CoFe_2O_4-p-NiFe_2O_4二元磁性液体性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文用共沉淀法制备出CoFe_2O_4微粒、p-NiFe_2O_4微粒以及Ni_2O_3/Fe_2O_3复合型微粒,用X射线衍射仪(XRD)、X射线能量色散光谱仪(EDX)、X射线光电子能谱(XPS)、透射电子显微镜(TEM)分别对上述三种纳米微粒的晶体结构、元素比例、内部结构以及表面形态进行表征。
     用Massart法制备出相应的体积分数为2%的单元磁性液体作为母液待用。CoFe_2O_4磁性液体和p-NiFe_2O_4磁性液体二者等体积进行混合,作为二元磁性液体的母液,而后进行稀释,以制取不同体积分数的磁性液体,分别对其进行密度、粘度、磁性、磁光的测量。
     比较单一的CoFe_2O_4磁性液体与二元磁性液体中的CoFe_2O_4部分的磁性,分析弱磁性p-NiFe_2O_4微粒在二元磁性液体中的调制作用。在二元的CoFe_2O_4-p-NiFe_2O_4磁性液体中,CoFe_2O_4微粒是场致结构的主体,p-NiFe_2O_4微粒可能抑制或者增强场致结构的形成。在磁性测量结果中发现p-NiFe_2O_4微粒的调制作用不是单调的线性关系,而是存在一个极限临界体积分数,当加入的弱磁性液体的体积分数在这一临界体积分数之下时,随着弱磁性微粒的增加,二元磁性液体中的强磁性部分将随之增强,反之,当加入的弱磁性液体的体积分数大于这一临界体积分数之时,随着弱磁性微粒的增加,二元磁性液体中的强磁性部分会随之减小。结果表明,二元体系中的磁化性质不等于单元体系磁化性质的线性叠加。
     测量了稳定磁场作用下透过单元、二元磁性液体的光透射变化情况,从微观上进行了分析,根据微粒链的形成与运动模型,对二元磁性的光透射率变化进行了解释,研究了二元磁性液体中弱磁性微粒对强磁性的调制作用。
     对于Ni_2O_3/Fe_2O_3纳米微粒及磁性液体进行初步研究。
In this paper, CoFe_2CO_4 nanoparticles, p-NiFe_2O_4 nanoparticles and Ni_2O_3/Fe_2O_3 nanoparticles are prepared by chemical co-precipitation. Using the XRD, EDX, XPS, TEM analyze the nanoparticles' crystal structure, atomic ratios, Internal structure and morphology, respectively.
     These two nanoparticles are used to product 2 percent mother fluids by Massart method, respectively, then the two fluids are mixed with the same volume to obtain the binary ionic fluids. Then dilute mother fluids, we can obtain different ferrofluids of volume fraction, measure the density, viscosity, magnetization, magnetic optic.
     Compared the magnetic of single CoFe_2O_4 and the CoFe_2O_4 which in the binary ferrofluids, analyzing the weak magnetic p-NiFe_2O_4 nanoparticles' modulation which in the binary ferrofluids. In binary CoFe_2O_4-p-NiFe_2O_4 ferrofluids, CoFe_2O_4 nanoparticles are theme of field-induced, p-NiFe_2O_4 nanoparticles may suppress or enhance the field-induced composition. In magnetic measuring, It found that the modulation of the p-NiFe_2O_4 nanoparticles is not monotone linear relationship, but to be a critical volume fraction, when weak magnetic ferrofluids under this critical volume fraction, the magnetic part of binary ferrofluids will enhance with the weak magnetic nanoparticles added, or when weak magnetic ferrofluids over this critical volume fraction, the the magnetic part of binary ferrofluids will decrease with the weak magnetic nanoparticles added. It can conclude that the magnetization of the binary system is not a simply summed.
     The transmitted ration of light through single and binary ferrofluids under stable magnetic field are measured, according to the model of particles chains' formed and moved, it can explain the transmitted changeable of binary ferrofluids, studying the modulation effect of weak magnetic nanoparticles.
     Ni_2O_3/Fe_2O_3 nanoparticles and ferrofluids are preliminary researched.
引文
[1].都有为.纳米级磁性材料的进展与展望.物理.1993(22):33-37.
    [2].R.Massart. Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media[J].IEEE Trans On Mag, 1981, 17(2): 1247-1248.
