利用动植物油脂制备高附加值粘弹性表面活性增稠剂
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压裂液是油田开发压裂施工的工作液,其性能的优劣对施工效果起着关键性的作用。目前以粘弹性表面活性剂为增稠剂的压裂液体系主要使用季铵盐型表面活性剂,存在成本较高,抗温能力差的缺点。
     本文探索分别以动植物油脂和N-胺丙基吗啉为基础原料构造粘弹性表面活性剂的憎水基和亲水基,合成具有一定耐温能力的粘弹性表面活性剂压裂液体系。
     首先采用气相色谱法测定动植物油脂中脂肪酸的组成和分布。以脂肪酸、甲醇为原料,对甲苯磺酸为催化剂,制备系列高级脂肪酸甲酯样品。然后将动植物油脂转化成混合高级脂肪酸甲酯,经比对分析得出动植物油脂中脂肪酸的组成和分布情况。
     以单一高级脂肪酸为原料分别合成了酰胺叔胺盐型、Gemini型、甜菜碱型和非离子型四种粘弹性表面活性剂。考察了影响体系粘度的因素,如主剂浓度、盐加量、盐类型、脂肪酸类型等。结果表明:(1)Gemini型表面活性剂耐温性能差,而酰胺叔胺盐型、甜菜碱型、非离子型粘弹性表面活性剂均具有良好的耐温性能。(2)高级脂肪酸类型对粘弹性表面活性剂压裂液体系性能影响较大。相同条件下(表面活性剂浓度为5 wt%,n(酰胺叔胺):n(H2SO4)=2:1, 2 wt%NaCl,温度98℃),硬脂酸系列酰胺叔胺体系的其粘度达到173 mPa·s,耐温性能明显优于油酸和棕榈酸系列。在表面活性剂浓度为5 wt%,温度98℃条件下,硬脂酸、油酸、棕榈酸系列甜菜碱型压裂液体系的粘度分别为117 mPa·s,21 mPa·s和198 mPa·s,以棕榈酸系最好。对于非离子型表面活性剂压裂液体系,在表面活性剂浓度为5 wt%,温度95℃条件下,剪切粘度分别为210 mPa·s、243 mPa·s和348 mPa·s,以棕榈酸系最好。
     以大豆油、花生油、棉油、菜籽油、棕榈油、葵花籽油等油脂为原料分别合成了酰胺叔胺胺盐型、甜菜碱型、非离子型表面活性剂。结果表明:(1)以花生油和大豆油制备的酰胺叔胺型表面活性剂体系的耐温性能较差,低于90℃。(2)以花生油制备的甜菜碱型粘弹性表面活性剂浓度为4 wt%的压裂液体系的耐温能力可达90℃。(3)在表面活性剂浓度为5 wt%,温度95℃条件下,棕榈油、花生油、棉油、葵花籽油、大豆油、菜籽油系列非离子粘弹性表面活性剂压裂液体系的粘度依次为306 mPa·s、255 mPa·s、219 mPa·s、198 mPa·s、90 mPa·s和78 mPa·s。
     本文探索了酸化油、地沟油等废旧油脂的利用新途径。以酸化油和地沟油为原料制备的表面活性剂在与与其它油脂系表面活性剂系列以及助剂复配后,体系具有良好的耐温性能。浓度为5 wt%的酸化油-棕榈油(1:1)复合体系在95℃下的粘度达到180 mPa·s,而酸化油-棕榈酸基-硬脂酸基(2:1:1)复合体系在95℃下的粘度达到171 mPa·s,地沟油-棕榈油(1:1)复合体系在95℃下的粘度达到102 mPa·s,均能满足地层温度100℃下的压裂施工。
Fracturing fluids is one of the working liquids in fracturing operation. Its performance plays an important role to the effectiveness of fracturing operation. Most of the viscoelastic surfactant-based fracturing fluids consist of a quaternary ammonium salt surfactant, showing low high-temperature stability and high cost.
     In this thesis, a novel series of viscoelastic surfactants (VES) were prepared by using of vegetale oil and N-aminopropylmorpholine as the hydrophobic and hydrophilic groups, respectively.
     The composition and distribution of fatty acid in vegetable/animal oil were investigated by GC analysis. A series of fatty acid methyl ester (FAME) samples were systhesized from free fatty acids in the presence of p-toluenesulfonic acid. Vegetable/animal oils were transformed into their corresponding mixed FAMEs. The acid composition and distribution in each of the vegetal/animal oil were obtained through comparison of the mixed FAMEs with individual free fatty acid FAME.
