粘弹性材料动态扩展裂纹尖端场
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
裂纹尖端渐近场的研究是断裂力学研究的重要课题之一,裂纹尖端应力、应变和其它物理量的确定为讨论材料参数对裂纹尖端场的影响及材料破坏断裂准则的建立提供了理论的依据。动态裂纹的扩展在材料学、地质学和结构工程领域等有着广泛的应用,因而研究粘弹性材料中裂纹动态扩展问题具有理论意义和广阔的应用前景。
     随着科学技术的不断发展,许多新型材料不断涌现,这类材料的一个共同特点是具有明显的粘弹性特征。材料的粘弹性不仅会影响结构的刚度,也会影响到其强度,在研究裂纹尖端渐近场时,应该考虑到材料的粘性效应,这不仅更加符合实际情况,得到更精确的解,而且能解决率无关渐近解中存在的一些问题,因而材料的粘弹性性质对材料断裂性能影响的研究受到越来越大的重视。本文分别采用简单而且实用的粘弹性模型及刚性-粘弹性界面模型,对平面应变不可压缩材料的Ⅰ型和Ⅱ型的动态扩展裂纹尖端的应力、应变和位移场进行了具体的分析和计算;又采用粘弹性模型,对平面应变不可压缩材料的混合型动态扩展裂纹尖端场进行了具体的分析和计算。围绕这一问题,本文的主要工作有以下几个方面:
     1.通过对裂尖场的渐近分析,确定了动态扩展裂纹尖端的应力和应变场的指数奇异性阶次,得出应力、应变具有相同的奇异量级,即σ~ε~γ~(-1/(n-1)。
     2.通过对粘弹性本构理论的分析,给出了稳态蠕变阶段,粘性和弹性共同占主导作用的本构方程,并结合运动和协调方程,推导出粘弹性材料动态扩展裂尖场的控制方程。
     3.根据问题的边界条件,通过对控制方程进行数值求解,得到了裂纹尖端的连续的应力、应变和位移场。
     4.分析了动态解的性质,并讨论了裂尖应力、应变和位移场随各参数的变化规律,指出了材料的蠕变指数、蠕变系数和马赫数等物理常数对裂纹尖端渐近场的影响。
     5.通过对两个模型的基本方程的推导、分析,得到当材料的蠕变指数趋
    
    哈尔滨工程大学博士学位论文
    于无穷时,本文中的幂硬化粘弹性材料动态扩展裂纹尖端场与Freund给出的
    理想弹塑性材料动态扩展裂纹尖端场具有相近的形式;当马赫数趋于零且蠕
    变指数趋于无穷时,粘弹性材料的渐近解与静态的理想塑性材料的渐近解具
    有相近的形式。
     6.通过对动态扩展裂纹尖端场的渐近分析,得出在粘弹性材料1型裂纹
    前方,环向应变达到最大值,在粘弹性材料H型裂纹,刚性一粘弹性界面I型
    和11型裂纹及混合型裂纹前方,剪应变达到最大值,因此,可以考虑从应变
    角度出发建立局部的断裂准则。
     总之,通过考虑扩展裂纹尖端材料的弹性和粘性效应,本文建立了不可
    压缩幂硬化粘弹性材料中动态扩展裂纹尖端场的力学模型。通过理论分析和
    相应的数值计算,验证了本模型的合理性和有效性。本文所作的研究,将为
    最终解决裂纹尖端渐近场问题提供一种有益的探索,并且对于解决工程实践
    中所遇到的相应的问题和建立材料的破坏准则提供理论上的参考。
The studying of crack-tip asymptotical field is one of the important subjects of fracture mechanics. After determining the stress, strain and other physical quantity in crack-tip field, the related theoretical reference may be put forward to discuss material parameter's influence to crack-tip field and found the fracture rule of material breakage. The propagating of dynamic crack has extensive application in materials science, geology and structural engineering field, therefore the study of dynamic propagation of crack in viscoelastic material possess theoretical meaning and broad application foreground.
    With the continuous development of science and technology, coming forth much new type material, the common feature of them is possessing obvious viscoelastic character, which not only influences the rigidity of structure, but also the intensity. Then when studying the asymptotic crack-tip field, viscous effects of material should be considered, which not only accords with reality, but also can solve some problem existing in asymptotic solution of rate irrelated material, therefore the research of viscoelastic character's influence on fracture capability of material attracts much more recognition.