    [3].T. Atarashi, T. Imai [J] . Shimolizaka[J] .Magn.Magn. mater. ,1990 ,85 :31.
    [4].R. E. Rosensweig. [J] .Magn. mater. ,1999 ,201 :11.
    [5].M.Warner, R.M. Hornneich ,[J] . Phys. ,1985 ,18 :23251.
    [6] J . Popplewell, R. E. Rosensweig ,[J]. Phys. ,D 1996 ,29 :22971.
    [7].Y. S. Kim, Y. H. Kim,[J].Magn..Mater., 2003 ,267 :1051.
    [8].Rousan, A.A. Usuf, N.A. El-Ghanem, et al. On the concentration dependence of light transmission in magnetic fluids. IEEE Trans. on Magn, 1988,24: 1653-1655.
    [9].Tengda Du, Weili Luo. Intensity dependent transmission dynamic in magnetic fluids. J.Appl.Phys, 1999, 85: 5953-5955.
    [10].Liu Gongqiang, Huang Yanping, Yu Zhiqiang. Quantum theory of the Faraday magneto-optical effect in paramagnetic media, Phys. Rev. B, 1990,41: 749 - 753.
    [11].M.M. Maiorov. Faraday effect in magnetic fluids at a frequency 10GHz. J. Magn. Magn. Mater. Mater., 2002, 252: 111-113.
    [12].Chin-Yih Hong, H.E. Horng, I.J. Jang, et al. Magneto-chromatic effects of tunable magnetic fluid grating, J. Appl. Phys. 1998, 83: 6771-6773.
    [13].Herng-Er Home. Chin-Yih Hong. S. L. Lee, et al. Magnetochromatics resulted from optical gratings of magnetic fluid films subjected to perpendicular magnetic fields, J.Appl.Phys, 2000, 88: 5904-5908.
    [14].Herng-Er Horng, Chin-Yih Hong, Wai Bong Yeung, et al. Magnetochromatic Effects in Magnetic Fluid Thin Films, Applied Optics, 1998, 37: 2674-2678.
    [15].P.C. Scholten . Magnetic birefringence of ferrofluids, J. Phys. D: Appl. Phys, 1980,13: 231-232.
    [16].H.W.Davies,J.P.Llewellvn. Magneto-optic effects in ferrofluids, J. Phys. D: Appl. Phys, 1980,13: 2327-2336.
    [17] J.P.Llewellvn. Reply to "Magnetic birefringence of ferrofluids". J. Phys. D: Appl. Phys. 1980.13: 233-234.
    [18].Luis Martinez, Franjo Cecelja, Ryszard Rakowski. A novel magneto-optic ferrofluid material for sensor applications. Sens. Actu.A. 2005,123-124: 438-443.
    [19].Herb Hartshorne, Christopher J. Backhouse, William E. Lee. Ferrofluid-based microchip pump and valve. Sens. Actu.A. 2004, 99: 592-600.
    [20].Huang J P, Wang Z W and Holm C, Structure and magnetic properties of mono-and bi-dispersed ferrofluids as revealed by simulations[J]. J. Magn. Magn. Mater., 2005, 289: 234-237.
    [21].Rany G M and Klapp S H L, Density functional study of the phase behavior of asymmetric binary dipolar mixtures[J]. Phys. Rev. E,2004, 69: 041201-1-041201-11.
    [22].Rany G M and Klapp S H L, Phase behavior of bidisperse ferrocolloids[J]. Phys. Rev. E, 2004,70: 061407-1-061407-9.
    [23].Rang G M and Klapp S H L, Density -functional study of model bisdisperse ferrocolloids in an external magnetic field[J]. J. Chem.Phys.,2005,122: 224902-1-224902-6.
    [24].Shi Y, Ding J, Liu X, Wang J. NiFe_2O_4 ultrafine particles prepared by co-precipitation/mechanical alloying [J]. J. Magn. Magn. Mater., 1999, 205: 249-254.
    [25].郭沁林.[J]物理.2007,36(5):405-410.
    [26].Briggs D,Seah MP.Practical Surface Analysis,Vol 1,Auger and X-ray Photoelectron Spectroscopy 2nd Edition,John Wiley & Sons,Sallet Sauerlander,1990.
    [27].陆家和,陈长彦《表面分析技术》北京:电子工业出版社.1987.
    [28].Miudler J F, Stickle W F, Slbol P E et al, Handbook of X-ray Photoelectron Spectroscopy Perkin-Elmer, Eden Prairie, MN, 1992.