     Four types of VES, including amide-amine salt, Gemini, betaine and non-ionic VES were prepared from free fatty acids. Main factors that influence the system viscosity, such as concentration of VES, the type and the amount of inorganic salt additives and the type of fatty acids, were investigated. The following results were concluded: (1) Amideamine salt-type, betaine-type and non-ionic surfactant-type VES show satisfactory high-temperature performance, while Gemini-type VES exhibits poor high-temperature stability. (2) The type of fatty acids show considerable effects to the properties of VES fluids. Under the same condition (concentration 5%, molar ratio n(amideamine):n(H2SO4)=2:1, 2 wt% NaCl and 98℃), the viscosity of steric acid series VES reaches upto 173 mPa·s, better than oleic acid and palmitic acid series. For betaine-type VES at concentration of 5% and 98℃, the fluid viscosities are 117 mPa·s, 21 mPa·s and 198 mPa·s, for steric, oleic and palmitic acid series, respectively. Among them palmitic acid series is the best. For non-ionic type VES, the viscosities for the above three acid series are 210 mPa·s, 243 mPa·s and 348 mPa·s, again palmitic acid shows the best results under the same condition.
     Sterting from vegetable oils, including soybean oil, peanut oil, cotton seed oil, rapeseed oil, palm oil and sunflower oil etc, three types of VES (amide-amine salt, betaine, non-ionic) were prepared. Results show that: (1) Amideamine salts VES made from peanut oil and soybean oil exhibit poor high-temperature performance(lower than 90℃). (2) Betaine-type VES made from peanut oil can be used up to 90℃at concentration of 4%. (3) At concentration of 5% and 95℃, the viscosities for VES fluids, in the order of palm, peanut, cotton, sunflower, soybean ans rapeseed oil, are as follows: 306 mPa·s, 255 mPa·s,219 mPa·s, 198 mPa·s, 90 mPa·s and 78 mPa·s.
     In addition, as a novel application for waste or used oils, VES from acidified oil and cooked oil were prepared and utilized as fracturing fluid thickening reagents. When mixed with other series VES and certain additives, the fluid system showed satisfactory high-temperature properties. For example, the viscosity for 5% VES fluid from acidified oil and palm oil(1:1) can reach to 180 mPa·s at 95℃, while the number for an acidified oil-palmitic acid-steric acid VES fluid mixture is 171 mPa·s. The viscosity for a cooked oil-palm oil VES mixed system is 102 mPa·s at 95℃. The aforementioned results indicate that both acidified oil and cooked waste oil can be used to make VES for fracturing fluids.
引文
[1]蒋金宝,林英松,阮新芳,等.低渗透油藏改造技术的研究及发展[J].钻采工艺,2005,28(5): 50-53
    [2]陈大钧,陈馥.油气田应用化学[M].北京:石油工业出版社,2006:114-146
    [3]吴信荣,彭裕.压裂液、破胶剂技术及其应用[M].北京:石油工业出版社,2003:51-57
    [4]陈馥,王安培,李凤霞,等.国外清洁压裂液的研究进展[J].西南石油学院学报,2002,24 (5): 66-67
    [5] Pope D., Britt L., Constein V.,and Leung L., Field study of Guar Removal from Hydraulic Fractures[A]. SPE International Symposium on Formation Damage Control[C].Lafayette,LA,USA,Feb.14-15
    [6] Pope D.S., Leung L.K, Gulbis J., and Constien V.G., Effects of Viscous Fingering on Fracture Conductivity[A].SPE Annual Technical conference and Exhibition[C].New Orleans,LA,USA, Sept. 25-28