    Adopting separately a rather simple but practicable viscoelastic model and rigid-viscoelastic Bi-material interface model in the dissertation, it has been asymptotically analyzed and calculated that the stress, strain and displacement of dynamic propagating crack-tip fields of plane strain mode I, II mode crack under the condition of incompressibility; and further adopting viscoelastic model to analyze and calculate the stress, strain and displacement of mixed mode crack under the condition of incompressibility. With regard to this problem, the main research items in this dissertation are as follows:
    1. Through the asymptotical analyzing of singular crack-tip field, it is determined that the same exponent of singularity of stress and strain in dynamic propagating crack-tip field, namely,
    2. By analyzing to the constitutive theory of viscoelastic material, the constitutive equations of viscosity and elasticity with the same dominant effect is obtained in the stable creep stage, and combining the movement and harmonization equations, the governing equations in dynamic growing crack-tip
    
    
    field is deduced.
    3. Numerical solutions of governing equations are obtained in combination with boundary conditions of each problem, and the fully continuous stress, strain and displacement in crack-tip field is found.
    4. Having analyzed the nature of each dynamic solution, the laws of variation of stress, strain and displacement in crack-tip field according to each parameter are discussed and the influence of physical constant, such as creep exponent, creep coefficient and the Mach number on asymptotical crack-tip field is pointed out further.
    5. By deducing and analyzing the basic equations of two models, it is obtained that when creeping exponent is close to infinitude, the solution of dynamic crack-tip field of viscoelastic power-hardening material in the dissertation is close formally to the solution of elastic-ideally plastic material given by Freund, in addition, when the Mach number is close to zero and creeping exponent is close to infinitude, the asymptotical solution of viscoelastic material is close formally to the static solution of elastic-ideally plastic material.
    6. Through the asymptotical analyzing of dynamic propagation crack-tip field, the result is produced that the hoop strain reaches to maximum in the front of mode I crack of viscoelastic material, and the shearing strain reaches to maximum in the front of mode II and mixed mode crack of viscoelastic material, mode I and mode II interfacial crack of rigid-viscoelastic material, so local fracture rules may be founded from the point of view of strain.
    In conclusion, by consideration of elasticity and viscosity effect of material in propagation crack-tip field, it is established that the mechanics model of viscoelasti
引文
[1] Mort N. F. Brittle fracture in mild steel plates. Engineering. 1948, 165: 16-18P
    [2] Yoffe E. H. The moving Griffith crack. Phil. Mag. 1951, 42: 739-750P
    [3] Baker B. R. Dynamic stresses created by a moving crack. J. Appl. Mech. 1962, 29: 449-458P
    [4] Broberg K. B. The propagation of a brittle crack. Archiv fur Fysik. 1960, 18: 159-192P
    [5] Craggs J. W. On the propagation of a crack in an elastic-brittle solid. J. Mech. Phys. Solids. 1960, 8: 66-75P
    [6] 周光泉,刘孝敏.粘弹性理论.安徽:中国科学技术大学出版社.1996:21-33页
    [7] Gao Y C. and Rousselier G Near tip quasi-static crack growth behavior in strain hardening and softening material. Theoretical and Applied Fracture Mechanics. 1994. 20: 149-155P
