, Gzry C. April, Verle N. Schrodt. Selective lead ion recovery from multiple cation waste stream using the membrane-electrode process. Separation and Purification Technology, 1998(14):85-93
    [36] N. M. Barbin, G. F. Kazantsev, G. K. Moiseev, et al. Lead recovery from PbO, PbCl_2, PbS, PbSO_4, and their mixtures in carbonate melts. Inorganic Materials, 2002, 38(12): 1216-1223
    [37] 王建铭,李曰荣.国内外再生冶炼技术.有色金属再生与利用,2003(3):13-14
    [38] 赵翠青,冯君从.铅锌工业发展对策.有色金属工业,2004(4):33-35
    [39] 陈维平,杨霞,曾悦等.废蓄电池泥渣湿法处理过程的热力学和动力学.矿冶工程,1997,17(4):48-51
    [40] C. Ferracin Luiz, E. Abel Chacon-Sanhueza, A. Rogerio et al. Lead recovery from a typical Brazilian sludge of exhausted lead-acid batteries using an electro-hydrometallurgical process. Hydrometallurgy, 2002(65): 137-144
    [41] E. Stavros Daniel, P. Costas Pappis, G. Voutsinas.Theodore. Applying life cycle inventory to reverse supply chains: a case study of lead recovery from batteries. Resources Conservation and Recycling, 2003(37): 251-281
    [42] R. Raghavan, P. K. Mohanan, S. R. Swamkar. Hydrometallurgical processing of lead-beating materials for the recovery of lead and silver as lead concentrate and lead metal. Hydrometallurgy, 2000(58): 103-116
    [43] 和晓才.废铅蓄电池的处理.云南冶金,2002,31 (2):38-40
    [44] 侯慧芬.从废铅酸蓄电池中回收有价金属.上海有色金属,2001,22(4):181-186
    [45] 包有富,胡信国,童一波.废旧铅酸电池的回收和再利用.电池工业,2002,7(2):92-93
    [46] A. Zabaniotou., E. Kouskoumvekaki., D. Sanopoulos. Recycling of spent lead acid batteries: the case of Greece. Resources, Conservation and Recycling, 1999(25): 301-317
    [47] 孙成林,蔡林.粉碎工程进展现状.第四届全国粉碎工程学术会议论文集,1996:109
    [48] H. R. William. Powders for structural ceramic. Ceramic Bulletin. 1989, 68(10): 1804-1807
    [49] 高友良.超细粉末的研究进展.中国陶瓷,1996,32(3):37-38
    [50] 王零森.特种陶瓷.长沙:中南工业大学出版社,1994.49
    [51] F. M. Lea, R. W. Nurse. The specific surface of fine powders. Journal Society of Chemistry., 1979(58): 277
    [52] S. G. Malghan. Ultafine grinding and separation of industrial minerals. Aime N. Y., 1983: 79
    [53] F. F. Lange. Powder processing science and technology for increased realiability. J. Am. Ceram. Soc., 1989, 72(1): 3-15
    [54] H. K. Bowen. Basic research needs on high temperature ceramics for energy applications. Mater Society Engineering, 1980, 44(1): 1-56
    [55] 魏诗榴.超微颗粒学.广州:华南理工大学出版社,1990:14-16
    [56] 川北公夫等著.罗秉江译.粉体工程学.武汉:武汉工业大学出版社,1991:160-167
    [57] 郝润蓉,方锡义,钮少冲.碳硅锗分族.北京:科学出版社,1998.477
    [58] 邱定蕃.矿浆电解.北京:冶金工业出版社,1998.25
    [59] 司徒杰生.化工手册(第二版).北京:化学工业出版社,1993:793-795
    [60] 李娟,龚良玉,夏熙.α-PbO纳米粉体的固相合成及其对MnO_2电极材料的改性作用.应用化学,2001,18(4):264-267
    [61] 龚良玉,李娟,夏熙.固相合成β-PbO纳米粉体及相关过程的研究.无机材料学报,2001,16,(5):969-973
    [62] 夏熙.纳米微粒作为电池活性材料的前景.电池,1998,28(6):252
    [63] 杜江燕,李人宇,宋晓雷等.铅(Ⅱ)化合物与氢氧化钠室温条件下的固相化学反应研究.无机化学学报,1999,15(3):383-387
    [64] 马凤国,邵自强等.纳米氧化铅粉体的合成.合成化学,2001,9(5)
