约束阻尼型隔振器的动力学性能分析及优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
约束阻尼型隔振器的动力学性能主要包括刚度和阻尼性能,两种性能的好坏直接影响到隔振设备的抗振性与稳定性。因此,为了使设备能够在强烈振动和干扰作用下稳定的工作,需要对隔振器进行动力学性能研究分析。目前对约束阻尼型隔振器结构的动力学分析方法已经成为工程中一种非常重要的分析方法,它主要包括结构建模、分析计算以及行为预测等一整套的方案。
     本文首先对隔振器的力学模型进行分析,指出隔振器设计中两个关键的动力学因素:刚度和阻尼;然后对隔振器阻尼结构形式及粘弹阻尼材料相关理论做了简单介绍,阐述了结构与材料等参数对隔振器动力学性能影响的重要性,同时也对隔振器的设计流程做了简单介绍。
     本文研究了粘弹性阻尼材料的耗能机理和动态阻尼特性,采用分数导数模型,与温频等效原理相结合,得到了粘弹性阻尼材料的复模量、损耗因子与温度关系的参数化数学模型;并结合粘弹性阻尼材料的动态热机械分析实验(DMA)数据对模型参量进行了拟合,实验结果和误差分析表明拟合的数学模型能够准确反映粘弹性材料在变温条件下的动力学特性的变化情况。
     其次,根据隔振器中不同类型材料的参数对结构动力学特性的影响,分别采用等效刚度法和模态应变能方法建立了结构固有频率、阻尼比与各类型材料参数之间的关系模型,然后通过隔振器力学仿真分析及隔振系统的正弦扫频实验对模型进行参量拟合、实验验证、误差分析,结果表明该预测模型能够较为准确的反映出隔振器结构动力学性能与材料参数之间的关系。
     最后,本文提出了隔振器拓扑模型,分析了重要结构参数对动力学特性的影响,然后以这些参数为设计变量,在满足隔振器强度、刚度条件下,采用合适的优化算法对隔振器结构进行尺寸优化。通过优化,整体结构阻尼性能比优化前得以提高,在工作环境中具有更好的减振性能。
Constrained damping vibration isolators are widely applied in engineering. Stiffness and damping are two important dynamics performances of the vibration isolator, which would be the critical factors in vibration isolation and stability of the device. In order to ensure devices working stably in environment of intense vibration and disturbance, the research in dynamic performance of vibration isolators is required. Recently,the structure dynamics analysis about the isolator has been an important methods in engineering application, including a set of programs consisting of structural modeling, analysis and behavior prediction.
     In the thesis, the mechanic model of isolator was analyzed. Through the analysis, it is recognized that stiffness and damping are two critical dynamics factors. Then theory in type of vibration structure and viscoelastic damping material were introduced, which described importance of influence in dynamic performance of vibration isolators by structure and material parameter. And then the design process of the isolator was also introduced briefly.
     Energy dissipation mechanism and dynamic damping performance of viscoelastic damping material were studied in this thesis. Using fractional derivative model and temperature-frequency superposition principle, the parameterized mathematical equation were obtained, expressing the relation between complex modulus, dissipation coefficient and temperature. In the expressions, the parameters were fitted according to the experimental datum of viscoelastic damping material dynamic performance tested by Dynamic Mechanical Thermal Analyzer (DMA). Experiments results and error analysis validated the expressions.
     Secondly, on the basis of effect on structure dynamics property by different material, the model was established by methods of equivalent stiffness and model strain energy. This model demonstrated the relationship between structure dynamic performance and parameters of individual material. With the work done, mechanic simulation and sinusoidal sweep frequency test could be carried out. The results of simulation and error analysis by test indicated that the model could exactly reflect the relation between structure dynamic performance of vibration isolator and its material property.
     In the end, a topology model was advanced based on the damping structure, and geometrical factors influencing in dynamic performance had been analyzed. Supposing these factors as design variables, size optimization of the isolator was conducted by appropriate optimization method without destroy of strength and stiffness. After optimization, the structure damping performance was improved, and better damping performance under work condition was acquired.
引文
[1]孙庆鸿,张启军,姚慧珠.振动与噪声的阻尼控制[M].北京:机械工业出版社,1993.
    [2]李刚,王先伟.粘弹性耗能材料的动力特性学特性研究[J].辽宁省交通高等专科学校学报,2006,8(4):37-39.
    [3]周光泉,刘孝敏.粘弹性理论[M].合肥:中国科学技术大学出版社,1996.
    [4]戴德沛.阻尼减振降噪技术[M].西安:西安交通大学出版社,1986.
    [5]何平笙.固体高聚物的力学性能(第二版)[M].中国科学技术大学出版社,2008.
    [6] Y A Rossikhin, M V Shitikova. Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solid[J]. Appl. Mech. Rev. 1997, 50(1):15-67.
    [7]刘林超.分数导数型粘弹性材料的力学行为及在结构减振中的应用研究[D] .暨南大学硕士学位论文,2005.
    [8] Ralf Metzler, Theo F Nonnenmacher. Fractional relaxation processes and fractional theological models for the description of a class of viscoelastic materials[J]. International Journal of Plasticity.2003,19:941-959.