    [7] Roodhart L., Kuiper T.O., and Davies D.R., Proppant Rock Impairment During Hydraulic Fracturing[A].SPE Annual Technical Conference and Exhibition,New Orleans[C].LA,USA,Oct.5-8
    [8] Willberg D.M., Card R.J., Britt L. K., Sammuel M., England K.W., Cawiezel K.E., and Krus H., Determination of the effect of Formation Water on Fracture Fluid Cleanup Through Field Testing in the East Texas Cotton Valley[A].SPE Annual Technical Conference and Exhibition[C]. San Antonio, TX,U.S.A.,Oct .5-8
    [9] Samuel M.,Card R.J.,Nelson E.B.,et al.,Polymer-free fluid for hydraulic fracturing[A].SPE 38622,1997: 553-559
    [10] Zhang K.W., Bill O.N., Fracturing Liquid[P].WO:083946.2001-8-11
    [11] Brown J.B., Card R.J., Nelson E.B., Methods of fracturing subterranean formations[P].US:6412561, 2002-7-2
    [12]陈馥,刘彝,王大勇.阳离子表面活性剂基压裂液的地层伤害性研究[J].钻井液与完井液,2007, 24(6):62-65
    [13] Daniel P.V., Well treatment fluids and methods for the use thereof[P].US:6509301B1,2003-1-21
    [14] Whalen R.T., Viscaelastic surfactant fracturing fluids and a method for fracturing subterranean formations[P].US:6035936,2000-3-14
    [15] Samuel M.M., Card R.J., Nelson E.B., et al. Polymer-free fluid for hydraulic fracturing applications.SPE:59478,1999-12
    [16]刘新全,易明新,赵金钰,等.粘弹性表面活性剂(VES)压裂液[J].油田化学,2001,18(3): 273-277
    [17]杨振周,周广才,卢拥军,等.粘弹性清洁压裂液的作用机理和现场应用[J].钻井液与完井液. 2005,22(1):48-50
    [18]刘俊,郭拥军,刘通义.粘弹性表面活性剂研究进展[J].钻井液与完井液.2003,20(3):47-51
    [19]李圣涛,陈馥,陈建波,等.粘弹性表面活性剂溶液流变性及评价方法[J].精细石油化工进展.2005,6(12):26-28
    [20]卢拥军,方波,房鼎业,等.粘弹性表面活性剂胶束体系及其流变特性[J].油田化学,2003,20(3): 291-294
    [21]魏新宇,刘建民,关富佳.无聚合物压裂液作用原理及性能影响因素概述[J].新疆石油学院学报. 2003,15(4):48-51
    [22] Whalen R.T., Vicoelastic surfactant fracturing fluids and a method for fracturing subterranean formations[P].US:6035936,2000-3-14
    [23] Huang T.P., Crews J.B., Treadway J.H., Fluid loss control agents for viscoelastic surfactant fluids[P]. US:7550413,2009-6-23
    [24] Hughes T., Jones T.G.J., Tustin G.J., Zhou J., Aqueous viscoelastic fluid[P].US:7410934B2, 2008-8-19
    [25] Fu D.K., Dismuke K., Davies S., et al. Viscoelastic fluids containing nanotubes for oilfield uses[P]. US:7244694,2007-7-17
    [26] Welton T.D., Gdanski R.D., Pauls R.W., Methods and compositions for controling the viscosity of viscoelastic surfactant fluids[P].US:7261160,2007-8-28
    [27] Welton T.D., McMechan D.E., Bryant J.E., Surfactant-based fluid loss control agents for surfactant gels and associated fluids and methods[P].US:7413013,2008-8-19
    [28] Colaco A., Marchand J.P., Li F., Dahanayake M.S., Viscoelastic surfactant fluids having enhanced shear recovery rheology and stability performance[P]US:7279446,2007-10-9
    [29] Treybig D.S., Taylor G.N., Moss D.K., Viscoelastic surfactant composition having improved reheological properties and method of using for treating subterranean formations[P].US:7244698B2, 2007-7-17
    [30] Gurmen.M.N., Fredd.C.N., Viscoelastic surfactant rheology modification[P].US:0129262A1,2007-6-7
    [31] Couillet I., Hughes.T., Aqueous viscoelastic fluid[P].US:7427583,2008-9-23