    [8] Li J. and Zhang X. B. Elastic-plastic analysis of an arbitrarily-oriented mode Ⅲ crack touching an interface. International Journal of Fracture Mechanics. 1996, 80: 311-337P
    [9] Erdogan F. Fracture mechanics. Intemational journal of solids and structures. 2000, 37: 171-183P
    [10] Griffith A. A. The phenomenon of rupture and flow in solids. Philosophical Tlransactions of Royal Society. London, A221. 1920: 163-198P
    [11] Irwin G R. Fracture Dynamics. In: Fracturing of Metals. Cleveland: Am. Soc. Metals, 1948: 147-166P
    [12] Orowan E. Fracture and Strength of Solids. In: Rep. On Progr. In Phys., Ⅴ-Ⅶ. 1948: 185P
    [13] Irwin G. R. Analysis of stresses and strains near the end of a crack traversing a plate. Journal Of Applied Mechanics. 1957, 24: 361-364P
    [14] 范天佑.断裂动力学引论.北京:北京理工大学出版社.1990,1-284页
    [15] Hult J. A., McClintock F. A. Elastic-plastic distribution around sharp
    
    notches under repeated shear. Proceedings of 9th International Congress on Applied Mechanics. Brussels. 1956, 8: 51-62P
    [16] Rice J. R. Stress due to a sharp notch in a work-hardening elastic-plastic material loaded by longitudinal shear. Journal of Applied Mechanics. 1967, 34(2): 287-298P
    [17] Rice J. R. Contained plastic deformation near cracks and notches under longitudinal shear. International Journal of Fracture Mechanics. 1966, 2 (2): 426-447P
    [18] Amazigo J. A. Fully plastic center-cracked strip antiplane shear. International Journal of Solids and Structures. 1975, 11(12): 1291-1299P
    [19] Hutchinson J. W. Singular behavior at the end of tensile crack in a hardening material. Journal of Mechanics and Physics of Solids. 1968, 16 (1): 13-21P
    [20] Rice J. R., Rosengren G. F. Plane strain deformation near crack tip in a power law hardening material. Journal of Mechanics and Physics of Solids. 1968, 16(1): 1-12P
    [21] Begley J. A. and Landes J. D. The J-integral as a Fracture Criterion. Fracture Toughness, ASTM STP 1972, 514: 1-20P
    [22] Shih C. F. Small-scale yielding analysis of mixed mode plane strain crack problems. In Fracture analysis. ASTM. STP. 1974, 560: 187-210P
    [23] Hutchinson J. W. Plastic stress and strain field at a crack tip. Journal of Mechanics and Physics of Solids. 1968, 16 (4): 337-347P
    [24] 黄克智,余寿文.弹塑性断裂力学.北京:清华大学出版社.1985:90-371页
    [25] 高玉臣.裂纹起始扩展的弹塑性场.固体力学学报.1980,12(1):67-76页
    [26] 高玉臣,黄克智.理想弹塑性平面应变问题.力学学报.1981年特刊:111-120页
    [27] Gao Y. C., Hwang K. C. Elastic-plastic fields in steady crack growth in a strain-hardening material. ICF5 in Advances in Fracture Research. Francois D. ed. V2, Pergamon Press, 1981: 669-682P
    [28] 高玉臣.理想弹塑性平面应力问题.固体力学学报.1982,3(3):339-350页
    
    
    [29] Gao Y. C., Hwang K. C. On the formulation of plane strain problems for elastic perfectly-plastic medium. International Journal of Engineering Science. 1983, 21(7): 765-780P
    [30] Gao Y. C., Hwang K. C. Elastic-plastic fields in steady crack growth. In Three-Dimensional Constitutive Relations and Ductile Fracture. Nemat-Nasser S. ed. North-Holland Publication Company. 1980: 417-434P
    [31] 靳志和,余寿文.理想弹塑性材料平面应力I型裂纹尖端的弹塑性场.力学学报.1986,18(1):88-92页
    [32] 章梓茂,马兴瑞,高玉臣.理想塑性介质中平面应力静止裂纹的尖端弹塑性场.力学学报.1990,22(2):229-235页
    [33] Riedel H. Cracks loaded in anti-plane shear under creep conditions. Z. Metall. 1978, 69 (12): 755-760P
    [34] Riedel H. and Rice J. R. Tensile cracks in creeping solids. Fracture Mechanics. Twelfth Conference, ASTM STP 700, American Society for Testing and Materials. 1980, 112-130P
    [35] Riedel H. Creep deformation at crack tips in elastic-viscoplastie solids. J. Mech. Phys. Solids. 1981, 29: 35-49P