    [9] D Y Song, T Q Jiang. Study on the constitutive equation with fractional derivative for viscoelastie fluids-modified Jeffreys model and its application[J]. Rheol. Acta. 1998, 27:512-517.
    [10]吕丽,白书欣,张虹等.粘弹性材料动态性能测试研究[J].橡胶工业,2006,53:22~624.
    [11] T Vuoristo, V T Kuokkala. Creep, recovery and high strain rate response of soft roll cover materials. Mechanics of Materials. 2002, 34:493-504.
    [12] Thomas W Strganac, Hunter J Golden. Predictions of Nonlinear Viscoelastic Behavior Using a Hybrid Approach[J]. Int. J. Solids. Struetures.1996, 33(30):4561-4570.
    [13] A Riviere. Analysis of the low frequency damping observed at medium and high temperatures [J]. Materials Science and Engineering A. 2004, 370:204-208.
    [14] C Gauthier, E Reynaud, R Vassoille. Analysis of non-linear viscoelastic behavior of silica filled styrene butadiene rubber [J]. Polymer. 2004,45:2761-2771.
    [15]刘林超,张卫.服从分数导代数Maxwell本构模型的粘弹阻尼材料性能分析[J].材料科学与工程学报,2004,22(6):860-862.
    [16] Ralf Metzler, Theo F Nonnenmacher. Fractional relaxation processes and fractionalrheological models for the description of a class of viscoelastic materials [J]. International Journal of Plasticity. 2003,19:941-959.
    [17] Mataz Alcoutlabi, J J Martinez Vega. Modeling of the viscoelastic behavior of amorphous polymers by the differential and integration fractional method: the relaxation spectrum H (t) [J]. Polymer. 2003,44:7199-7208.
    [18]刘棣华.粘弹阻尼减振降噪应用技术[M].北京:宇航出版社,1990,3-10.
    [19]孙社营.船用压筋板的粘弹性阻尼处理[J].噪声与振动控制,1999,(3):25-29.
    [20]杨雪,王源升,朱金华,余红伟.多层粘弹阻尼复合结构阻尼性能的研究[J],海军工程大学学报,2005,17(2):72-74,87.
    [21]杨雪,王源升,朱金华,余红伟.多层粘弹阻尼复合结构阻尼性能[J],复合材料学报,2005,22(3):175-181.
    [22] Farhan Gandhi. Influence of Nonlinear Viscoelastic Material Characterization on Performance of Constrained Layer Damping Treatment[J]. AIAA Journal.2001,39(5):924-931.
    [23] Theofanis S Plagianakos, A Dimitris Saravanos. High-order Layerwise Mechanics and Finite Element for the Damped Dynamic Characteristics of Sandwich Composite Beams [J]. International Journal of Solids and Structures. 2004,4:6853-871
    [24] Cao Xisheng, Mlejnek Hans-Peter. Computational prediction and redesign for viscoelastically damped structures [J]. Computer. Methods in Applied Mechanics and Engineering, 1995, 125: 1-16.
    [25] Ilyasov M H. Dynamic stability of viscoelastic plates [J].International Journal of Engineering Science, 2007 (45):111-122.
    [26] Shi Yinming, Hua Hongxing, Sol Hugo. The finite element analysis and experimental study of beams with active constrained layer damping treatments [J]. Journal of Sound and Vibration, 2004, 278:343-363.
    [27] Ruzzene M. Finite Element Modeling of Magnetic Constrained Layer Damping [J]. Journal of Sound and Vibration, 2000, 236:657-682.
    [28] Wang HongJou, Chen LienWen. Finite element dynamic analysis of orthotropic cylindrical shells with a constrained damping layer [J]. Finite Element in Analysis and Design, 2004,40:737-755.
    [29]周传荣,结构动态设计[J].振动、测试与诊断,2001,21(1):1-9.
    [30]陈新,机械结构动态设计理论方法与应用[M].北京:机械工业出版社,1997.
    [31] Ninoslav Truhar. An efficient algorithm for damper optimization for linear vibratingsystem s using Lyapunov equation [J]. Journal of Computational and Applied Mathematics, 2004, 172: 169- 182.
    [32] Hahn.G.D, Sathiavageeswaran.K.R. Effects of added damper distribution on the seismic response of buildings [J]. Computers & Structures, 1992, 43 (5):941- 950.
    [33] Cao X, M lejnek H P. Computational predict ion and redesign for viscoelastically damped structures [J]. Computer Methods in Applied Mechanics, 1995, 125: 1-16.
    [34]杨雪,王源升,朱金华等.二层粘弹阻尼复合结构的优化设计[J].海军工程大学学报,2003,15(4):69—72.
    [35]陈学前,杜强,冯加权.运用有限元分析的阻尼板优化设计[J].振动、测试与诊断. 2007,27 (3):236-237.
    [36]杨德庆,柳拥军,金咸定.薄板减振降噪的拓扑优化设计方法[J].船泊力学,2003,7(5):91-96.
    [37]杨德庆.动响应约束下阻尼材料配置的拓扑敏度法[J].上海交通大学学报,2003, 37(8):1109-1212,1125.
