烟道气辅助SAGD提高稠油开发效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽河中深层超稠油蒸汽吞吐后期转SAGD技术经过10年的科研攻关,先导试验于2005年取得成功,已进入工业化推广阶段。辽河油田杜84块馆陶油层属于巨厚型顶水油藏,在SAGD过程中,随着蒸汽腔在纵向上的扩展,顶水下方沥青壳逐渐软化,最终造成顶水突破,蒸汽腔坍塌后SAGD阶段结束。深入研究能够改善蒸汽腔扩展和延长SAGD阶段时间的措施,对SAGD中后期改善开发效果及提高采收率具有重要意义。
     论文从辽河超稠油性质出发,进行了烟道气在超稠油中的溶解特性实验,实验结果表明烟道气在超稠油中的溶解度随压力的增大而增大,超稠油饱和压力下体积系数随溶解烟道气量的增大而增大,对应的密度随溶解烟道气量的增大而减小;在实验温度范围内,烟道气在超稠油中溶解度较小,体积系数较小;实验温度范围内烟道气溶解于超稠油后,油气混合物粘度有较大幅度下降,降粘率基本呈线性增加。针对超稠油基本参数及注入烟道气膨胀实验对实验数据进行了流体相态拟合,为数值模拟提供了可信的参数。根据杜84块馆陶油层油藏地质特征、多组分流体相态拟合生成的流体组分数据,结合SAGD数值模拟技术,建立了烟道气辅助SAGD数值模拟模型。针对常规SAGD技术,进行了不改变注汽方式的开发效果预测,对注入井(蒸汽)轮注可行性进行了分析。针对烟道气辅助SAGD技术,进行了烟道气/蒸汽伴注可行性分析,对蒸汽/烟道气注入比和注入总量进行了优选,对注入井(蒸汽/烟道气)轮注可行性进行了分析。常规SAGD和烟道气辅助SAGD数值模拟结果表明注入井(蒸汽或蒸汽/烟道气)轮注对于改善SAGD过程中蒸汽腔的扩展及延长SAGD阶段时间效果明显。随着辽河油田SAGD规模的不断扩大,烟道气辅助SAGD开发的应用前景广阔。
After 10 years’scientific research, pilot project of SAGD(steam assisted gravity drainage) technique transferred from later stage of huff and puff technique achieved success in 2005, both of the two techniques mentioned above are being used for developing semi-deep and deep ultra-heavy oil in Liaohe Oilfield. Now SAGD technique is experiencing popularization stage into industrialization. There is huge top water in Guangtao Formation, Du84 Block in Liaohe Oilfield. As steam chamber rises in vertical direction during the process of SAGD, the heat of steam will soften bitumen shell under top water. Finally, top water will intrude into the steam chamber, which leads to the collapse of steam chamber and failure of SAGD. Research on methods, which can improve the condition of steam chamber and prolong the lifetime of SAGD is quite necessary for IOR in wind-down process of SAGD.
     Solubility of flue gas in ultra-heavy oil is researched by laboratory experiment. The results indicate that solubility of flue gas improves along with pressure, volume factor at saturation pressure improves and density of mixture decreases along with solubility of flue gas. At the range of experiment temperatures, solubility of flue gas in ultra-heavy oil and volume factor are both quite small. After soluble of flue gas, viscosity of ultra-heavy oil decreases, and viscosity reducing ratio is nearly linearly improved. According to basic parameters of ultra-heavy oil and results of swelling test, fluid phase behavior was matched, which can provide believable parameters for simulation. The simulation model of flue gas assisted SAGD was created according to the basic geological data, property data of compositions, and conventional SAGD simulation model. For conventional SAGD technique, development effectiveness of former development manner was forecasted, feasibility of steam or steam/flue gas injector alternative injection is analyzed. For flue gas assisted SAGD technique, feasibility of steam/flue gas co-injection was analysed, steam/flue gas ratio and total amount were optimized. Simulation results indicate alternative injection is useful in improving expand condition of steam chamber and prolonging lifetime of SAGD. With the popularization of SAGD, flue gas assisted SAGD has a very bright future in application.
引文
[1]杨立强.中深层超稠油直井-水平井组合SAGD理论和实践研究[D].中国石油大学华东博士论文,2007.
    [2]曾烨,周光辉.水平井蒸汽辅助重力驱双模研究初探[J].石油勘探与开发,1994,21(5):70-75.
    [3]杨洪,姚远勤,俞晓林.稠油油藏水平井与直井组合布井方式数模研究[J].特种油气藏,1996,3(3):11-15.
    [4]刘尚奇,包连纯,马德胜.辽河油田超稠油油藏开采方式研究[J].石油勘探与开发,1999,26(4):80-81.
    [5]石在虹,杨乃群,刘德铸,等.蒸汽辅助重力驱生产井井筒举升工况分析[J].石油学报,1999,20(6):82-86.
    [6]由世江,周大胜,孟强.超稠油水平裂缝辅助重力泄油蒸汽吞吐开采试验[J].特种油气藏,2000,7(SO):41-44.
    [7]吴宁,石在虹,张琪,等.蒸汽辅助重力驱油举升井筒工况模拟计算[J].石油大学学报,2000,24(2):30-32.
    [8]吴向红,叶继根,马远乐.水平井蒸汽辅助重力驱油藏模拟方法[J].计算物理,2000,19(6):540-552.