    [36] Hui C. Y. The mechanics of self-similar crack growth in an elastic power-law creeping material. Int. J. Solids Structs. 1986, 22 (4): 357-372P
    [37] Wang T. C. Elastic-plastic asymptotic fields for cracks on bi-material interfaces. Engineering Fracture Mechanics. 1990, 37 (3): 527-538P
    [38] Li F. Z., Needleman A. and Shih C. F. Characterization of near tip stress and deformation fields in creeping solids. International Journal of Fracture. 1988, 36: 163-186P
    [39] Bassani J. L. Cracks in materials with hyperbolic-sine-law creep behavior. Elastic-Plastic Fracture: Second Symposium. Volume I-Inelastic Crack Analysis. ASTM STP 803. 1983, 532-550P
    [40] Freund L. B. and Clifton. R. J. On the uniqueness of elastodynamic solutions for running cracks. Journal of Elasticity. 1974, 4: 293-299P
    [41] Chitelay A. D., McClintock F. A. Elastic-plastic mechanics of steady crack growth under anti-plane shear. Journal of Mechanics and Physics of Solids. 1971, 19 (3): 147-163P
    
    
    [42] Slepyan L. I. Growing crack during plane deformation of an elastic-plastic body. Izv. Akad. Nauk. SSSR. Mekhanika Tverdogo Tela. 1974, 9 (1): 57-67P
    [43] 高玉臣.理想塑性介质中裂纹定常扩展的弹塑性场.力学学报.1980,12(1):48-56页
    [44] Rice J. R., Drugan W. J., Sham T. L. Elastic-plastic analysis of growing crack. Fracture Mechanics: ASTM STP 700. 1980: 189-221P
    [45] Gao Y. C. Logarithm strain singularity at tip of mode I growing crack in elastic and perfectly plastic material. Theoretical and Applied Fracture Mechanics. 1996, 25 (2): 85-102P
    [46] Rice J. R. Elastic-plastic crack growth. In Mechanics of solids. Rodney Hill 60th Anniversary Volume. Hopkins H. G. and Sewell M. J. ed. Oxford: Pergamon Press. 1981: 539-562P
    [47] 高玉臣.裂纹尖端的弹塑性场.力学学报.1981年特刊:100-110页
    [48] Gao Y. C. The influence of compressibility on the elastic-plastic field of a growing crack. ASTM 2(nd) International Symposium on Elastic-Plastic Fracture Mechanics. Philadelphia. 1981: 6-10P
    [49] Drugan W. J., Rice J. R., Sham T. L. Asymptotic analysis of growing plane strain tensile cracks in elastic-ideally plastic solids. Journal of Mechanics and Physics of Solids. 1982, 30 (6): 447-473P
    [50] 罗学富,黄克智.可压缩弹塑性扩展裂纹尖端场问题的正确提法及其解.中国科学A辑.1988,12:1274-1282页
    [51] Cas ta(?) eda P. P. Asymptotic fields of a perfectly-plastic plane stress Mode Ⅱ growing crack. Journal of Mechanics and Physics of Solids. 1986, 34 (6): 831-833P
    [52] Gao Y. C. Pseudo plane stress plastic field for mode I crack growth. Theoretical and Applied Fracture Mechanics. 1997, 27 (3): 203-212P
    [53] Amazigo J. C., Hutchinson J. W. Crack-tip fields in steady crack growth with linear strain-hardening. Journal of Mechanics and Physics of Solids. 1977, 25 (2): 81-97P
    [54] Hutchinson J. W. Crack-tip singularity fields in nonlinear fracture mechanics. A survey of current status. ICF5. in Advances in Fracture Research. Francois D. ed. V6, Pergamon Press, 1981: 1847-1872P
    
    
    [55] Zhang R. E, Zhang X. T., Hwang K. C. Near-tip fields for plane strain mode Ⅰ steady crack growth in linear hardening material with Bauschinger effect.北京国际断裂力学学会讨论会论文集.北京:科学出版社.1983:283-290页
    [56] Cas ta(?) eda P. P. Asymptotic fields in steady crack growth with, linear strain-hardening. Journal of Mechanics and Physics of Solids. 1987, 35(2): 227-268P
    [57] Yang W. Non-uniform singularity field for mode Ⅲ crack propagation in a slightly linear strain hardening material. In Ouyang C. ed. Proceedings of International Conference on Fracture and Fracture Mechanics. Shanghai: Fudan University Press. 1987: 270-275P
    [58] 高玉臣,张晓堤,黄克智。幂硬化材料Ⅲ型稳恒扩展裂纹的奇异场.力学学报.1981,13(5):452-463页