    [38]韩运侠,张芳,潘留占.隔振措施的理论分析[J].河南教育学院学报(自然科学版),Mar,2000,9(1):26~28.
    [39]赵会光,马兴瑞,冯纪生.整星隔振技术若干问题的探讨[J].航天器工程,2001,10(3):30-37.
    [40]夏益霖,吴家驹.航天发射的低频振动环境及其模拟[J].强度与环境,1998:1-8.
    [41]袁家军.卫星结构设计与分析[M].北京:中国宇航出版社,2004.
    [42]李开明.复合高阻尼材料减振效能的研究[J].空间电子技术,2004(1):42-53.
    [43]何平笙.新编高聚物的结构与性能[M].北京,科学出版社,2009.
    [44]沈荣瀛,谢贤宗.粘弹性材料动态特性主曲线图[J].噪声与振动控制,1985,25-32.
    [45]孙社营.粘弹性材料阻尼性能的分析模拟和预测[J].材料开发与应用,2004,19(5):5-10.
    [46]赵云峰.ZN系列粘弹性阻尼材料的性能及应用[J].宇航材料工艺,2001(2):19-23.
    [47]原晓城.溶聚丁苯橡胶微观结构表征及动态力学分析研究[D].青岛科技大学,2007.
    [48]卢德君.结构振动主被动控制实验研究[D].哈尔滨:哈尔滨工业大学图书馆,2006.
    [49]罗文波,杨挺青,安群力.非线性粘弹体的时间-温度-应力等效原理及其应用[J].固体力学学报,2001,22(3):219-224.
    [50]赵培仲,文庆珍,朱金华.时温等效方程的研究[J].橡胶工业,2005,52:142-145.
    [51]王雁冰,黄志雄,张联盟.DMA在高分子材料研究中的应用[J].国外建材科技,2004,25(2):25-27.
    [52]费业泰.误差理论与数据处理[M].机械工业出版社,2005.
    [53]胡于进,王璋奇等.有限元分析及应用[M].清华大学出版社,2009.
    [54] Chang K C, Lai M L, Song T T, Hao D S, Y C Yeh.Seismic Behavior and Design Guidelines for Steel Frame Structures with Added Viscoelastic Dampers[R]. NCEER Report 93-0009.State University for New York at Buffalo,1993.
    [55]黄建龙,解广娟,刘正伟.基于Mooney-Rivlin和Yeho模型的超弹性橡胶材料有限元分析[J].橡塑技术与装备,2007,34(12):22-26.
    [56]左亮,肖绯雄.橡胶Mooney-Rivlin模型材料系数对轴向刚度影响分析[J].CHINA ELASTOMERICS,2008,18(3):54-56.
    [57]李晓芳,杨晓翔.橡胶纯剪试件变形与断裂的有限元分析[J] .机械工程学报,2007,43(6):232-238.
    [58] A.N.詹特[美]主编,张立群,田明,刘力,冯予星译.橡胶工程——如何设计橡胶配件[M].北京:化学工业出版社,2002.
    [59]潘利剑,张博明,戴福洪.简谐激励下共固化复合材料粘弹阻尼结构的损耗因子研究[J].振动与冲击,2008,27(2):57-60.
    [60]祁宙.约束阻尼型隔振器设计技术研究[D].华中科技大学,2008.
    [61]申彦利,杨庆山,田玉基.模态应变能方法精确性和适用性研究[J].工程力学,2008,25(6):18-21.
    [62] Allaire. G, Jouve. F, Toader. A.M.Structural Optimization Using Sensitivity Analysis and a Level-Set Method [J]. Journal of Computational Physics, 2004, 194(1):363-393.
    [63]冯彦军.索—钢—钢筋混凝土组合结构有限元分析[D].西安理工大学,2008.
    [64]郭彤,李爱群.零阶与一阶优化算法在悬索桥模型修正中的应用对比分析[J].振动与冲击,2007,26 (4):35-38.
    [65] Xuhong Miao, Gangtie Zheng. Analytical Study of Whole Flexible Spacecraft Vibration Isolation[C]. 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2008.
    [66] Lumsdaine A, Scott R A. Shape optimization of unconstrained viscoelastic layers using continuum finite elements [J]. Journal of Sound and Vibration, 1998, 216(1):29-52.
    [67] M Soula, T Vinh, Y Chevalier. Transient Responses of Polymers and Elastomers deduced from Harmonic Responses [J]. Journal of Sound and Vibration. 1997,205(2):185-203.
    [68]孙海忠,张卫.分数算子描述的粘弹性材料的本构关系研究[J].材料科学与工程学报,2006,24(6):926-930.
    [69] R Deng, P Davies. A K Bajaj. Flexible polyurethane foam modeling and identification of viscoelastic parameters for automotive seating applications [J]. Journal of sound and Vibration. 2003, 262:391-417.
    [70] Liviu-Iulian Palade, John. A Desanto. Dispersion equations which model high-frequency linear viscoelastic behavior as described by fractional derivative models [J]. International Journal of Non-Linear Mechanics. 2001,36:13-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700