蒸汽在油藏多孔介质中的热质传递机理及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国石油开采基本特点是,主力油田进入开发中后期,油田综合含水率上升,成本增高,效益下降,增产难度大。我国已进入以提高原油采收率(Enhanced Oil Recovery简称EOR)为主的三次采油阶段,提高采收率技术将发挥越来越重要的作用。发展注蒸汽采油技术是提高采收率的有效手段,但此项技术能耗高,受生产成本制约大。因此,开展蒸汽在油藏多孔介质中的热质传递机理研究及数值模拟将对油田制定科学开采方案、提高油藏开采效果、降低开采成本提供理论及技术支持。
     本文结合国家自然科学基金项目(编号:50776014),开展针对蒸汽在油藏多孔介质中的传热传质机理研究,对蒸汽在油藏多孔介质中的传热过程做了详细探讨,并对蒸汽驱采油过程进行了定性和定量分析,探讨了影响油藏多孔介质热质传递的诸参数及其函数关系,建立了油藏多孔介质热质传递的耦合数学模型。在建模过程中,首次提出了油藏热质过程分析的“黑箱分析模型”和“白箱分析模型”,并指出储层温度场数学模型方程式应称为热平衡方程,而不是普遍意义上的能量守恒方程。应用油藏热采数值模拟软件模拟蒸汽驱油过程,通过方案对比得出不同孔隙度对温度的影响,对模拟输出结果进行分析,得到蒸汽凝结区域和蒸汽凝结前缘位置的判定方法。首次对指进现象进行了分类,提出了热-粘性指进的概念,总结出稠油油藏温度对指进现象的影响规律。本文的工作将为油藏三次采油提高采收率技术提供理论依据及技术支持。
The basic characteristics of Chinese petroleum exploration are: the major oilfields enter into the afternoon of development life; the total water cut of oilfields raises up; oil production cost rises; oilfield economic benefits decrease; increase production of oilfields is difficult. China comes into the tertiary oil recovery, which is mainly for enhanced oil recovery (EOR), and enhanced oil recovery technology will play a more and more important role in the future. Steam injection technology is an effective method for EOR. But it has high energy consumption and big production cost. For all these reason, the study on heat and mass transfer mechanism and numerical simulation of steam in reservoir porous media can provide theoretical basis and technical support for designing development plan, improving reservoir production effect, and reducing production cut.
     Supported by the National Natural Science Foundation of China (50776014), this paper studies on heat and mass transfer mechanism of steam in reservoir porous media, discusses in detail heat transfer process of steam in reservoir porous media, makes quantitative analysis and qualitative analysis on steam flooding process, discusses various parameters and their functional relationship which influence on heat and mass transfer process of reservoir porous media, builds coupled mathematical models for heat and mass transfer in reservoir porous media. When we build models,“black box model”and“white box model”are first proposed in heat and mass process analysis of reservoir porous media. We also point out that the equations of mathematical model of reservoir temperature field are thermal energy balance equations, and should not be called energy conservation equations in general. Steam flooding process has been simulated by CMG-STARS software. And the influence of varied porosity on temperature is derived through scheme comparison. Then the judgement methods for determining position of vapor condense region and vapor condense frontier has been obtained via analysis on simulation results. Fingering phenomenons are classified for the first time, the concept of thermo-viscous fingering is proposed, the influence rules of temperature on fingering for heavy oil reservoir are summarized. Our work will give theoretical basis and technical support for enhanced oil recovery technology.
引文
[1]胡浩,余晓洁.2009环境资源立法与可持续发展国际论坛在京举行.新华网,http://news.xinhuanet.com/politics/2009-10/15/content_12241209.htm,2009年10月15日.
    [2]马一太,吕灿仁.能源利用可持续发展的热力学分析.热科学和技术,2004,3(1):86~90.
    [3]刘建军,裴桂红.我国渗流力学发展现状及展望[J].武汉工业学院学报,2002,3:99~100.
    [4]陈中涛.石油市场波动对我国经济安全的影响[J].中国能源,2003,4:8~12.
    [5]钱伯章.中国石油生产、进口和进口依存度的统计与预测[J].炼油技术与工程,2008,03:47.
    [6]王晶.中国石油安全的经济学分析[D].中央民族大学,2006:24~27.
    [7]张磊.中国石油安全分析与对策研究[D].天津大学,2007:42~43.
    [8]雷海超.原油进口依存度逼近50%专家:应上调成品油价格.中国产经新闻,http://news.xinhuanet.com/fortune/2008-06/05/content_8316983.htm,2008年06月05日.
    [9]邱林.原油对外依存度破50%未必是好事.中华工商时报,http://news.xinhuanet.com/fortune/2007-06/26/content_6291754.htm,2007年06月26日.
    [10] 2009年中国能源产业发展成就报告(建国60周年系列报告).能源电力,http://www.7zbg.com/freport/free/3199.htm,2009年10月08日.
    [11]王弥康.热力采油与提高原油采收率[J].油气采收率技术,1994,(1):6~11.
    [12] Huang C L. Governing differential equation of drying in porous media [J]. NSF Report, 1978.
    [13]徐海明.非结构网格化的生成及其在多孔介质相变换热数值模拟中的应用[D].西安交通大学博士论文,2001.
    [14] J H Kassen. Practical consideration in developing numerical simulators for thermal recovery [J]. Journal of Petroleum Science and Engineering, 1996, 15:281-290.