    [59] Gao Y. C., Zhang X. T., Hwang K. C. The asymptotic near-tip solution for mode Ⅲ crack n steady growth in power hardening media. International Journal of Fracture. 1983, 21(4): 301-317P
    [60] Hwang K.C., Yu S. W., Yang W. Theoretical investigation of crack-tip singularity fields in China. Applied Mechanics Review. 1990, 43(1): 19-33P
    [61] Gao Y. C. Exponential stress and strain singularity at tip of mode Ⅰ growing crack in power hardening material. Theoretical and Applied Fracture Mechanics. 1996, 25 (2): 103-111P
    [62] Gao Y. C. Near-tip fields for pseudo mode Ⅱ crack growth: power law hardening material. Theoretical and Applied Fracture Mechanics. 1996, 25 (3):179-186P
    [63] Gao Y. C. Pseudo plane stress mode Ⅱ crack growth in plastic materials. Theoretical and Applied Fracture Mechanics. 1997, 27(3): 193-202P
    [64] Hui C. Y., Riedel H. The asymptotic stress and strain field near the tip of a growing crack under creep conditions. Intemational Journal of Fracture. 1981, 17(4):409-425P
    [65] Taher M., Saif A. and Hui C. Y. Plane strain asymptotic field of a crack growing along an elastic-elastic power law creeping bi-material interface. J. Mech. Phys. Solids. 1994, 42(2): 181-214P
    
    
    [66] Hui C. Y., Taher M and Saif A. Asymptotic stress field of a mode Ⅲ crack growing along an elastic-elastic power law creeping bi-material interface. Transactions of the ASME. J. Appl. Mech. 1994, 61(3): 384-389P
    [67] Hawk D. E. and Bassani J. L. Transient crack growth under creep conditions. J. Mech. Phys. Solids. 1986, 34(3): 191-212P
    [68] Hui H.D.著.材料的力学反问题引论[M].高玉臣.哈尔滨:哈尔滨工程大学出版社.1995.
    [69] Yang W., Freund L. B. An analysis of antiplane shear crack growth in a rate sensitive material. International Journal of Fracture. 1986, 30(3): 157-174P
    [70] Chang T. C., Popelar C. H., Staab G. H. Creep crack growth in an elasticcreeping material. Part Ⅰ: mode Ⅲ. International Journal of Fracture. 1987, 33(1):17-30P
    [71] Chang T. C., Popelar C. H., Staab G. H. Creep crack growth in an elasticcreeping material. Part Ⅱ: mode Ⅰ. International Journal of Fracture. 1987, 33(1): 31-45P
    [72] Delph T. J., Stengle G. A. An analysis of the Hui-Riedel equation. International Journal of Fracture. 1989, 40 (4): 295-305P
    [73] Delph T. J. The steadily propagating viscoplastic crack with elastic unloading. International Journal of Fracture. 1994, 68(2): 183-191P
    [74] Gao Y. C., Wang Z. Q. Stress and strain field near tip of mode Ⅲ growing crack in materials with creep behavior. Theoretical and Applied Fracture Mechanics. 1996, 25(2): 113-126P
    [75] Riedel H. Creep crack growth under small-scale creep conditions. International Journal of Fracture. 1990, 42: 173-188P
    [76] 黄克智,高玉臣.断裂力学中的裂纹尖端奇异场.力学进展.1984,14(4):405-415页
    [77] 高玉臣,韩斌,黄克智.扩展裂纹准静态渐近解中的矛盾.力学学报.1986,18(1):88-92页
    [78] Slepyan L. I. Crack dynamics in an elastic-plastic body. Izv. Akad. Nauk. SSSR. Mekhanika Tverdogo Tela. 1976, 11(2): 126-135P
    [79] Achenbach J. D., Dunayevsky V. Fields near a rapidly propagating crack-tip in an elastic perfectly-plastic material. Journal of Mechanics and
    
    Physics of Solids. 1981, 29(4): 283-303P
    [80] Gao Y. C., Nemat-Nasser S. Dynamic fields near a crack tip growing in an elastic-perfectly-plastic material. Mechanics of Materials. 1983, 2(1): 47-60P
    [81] Lam P. S. and Freund L. B. Analysis of dynamic growth of a tensile crack in an elastic-plastic material. Journal of the Mechanics and Physics of Solids. 1985, 33: 153-167P
    [82] Lo K. K. Elastic-plastic field at the tip of a propagating shear crack. Quarterly of Applied Mathematics. 1982, 40(1): 27-36P