    [29].A.F.C. Campos, F.A. Tourinho, G.J. da Silva, et al. Calculation of the pair potential interaction in electric double-layered magnetic fluids: a quantitative analysis of the pH-dependent phase diagram. J.Magn.Magn.Mater. 2005. 289:171-173.
    [30].M.Chastellain, A.Petri, H.Hofmann. Particle size investigations of a multistep synthsis of PVA coated superparamagnetic nanoparticles. J. Coll. Inter. Sci., 2004. 278:353-360.
    [31].J. Popplewell, L. Sakhnini.The dependence of the physical and magnetic properties of magnetic fluids on particle size. J.Magn.Magn.Mater. 1995. 149:72-78.
    [32].A.F. Pshenichnikov , V.V. Mekhonoshin, A.V. Lebedev. Magneto-granulometric analysis of concentrated ferrocolloids. J.Magn.Magn.Mater., 1996. 161:94-102.
    [33].E. Hasmonay, J. Depevrot, M. H. Sousa, et al. Magnetic and optical properties of ionic ferrofluids based on nickel ferrite nanoparticles. J. Appl. Phys. 2000. 88: 6628-6635.
    [34].N.Moumen, P.Veillet, M.P.Pileni. Controlled preparation of nanosize cobalt ferrite magnetic particles. J.Magn.Magn.Mater. 1995.149:67-71.
    [35].李建,赵保刚.《磁性液体-基础与应用》.重庆:西南师范大学出版社.2002.11.
    [36].李德才.《磁性液体理论及应用》.北京:科学出版社.2003.8
    [37].E. Auzans, D. Zins, M. Maiorov, et al. Properties of Mn-Zn ferrite nanoparticles for aqueous ferrofluids, English translation:Magnetohydrodynamics. 1999. 35:59-66.
    [38]. Marcelo H.Sousa, Francisco A.Tourinho and Joel C.Rubim. Use of Raman micro-spectroscopy in the characterization of MFe2O4(M=Fe,Zn) electric double layer ferrofluids. Journal of Raman Spectroscopy. 2000. 31:185-191.
    [39]. F.A.Tourinho,R.Frank, R.Massart. Aqueous ferrofluid based on manganese and coblt ferrites. J.Mater.Sci,1990. 25:3249-3254.
    [40].金属铁磁性液体稳定性研究,柳学全,滕荣厚,周寿增,王润,刘思林,徐教仁,钢铁研究学报,1995,7:37-42.
    [41].马小娟.可调粘滞性CoFe_2O_4离子型磁性液体的制备及磁致光透射变化特性研究:[硕士学位论文].重庆:西南师范大学,2005.
    [42].白浪.CoFe_2O_4离子型磁性液体制备及其特性研究:[硕士学位论文].重庆:西南大学,2007.
    [43].P.C. Scholten. Colloid Chemistry of Magnetic Fluids. Thermomechanics of Magnetic Fluid. Bristol, Hemisphere Publishing Corporation, 1978.
    [44].Yimin Xuan, Meng Ye, Qiang Li. Mesoscale simulation of ferrofluid structure. Inter. J. Heat. Mass.Trans.2005.48:443-2451.
    [45].C.Menager, L.Belloni, V.Cabuil, et al. Osmotic equilibrium between an ionic magnetic fluid and electrostatic lamellar phase. Langmuir. 1996. 12: 3516-3522.
    [46].Armin D.Ebner, James A.Ritter, Harry J.Ploehn. Magnetic Hetero-flocculation of Paramagnetic Colloidal Particles J.Coll.Inter. Sci. 2000. 225:39-46.
    [47].A.F.C. Campos, F.A. Tourmho, G.J. da Silva, et al. Calculation of the pair potential interaction in electric double-layered magnetic fluids: a quantitative analysis of the pH-dependent phase diagram. J.Magn.Magn.Mater. 2005. 289: 171-173.
    [48].W.B. Russel, D.A. Saville, W.R. Schowalter. Colloidal Dispersions. UK:Cambridge University Press.1989.
    [49].B. Fischer, B. Huke, M. L(u|¨)cke, et al. Brownian relaxation of magnetic colloids. J. Magn. Magn. Mater, 2005, 289: 74-77.
    [50].Tao Hou, Renkou Xu, Anzhen Zhao. Interaction between electric double layers of kaolinite and Fe/Al oxides in suspensions. Colloids and Surfaces A. 2007. 297:91-94.