    [32] Chen Y.Y., Lee J.C., Hanson E., Viscoelastic surfactant fluid systems comprising an aromatic sulfoname and methods of using same[P].US:7507693,2009-3-24
    [33]江波,张灯,李东平,等.耐温VES压裂液SCF的性能[J].油田化学,2003,20(4):332-334
    [34]崔会杰,李建平,王立中.清洁压裂液室内研究[J].钻井液与完井液,2005,22 (3):41-43
    [35]陈凯,蒲万芬.新型清洁压裂液的室内合成及性能研究[J].中国石油大学学报(自然科学版), 2006,30(4):107-110
    [36]李圣涛,压裂用粘弹性表面活性剂的合成及其结构与性能研究,成都:西南石油大学,2006
    [37]陈馥,刘力铭,王安培,等.无聚合物清洁压裂液的实验室研究[J].精细化工,2002,19(增): 54-56
    [38]郑云川,赵立强,刘平礼,等.两性表面活性剂芥子酰胺丙基甜菜碱的合成与应用[J].钻井液与完井液,2006,23(3):4-7
    [39]刘俊,粘弹性表面活性剂流变性及其作为清洁压裂液的可行性研究[D].成都:西南石油学院, 2003
    [40]李曙光,表面活性剂压裂液机理、压裂设计及评估技术研究[D].成都:西南石油学院,2005
    [41]刘伟,刘建权.VES-80清洁压裂液实验研究[J].钻井液与完井液,2004,21(3):16-18
    [42]王翔,高分子量表面活性剂清洁压裂液[D].成都:西南石油学院,2005
    [43]苏俊霖,郭拥军,王翔.粘弹性清洁压裂液室内性能研究[J].内蒙古石油化工,2006,2:4-5
    [44]杨彪,吴伟,杨超.新型清洁压裂液(VES-SL)的研制及现场应用[J].天然气技术. 2007,1(2): 49-51
    [45]宋永波,天然植物油脂在化妆品中的应用[J].日用化学品科学.2009,32(8):4-6
    [46] Canakci M., The potential of restaurant waste lipids as biodiesel feedstocks[J]. Biodiesel Technology, 2007, 98:183-190
    [47]张璇,余汉毫,单习章,等.餐饮业废油脂有害成分及特征指标研究[J].广州环境科学, 2004,19(4):29-31
    [48] Enweremadu C.C., Mbarawa M.M., Technical aspects of production and analysis of biodiesel from used cooking oil-Areview[J],Renewable and sustainable energy reviews,2009,13:2205-2224
    [49] Abigor R.D., Marmer W.N., Foglia T.A.,et al. Production of Cocoa Butter-like Fats by the Lipase- Catalyzed Interesterrification of Palm Oil and Hydrogenated Soybean Oil[J].Am Oil Chem.Soc.,2003,80:1193- 1196
    [50] Murphy M.G.., Wright V.,Ackman R.G., et al. Diets enriched in menhaden fish oil, seal oil,or shark liver oil have distinct effects on the lipid and fatty-acid composition of guinea pig heart[J].Mol Cell Biochem.,1997,177:257-269
    [51] Marshall P.A., Vandepeer J.M., Pant I.,et al. The development and evaluation of secondary food reference materials for the determination of cholesterol,fatty acids and selected water-soluble vitamins in foods[J].Food Chem.,1997,58(3):269-276
    [52] Gordon M,H., Miller L.A.D., Development of steryl ester analysis for the dectection of admixtures of vegetable oils[J]. Am Oil Chem.Soc.,1997,74:505-510
    [53] Adiof R.O., Copes L.C., Emken E.A., Analysis of the monoenoic fatty acid distribution in hydrogenated vegetable oils by silver-ion high-performance liquid chromatography[J].Am Oil Chem.Soc.,1995,72: 571-574
    [54] Azadmard-Damirchi S., Dutta P.C., Stability of minor lipid components with emphasis on phytosterols during Chemical Interesterification of a blend of refined olive oil and palm stearin[J]. Am Oil Chem. Soc.,2008,85:13-21
    [55]巫淼鑫,邬国英,韩瑛,等.六种食用植物油及其生物柴油中脂肪酸成分的比较研究[J].中国油脂,2003,28(12):65-67
    [56]李长秀,唐忠,杨海鹰.气相色谱法测定生物柴油样品中脂肪酸甲酯和脂肪酸甘油酯的含量[J].分析测试学报,2005,24(5):66-68
    [57]吴苏喜,官春云.菜籽生物柴油合成反应程度的气相色谱法判断[J].中国油脂,2006,31(8): 67-69
    [58]王翠艳,侯冬岩,回瑞华,等.葵花籽中脂肪酸的气相色谱-质谱分析[J].食品科学,2006,27(11): 428-429
    [59]陈英明,吕鹏梅,陆继东,等.地沟油酶法制生物柴油的GC-MS测定[J].化学与生物工程,2007,24 (10):72-74
    [60]吴洪新,凌凤香,王少军,等.棕榈油生物柴油脂肪酸甲酯气相色谱-质谱分析[J].当代化工,2007,36(5):538-540

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700