    [83] Gao Y. C., Nemat-Nasser S. Mode Ⅱ dynamic fields near a crack tip growing in an elastic-perfectly plastic solid. Journal of Mechanics and Physics of Solids. 1984, 32(1):1-19P
    [84] Leighton J. T., Champion C. R., Freund L. B. Asymptotic analysis of steady dynamic crack growing in an elastic-plastic material. Journal of Mechanics and Physics of Solids. 1987, 35(5): 541-563P
    [85] Gao Y. C. Asymptotic dynamic solution to the mode Ⅰ propagating crack tip field. International Journal of Fracture. 1985, 29(4): 171-180P
    [86] Gao Y. C. Plane stress dynamic plastic fields near a propagating crack tip. International Journal of Fracture. 1987, 34(2): 111-129P
    [87] Achenbach J. D., Kannicen M. F. Crack tip plasticity in dynamic fracture mechanics. In Fracture Mechanics. Perrone N. et al. ed. University Press of Virginia. Charlottesville, Virginia. 1978: 649-670P
    [88] Achenbach J. D., Kannicen M. F., Popelar C. H. Crack-tip fields for fast fracture of an elastic-plastic material. Journal of Mechanics and Physics of Solids. 1981, 29(3):211-225P
    [89] (?)stlund S., Gudmundson P. Asymptotic crack tip fields for dynamic fracture of linear strain-hardening solids. International Journal of Solids and Structures. 1988, 24 (11): 1141-1158P
    [90] Gao Y. C., Nemat-Nasser S. Near-tip dynamic fields for a crack advancing in a power- law elastic-plastic material: mode Ⅰ, Ⅱ and Ⅲ. Mechanics of Materials. 1983, 2(3): 305-317P
    [91] 章梓茂,高玉臣.幂硬化介质中平面应力动态裂纹尖端弹塑性场.力学学报.1988,20(1):19-30页
    
    
    [92] 朱先奎,黄克智.幂硬化可压缩材料Ⅰ型动态裂纹尖端奇异场.力学学报.1996,28(5):603-608页
    [93] Zhu X. K., Hwang K. C. Dynamic asymptotic fields near a crack tip growing in a power- law hardening compressible material. Mechanics of Materials. 1996, 24(2): 213-220P
    [94] Zhu X. K., Hwang K. C., Liu G. T. Continuous near-tip fields for a dynamic crack propagating in a power-law elastic-plastic material. International Journal of Fracture. 1997, 85(3): 201-209P
    [95] 王振清.幂软化损伤材料Ⅲ型动态裂纹尖端的渐近场.应用力学学报.1994,11(4):107-110页
    [96] Gao Y. C. The asymptotic solution to the dynamic crack tip field in a strain-damage material. Int. J, Engng. Sci. 1986, 24(6): 1045-1055P
    [97] Deng X. M. Plane stress crack tip field around a rapidly growing ductile-rigid interface crack. International Journal of Fracture. 1998, 90: 325-340P
    [98] 贾斌.幂硬化材料动态扩展裂纹尖端的弹粘塑性场.哈尔滨工程大学博士学位论文.2001,1-14页
    [99] Gao Y. C. Uniparameter plastic field near a dynamic crack-tip. Mechanics Research Communications. 1988, 15(5): 307-313P
    [100] Gao Y. C. Further study on strain singularity behavior of moving cracks in elastic-viscoplastic materials. Theoretical and Applied Fracture Mechanics. 1990, 14(3): 233-242P
    [101] 李范春,齐辉,周健生.Ⅲ型动态扩展裂纹尖端场的奇异性研究.哈尔滨工程大学学报.1996,17(3):120-126页
    [102] Wang Z. Q. Asymptotic study of mode Ⅰ propagating crack-tip field in elastic-viscoplastic materials. International Conference on Advanced Material: Progress in Advanced Material and Mechanics. 1996, 8: 754-759P
    [103] 王振清,钱华山,范学伟.Ⅰ型动态扩展裂纹尖端场的渐近方程.哈尔滨工程大学学报.1999,20(1):85-89页
    [104] 贾斌,钱华山,王振清,唐立强.不可压缩材料稳恒扩展裂纹尖端的弹粘塑性场.哈尔滨工业大学学报.2001,33(增刊):69-73页
    [105] 王振清.粘弹塑性材料动态裂纹尖端场.力学学报.1993,25(2):160-
    
    168页
    [106] 唐立强,蔡艳红,刘长海.粘弹性材料Ⅲ型动态扩展裂纹尖端场.哈尔滨工程大学学报.2002,23(1):108-112页
    [107] 尹双增.断裂·损伤理论及应用.北京:清华大学出版社.1992:136-209页
    [108] 沈成康.断裂力学.上海:同济大学出版社.1996:20-33页,159-202页,253-254页
    [109] 穆霞英.蠕变力学.西安:西安交通大学出版社.1990:12-22页,60-63页
    [110] Kanninen M. F. and Popelar C. H. Advanced Fracture Mechanics. Oxford University Press, New York, Clarendon Press, Oxford, 1985.