    [9]赵田,高亚丽,乙广燕,等.水平井蒸汽辅助重力驱数学模型的建立与求解方法[J].大庆石油地质与开发,2005,24(2):40-41
    [10]杨乃群,常斌,程林松.超常规稠油油藏改进的蒸汽辅助重力泄油方式应用研究[J].中国海上油气(地质),2003,17(2):123-127.
    [11]刘学利,杜志敏,韩忠艳,等.单井蒸汽辅助重力驱启动过程动态预测模型[J].西南石油学院学报,2004,26(4):34-37.
    [12]郭建国,乔晶.水平井开发杜84块馆陶超稠油油藏方案优化及应用[J].钻采工艺,2005,28(3):43-46.
    [13]孟巍,贾东,谢锦男,等.超稠油油藏中直井与水平井组合SAGD技术优化地质设计[J].大庆石油学院学报,2006,30(2):44-46.
    [14]武毅,张丽萍,李晓漫,等.超稠油SAGD开发蒸汽腔形成及扩展规律研究[J].特种油气藏,2007,14(6):40-43.
    [15]杨立强,陈月明,王宏远,等.超稠油直井-水平井组合蒸汽辅助重力泄油物理和数值模拟[J].中国石油大学学报(自然科学版),2007,31(4):64-69.
    [16]王选茹,程林松,刘双全,等.蒸汽辅助重力泄油对油藏及流体适应性研究[J].西南石油学院学报,2006,28(3):57-60.
    [17]张方礼,张丽萍,鲍君刚,等.蒸汽辅助重力泄油技术在超稠油开发中的应用[J].特种油气藏,2007,14(2):70-72.
    [18]王志超,李树金,周明升.杜84断块馆陶油藏双水平SAGD优化设计[J].中外能源,2008,13(2):48-51.
    [19]耿立峰.辽河油区超稠油双水平井SAGD技术研究[J].特种油气藏,2007,14(1):55-57.
    [20] Gao Yongrong, Liu Shangqi, Shen Dehuang, et al. Improving Oil Recovery by Adding N2 in SAGD Process for Super-heavy Crude Reservoir with Top-Water. SPE114590.
    [21] Albahlani A M, Babadagli T. A critical review of the status of SAGD: where are we and what is next? SPE113283.
    [22] Serhat Canbolat, Serhat Akin. A study of steam assisted gravity drainage performance in the presence of noncondensable gases. SPE75130.
    [23] David H S. Law.Disposal of carbon dioxide, a greenhouse gas, for pressure maintenance in a steam-based thermal for recovery of heavy oil and bitumen. SPE86958.
    [24] A.S.Bagci, S.Olushola. Performance analysis of SAGD wind-down process with CO2 injection. SPE113234.
    [25] Caroline Heron, Harald Thimm, Laura Sullivan, et al. NCG behavior in SAGD-A numerical simulation analysis. SPE/PS/CHOA 117647.
    [26] J. D. M. Belgrave, B. Nzekwu, H. S. Chhina. SAGD optimization with air injection. SPE106901.
    [27] Butler R M, Stephens D J. The gravity drainage of steam heated to parallel horizontal wells [J]. JCPT, April-June, 1981:90-96.
    [28] Griffin P J, Trofimenkoff P N. Laboratory studies of the steam assisted gravity drainage process [J]. AOSTRA J. of Research, 1986, 2(4):197-203.
    [29] Joshi S D. A laboratory study of thermal oil recovery using horizontal wells[C]. SPE 14916, 1986 SPE/DOE 5th Symposium on Enhanced Oil Rercovery, Tulsa, OK, April20-23, 1986.
    [30] Yang G, Bulter R M. Effects of reservoir heterogenetics on heavy oil recovery by steam assisted gravity drainage[C]. 40th Annual Technical Meeting of CIM, Banff, 1989.
    [31] Sasaki K, Akibayashi S, Yazawa N, et al. Numerical and experimental modeling of the steam assisted gravity drainage (SAGD) process [J]. JCPT, 2001, 40(1):44-50.
    [32] Butler R M. Rise of interfering steam chambers [J]. JCPT, 1987, 26(3):70-75.
    [33] Sugianto S, Butler R M. The production of conventional heavy oil reservoirs with bottom water using steam assisted gravity drainage[C]. Paper 89-40-43, The Petroleum Society of CIM, 1990.
    [34] Chow L, Butler R M. Numerical simulation of the steam assisted gravity drainage process (SAGD)[J]. JCPT, 1996, 35(6):55-62.
    [35] Sasaki K, Akinayashi S, Yazawa N, et al. Microscopic visualization with high resolution optical-fiber scope at steam chamber interface on initial stage of SAGD process[C]. SPE 75241, SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK, 13-17 April 2002.
    [36] Das S. Improving the performance of SAGD[C]. SPE/PS/CIM/CHOA 97921, 2005 SPE International Thermal Operations and Heavy Oil Symposium, Alberta, Canada, 1-3 November 2005.
    [37] Ito Y, Ipek G. Steam-fingering phenomenon during SAGD process. SPE97729.
    [38] Bagci A S. Experimental and simulation studies of SAGD process in fractured reservoirs. SPE99920.
    [39] Sedaee Sola B, Rashidi F. Application of the SAGD to an Iranian carbonate heavy oil reservoir. SPE100533.
    [40] Sasaki K, Akibayashi K, Kosukegawa H, et al. Experimental study of initial stage of SAGD process using 2-Dimensional scaled model for heavy oil recovery. SPE37089.
    [41] Shin H, Polikar M. Optimizing the SAGD process in three major Canadian oil-snads areas. SPE95754.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700