    [51].Sotira Yiacoumi,David A.Rountree, Costas Tsouris. Mechanism of Particle Flocculation by Magnetic Seeding. J.Coll. Inter. Sci. 1996. 184:477-488.
    [52].E.G. Megalios, N. Kapsalis, J. Paschalidis, et al. A simple optical device for measuring free surface deformations of nontransparent liquids. J.Coll.Inter.Sci. 2005. 288:508-512.
    [53].E.L. Bizdoacaa, M. Spasovaa, M. Farlea, et al. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell. J.Magn.Magn.Mater. 2002. 240:44-46.
    [54].A.F.C. Cwampos, F.A. Tourinho, G.J. da Silva, et al. Nanoparticles superficial density of charge in electric doublelayered magnetic fluid: A conductimetric and potentiometric approach. Eur.Phys. J.E,2001. 6:29-35.
    [55].Peter C.Jordan. Association phenomena in a ferromagnetic colloid. Mole.Phys. 1973.25:961-973.
    [56].E.A.Elfimova. Fractal aggregates in magnetic fluids. J.Magn.Magn.Mater. 2005. 289:219-221.
    [57].B.Dale, C.M.Sorensen, K.J.KJabunde. Magnetic properties of ultrafine iron particles. Phys. Rev. B. 1992. 45: 9778-9787.
    [58].Toshihiko SATO, Tetsuo IIJIMA, Masahiro SEKI, et al. Magnetic properties of ultrafine ferrite particles. 1987, 65:252-256.
    [59].Everett E.Carpenter. Iron nanoparticles as potential magnetic carriers. J.Magn.Magn.Mater. 2001.225:17-20.
    [60].Susamu Taketomi,Rosetta V. Drew, Robert D.shull. Peculiar magnetic aftereffect of highly diluted frozen magnetic fluids. J.Magn.Magn.Mater. 2006. 307:77-84.
    [61].J.P.Huang, Z.W.Wang, C.Holm. Structure and magnetic properties of Mono- and bi-dispersed ferrofluids as revealed by simulations. J.Magn.Magn.Mater. 2005. 289:234-237.
    [62].Olga Kuznetsova, Alexey Ivanov. Spontaneous orientational ordering in magnetic fluids. J.Magn. Magn.Mater. 2005 289:226-229.
    [63].Victor Stepanov. Magnetoviscosity and relaxation in magnetic fluids. J.Magn.Magn.Mater. 2003. 258-259:443-445.
    [64].Michael Widom, Jos(?) A.Miranda. Viscous Fingering Pattern in Ferrofluids. J.Stat.Phys. 1998. 93:411-426.
    [65].Yu.Zubarev,L.Yu.Iskakova. Chain-like structures in polydisperse ferrfluids. Physica A. 2004. 335: 314-324.
    [66].Sofia S. Kantorovich. Chain aggregate structure in polydisperse ferrofluids: different application. J. Magn. Magn. Mater., 2005. 289: 203-206.
    [67].C. Sanchez, J.M.Gonzalez-MirandJa.,J.Tejada. Computer simulation of slow magnetic relaxation. J. Magn. Magn. Mater., 1995. 140-144: 365-366.
    [68].A.P. Warren,, P.C.Hobby, G.N. Coverdale, et al. Computer simulation of the orientation dynamics of a 2D array of fine magnetic particles in an opposed-poles orientation magnet. J.Magn.Magn. Mater. 1996. 155 :117-119.
    [69].Arkadiusz Jozefczak. Acoustic properties of PEG biocompatible magnetic fluid under perpendicular magnetic field. J.Magn.Magn.Mater. 2005.293:240-244.
    [70].Andrzej Skumiel, Tomasz Homowski, Arkadiusz Jozefczak. Investigation of magnetic fluids by ultrasonic and magnetic methods. Ultrasonics. 2000. 38:864-867.
    [71].G.M. Sutariyaa,l, D. Vincenta, B. Bayard, et al. Magnetic DC field and temperature dependence on complex microwave magnetic permeability of ferrofluids: effect of constituent elements of substituted Mn ferrite. J.Magn.Magn.Mater. 2003.260 :42-47.
    [72].B.Hoffmann, W.K(o|¨)hler. Reversible light-induced cluster formation of magnetic colloid. J.Magn. Magn.Mater. 2003. 262:289-293.