    [111] Lo K. K. Dynamic Crack-tip fields in Rate-sensitive Solids. J. Mech. Phys. Solids. 1983, 31(4): 287-305P
    [112] Freund L. B. Dynamic Fracture Mechanics. Cambridge: Cambridge University Press. 1990: 184-194P
    [113] 匡震邦,马法尚.裂纹端部场.西安:西安交通大学出版社.2002:85-86页
    [114] 杨卫.宏微观断裂力学.北京:国防工业出版社.1995:1-131页
    [115] Williams M L. The stresses around a fault or crack in dissimilar media. Bulletin of the Seismoloical society of America. 1959, 49(2): 199-204P
    [116] Rice J R. Elastic fracture mechanics concepts for interfacial cracks. ASME J Appl Mech. 1988, 55(1): 98-103P
    [117] Comninou M. The interfacial crack. J Appl Mech. 1977, 44:631-636P
    [118] Erdogan F. Stress distribution in bonded dissimilar materials with cracks. ASME J Appl Mech. 1965, 32: 403-410P
    [119] Knowles J K, Steinberg E. Large deformations near a tip of an interface-crack between two Neo-Hookean sheets. J. Elasticity. 1983, 13: 257-293P
    [120] Hao Tian hu. Nonlinear response of mode Ⅰ crack on bi-material interfaces. Int J Fract. 1989, 41: 23-28P
    [121] Shih C F, Asaro R J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces. Part Ⅰ: Small Scale Yielding. J Appl Mech. 1988, 55: 229-316P
    [122] Shih C F, Asaro R J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces. Part Ⅱ: Structure of Small Scale Yielding Fields. J Appl Mech.
    
    1989, 56: 763-779P
    [123] Shih C F, Asaro R J. Elastic-Plastic Analysis of Crack on Bi-Material Interfaces: Part Ⅲ: Large Scale Yielding. J Appl Mech. 1991, 58: 450-463P
    [124] Tang L Q, Sun X G, Wang Z Q. Near tip field for stationary growth crack at the interface between an elasto-nonlinear viscous material and an elastic solid. In FEFG'94, Acta Mechanica Solida Sinica. 1995, 8: 646-650P
    [125] 李永东.刚性-粘弹性材料界面Ⅱ型裂纹准静态扩展的渐近解.哈尔滨工程大学学报,2000,21(2):69-73页
    [126] 杨挺青.粘弹塑性本构理论及其应用.力学进展.1992,22:10-19页
    [127] 杨挺青.粘弹性力学.武昌:华中理工大学出版社.1992:1-211页
    [128] Shih C F. Small-scale yielding analysis of mixed mode plane-strain crack problems. Fracture Analysis. American Society for Testing and Materials. Philadelphia. ASTM STP 560. 1974: 187-210P
    [129] 余寿文,冯西桥.损伤力学.北京:清华大学出版社.1997:1-325页
    [130] Krajcinovic D and Fonseka G. U. The continuous damage theory of brittle materials. Part 1: general theory. J. Appl. Mech. 1981, 48: 809-815P
    [131] Whitmen L. Methods geomechanics. Int. J. Numerical Analy. 1985, 9:71 P
    [132] Budiansky B, Hutchinson J W and Slutsky S. Void growth and collapse in viscous solids. Mechanics of solids. The Rodney Hill 60th Anniversary Volume, eds. Hopkins H G. and Selvell M J.1982.
    [133] Murakami S. and Ohno N. A continuum theory of creep and creep damage. In Creep in Structures IUTAM. Symposium. Leicester. UK. 1980, Eds. A. R. S. Ponter and Hayhurst D. R., Springer Verlag. 1981: 140-155P
    [134] Sidoroff F. Description of anisotropic damage application to elasticity in Proc. Of IUTAM colloquium. Physical Nonlinearities in Structural Analysis. 1981:237-244 P
    [135] 王自强,段祝平.塑性细观力学.北京:科学出版社.1995.
    [136] Rudnicki J W. Geomechanics. Int. J. Solids. and Structures. 2000, 37(3): 349-358 P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700