    [65] M. Cruz, L. Hernan, J. Morales, et al. Spray pyrolysis as a method for preparing PbO coating amenable to use in lead-acid batteries. Power Sources, 2002(108): 35-40
    [66] Guorui Dai, Jiayue Xu. Low pressure chemical vapor deposition of PbO thin film from lead dichloride. Journal of Materials Science Letters, 1998(17): 969-971
    [67] J. C. Schottmiller. Application Physics, 1994(76): 2860
    [68] M. Tdmpsett and J. Noble. Thin Solid Films, 1970(5): 81
    [69] T. B. Light, J. M. Eldridge, J. W. Matthews, et al. Journal of Applied Physics, 1975(46): 1489
    [70] M. Baleva and V. Tuncheva, Journal Material Society Letters, 1994(13): 3
    [71] I. Birss and M. T. Shevalier, Journal Electrochemistry Society, 1990(137): 2643
    [72] I. Zhitomirsky, L. Gl-or, A. Kohn and H. W. Hennicke, Journal Material Society Letters, 1995(14): 807
    [73] F. Vallat-Joliveau, A. Delahaye-Vidal, M. Figlarz, A. de Guibert. Preparation methods and accurate X-ray powder diffraction for tribasic lead sulfate hydrate, precursor of the active material in lead-acid batteries. Power Sources, 1995(55): 97-100
    [74] Z. J. Wu. Theoretical study on PbS, PbO and their anions. Chenical Physical Letters, 2003(370): 39-43
    [75] M. V. Vinokurova, A. A. Vinokurova and L. E. Derlyukova. Investigation of chemisorption properties of the PbO surface. Russian Chemical Bulletin, International Edition, 2002, 51 (9): 1680-1683
    [76] V. P. Yurkinskii, N. V. Sokolova and V. A. Popov. Efeect of lead (Ⅱ)comp-1 exation on solubilitu of β-PbO in alkaline solution in the presence of certain alcohols. Russian Journal of Applied Chemistry, 2001, 74(3): 427-429
    [77] Martin Breza, Alena Manova. On the structure of lead(Ⅱ) complexes in aqueous solutions. ⅡTetranuclear clusters. Polyhedron, 1999 (18): 2085-2090
    [78] G.H.Aylward,T.J.V.Findlay.SI化学数据表.周怀宁译.北京:高等教育出版社,1985.29-57
    [79] 郭炳焜,李新海,杨松青.化学电源-电池原理及制造技术.长沙:中南工业大学出版社
    [80] 沈钟,王果庭等著.胶体与表面化学(第二版).化学工业出版社
    [81] 龙翔云,汪凤珍,王淀佐.方铅矿表面的电子结构氧化及浮选机理研究.有色金属,1992,44(4):27-56
    [82] 蒋继穆.我国铅锌冶金的现状.第四届中国工程院冶金、化工与材料学术年会报告,2003,10
    [83] 曹楚南.腐蚀电化学,北京:化学工业出版社,1994
    [84] 曹楚南.腐蚀电化学原理,北京:化学工业出版社,1984
    [85] 覃文庆.硫化矿物颗粒的电化学行为与电位调控浮选技术.北京:高等教育出版社,2001,7:28-36
    [86] 孙伟,胡岳华.高碱环境中黄铁矿表面反应的腐蚀电化学研究.矿冶工程,2002,22(4):51-54
    [87] 孙伟.高碱石灰介质中电位调控浮选技术原理与应用(博士论文).长沙:中南大学,2003,12:128-136
    [88] 王淀佐,胡岳华.浮选溶液化学.长沙:湖南科学技术出版社,1988.132-135
    [89] 李树棠.晶体X射线衍射基础.北京:冶金工业出版社,1990:131-134
    [90] 钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用.长沙:中南大学出版,1986:120
    [91] 钟竹前,梅光贵.中南矿冶学院学报,1983(3):40
    [92] 黄惠忠.纳米材料分析.北京:化学工业出版社.2003:253
    [93] 嘉滕雅记.日本金属会志.1986,50(7):631-639
    [94] 张在海.铜硫化矿物生物浸出高效菌种选育及浸出机理(博士论文).长沙:
    ?中南大学,2002,6:69-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700