    [73].M.F.Islam, K.H.Lin, D.Lacoste, et al. Field-induced structures in miscible ferrofluids suspensions with and without latex spheres. Phys. Rev. E., 2003. 67: 021402(1-8).
    [74].R.R.Kellner, W.K(o|¨)hler. short-time aggregation dynamics of reversible light-induced cluster formation in ferrofluids. J. Appl.Phys. 2005. 97:034910(1-6).
    [75]. J. Crange, The Magnetic Properties of Solids, London: Edward Arnold,1977.
    [76].L.E_尼尔生著:范庆荣宋家琪译.《聚合物流变学》.北京:科学工业出版社,1983.
    [77].R.E.Rosensweig. Ferrohydrodynamics. Cambridge: Cambridge University Press. 1985.
    [78].J.Popplewell, L.Saknini, J.Magn.Magn.Mater., 1995 (149): 72-78.
    [79].Papell.S.S. Space Daity 211.Nov (1963) U.S. Patent 3.215, 572 (1965).
    [80].黄彦,李建,马小娟.水基自形成CoFe_2O_4磁性液体的零磁场粘滞特性.化学物理学报,2004,17:757-761.
    [81].E.K. Rusetski, E.K. Ruuge, Magnetic fluid as a possible drug carrier for thrombosis, J. Magn. Magn. Mater., 1990 (85): 229-302.
    [82].A.Yu. Zubarev, L.Yu. Iskakova, Structural transformations in polydisperse ferrofluids, Colloid J., 2003, 65: 778-787.
    [83].Arne T. Skjeltorp. Condensation and ordering of colloidal spheres dispersed in a ferrofluid. Physica A. 1995. 213: 30-40.
    [84]黄彦.CoFe_2O_4自形成磁性液体的基本物性及场致光透射变化研究:[硕士学位论文].重庆:西南师范大学,2005.
    [85].黄彦,李建,杨国凤等.CoFe_2O_4自形成磁性液体场致结构化对磁化的影响.化学物理学报.2005.18:585-588.
    [86].B. Huke, M. Lucke, Magnetic properties of colloidal suspensions of interacting magnetic particles, Rep. Prog. Phys., 2004, 67: 1731-1768.
    [87].JJ. Miles, R.W. Chantrell, Model of magnetic-field-induced ordering in dispersions of fine paramagnetic particles, J. Appl. Phys., 1985,57(1):4271-4273.
    [88].Susamu Takctomi, Rosettav. Drew, Robert D.Shull Peculiar magnetic afereffect of highly diluted frozen magentic fluids..J.Magn.Magn.Mater.2006,307: 77-84.
    [89] J. Li, Y. Huang, X.D. Liu, Y.Q. Lin, L. Bai, Q. Li, Effect of aggregates on the magnetization property of ferrofluids: A model of gaslike compression, Sci. Tech. Adv. Mater., 2007, 8: 448-454.
    [90].P.J. Camp, GN. Patey, Structure and scattering in colloidal ferrofluids, Phys. Rev. E, 2000,62:5403-5408.
    [91].C. Xu, Y.Q. Ma, P.M. Hui, F.Q. Tong, Microstructures in srrongly interacting dipolar fluids, J. Chin. Phys. Lett., 2005,22: 485-488.
    [92].Qiang Li, Jian Li, Xianmin Chen, Shaona Han, Rongli Gao, Study of coercive force for yZnFe_2O_4-(1-y)CoFe_2O_4 mixed magnetic nanoparticles system, J. Exper. Nanosci. 2008, 3: 245-247.
    [93].Jian Li, Xiaodong Liu, Yueqiang Lin, et al. Field-induced transmission of light in ionic ferrofluids of tunable viscosity. J.Phys.D:Appl.Phys. 2004. 37:3357-3360.
    [94].J.Li, X.D.Liu, Y.Q.Lin, et al. Relaxation behavior measuring of transmitted light through ferrofluids film. Appli.Phys.B. 2006. 82:81-84.
    [95].Chin-Yih Hong. Optical switch devices using the magnetic fluid thin films J.Magn.Magn.Mater. 1999.201:178-181
    [96].Li Jian, Zhao Baogang, Lin Yueqiang, et al. Transmission of Light in Ionic Ferrofluid[J]. J. Appl. Phys., 2002, 92: 1125-1128.
    [97].白浪,李建,黄彦,等.磁性液体的场致透光特性[J].西南师范大学学报(自然科学版),2006,31:66-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700