    [15]何更生.油层物理[M].北京:石油工业出版社,1994:25~35.
    [16]雷树业,杨荣贵,杜建华.非饱和含湿多孔介质传热传质的渗流模型研究[J].清华大学学报(自然科学版),1999,(6):56~59.
    [17] Menegus D K, Udell K S. A study of steam injection into water saturated capillary porous media [J]. ASME HTD. 1985, (46):31-42.
    [18] Cheng P. Heat transfer in geothermal systems. Advance in Heat Transfer,1978, 14:l~105.
    [19]林瑞泰.多孔介质传热传质引论[M].北京:科学出版社,1995:1~52.
    [20]司广树,姜培学,李勐.单相流体在多孔介质中的流动和换热研究[J].承德石油高等专科学校学报,2000,(4),4~9.
    [21] Richard L A, Capillary conduction of liquids through porous medium [J]. Physics, 1931, l:318-333.
    [22] Sherwood Y K. Application of the theoretical diffusion equation to the drying of solids [J]. Tran AICb E, 1931, 27:190-202.
    [23] Ceaglske N H, Hougen O A. Drying granular solids [J]. Int Eng Chem, 1937, 29:805-813.
    [24] Gurr C G, Marshall T J, Hutton J T. Movement of water in soil due to a temperature gradient [J]. Soil Sei, 1952, 74:335-345.
    [25] Philip J R. The theory of infiltration I.The infiltration equation and its solution [J]. Soil Sci, 1957, 83:345-357.
    [26] Luikov A V. Theory of energy and mass transfer [M]. Prentico-Hall, Englewood Cliffs, N J, 1961.
    [27] Whitaker S. A theory of drying in porous media in advance heat transfer [M]. Academic Press,1977.
    [28]黄晓明.多孔介质相变传热与流动及其若干应用研究[D].华中科技大学,2004.
    [29] Terzaghi K. Theoretical soil Mechanics [M]. Wiley, New York, 1943.
    [30] Biot M A. General theory of three dimensional consolidation [J]. J. Appl. Phys. 1941, 12:155-164.
    [31] Biot M A. General solution of the equation of elasticity and consolidation for a porous material [J]. J. Appl. Mech. 1956, 78:91-96.
    [32] Biot, M.A. Theory of elasticity and consolidation for a porous anisotropic solid [J]. J. Appl. Phys. 1954, 26:182.
    [33] Biot M A. Theory of deformation of porous viscoelastic anisotropic solid [J]. J Appl Phys, 1956, 27(5):203-215.
    [34] Rice J.R., and Cleary M.P. Some basic stress diffusion solution for fluid saturated elastic porous media with compressible constituents [J]. Rev. Geophysics and Space Physics. 1976, 14(2):227-241.
    [35] Zienkiewicz, O.C. and Shiomi, T. Dynamic behavior of saturated porous media: the generalized Biot formulation and its numerical solution [J]. Int. J. Num. and Analy. Meth. In Geomech. 1984, 8:71-96
    [36] Verruijt A. Elastic storage of aquifers [A]. In: Flow Through Porous Media[C]. De wiest R J M. New York: Tiho Wiley, 1969.
    [37] Hubbert M K, Pulbey W W. Pole of fluid pressures in mechanies of overthrust faulting [J]. Bull Geol Soc Ame,1956, 70:115-166.
    [38] Frank F C. On dilatancy in relation to seismic sources [J]. Rev Geophys, 1965, 3:484-503.
    [39] Wong S K. Analysis and implications of in-situ stress changes during steam stimulation of cold lake oi1sands [J]. SPE Reservoir Engineering, Feb, 1988, 55~61.
    [40] Settal A, Puchyr P J, et al. Partially decoupled modeling of hydraulic fracturing processes [J]. SPE Production Engineering,Feb, 1990:37-44.
    [41] Bear J. Flow and Contaminant Transport in Fractured Rock [M]. San Dieo: Academic Pr Inc, 1993.
    [42] Wu Yanqing, Zhang Zhuoyuan. Research on lumped parameter model of coupled seepage and stress field in fracture rock mass [A]. Proc 7th Int Congr. Assoc of Engineering Geology [C]. LISBOA, PORTUGAL, 1995:4601-4604.
    [43] Oda M. An equivalent continuum model for coupled stress and fluid flow analysis in jointed in rock masses [J]. Water Resource Res, 1986, 22(13):1845-1856.
    [44] Tim Douglas J R. Finite difference methods for two phase Incompressible flow in porous media [J]. Siam J Numer Anal, 1983:20(4):618-696.
    [45] Mokhtar Kirane, Said Kouachi. Global solutions to a system of strongly coupled reaction diffusion equations [J]. Nonlinear Analysis, Theory, Methods and Applications, 1996, 26(8):1387-1396.
    [46] Didier Lasseux, Michel Quintard. Determination of permeability tensor for two plase flow in homogeneous porous media: Theory [J]. Transport in Porous Media, 1996, 24:107-137.
    [47]董平川.油气储层流固耦合理论、数值模拟及应用[D].沈阳:东北大学,1998:74~81.
    [48]冉启全,顾小芸.弹塑性变形油藏中多相渗流的数值模拟[J].计算力学学报,1999,16(1):24~31.
    [49]胡玉坤,丁静.多孔介质内部传热传质规律的研究进展[J].广东化工,2006,33(11):44-47.
    [50]黄涛,杨立中.隧道裂隙岩体温度-渗流耦合数学模型研究[J].岩土工程学报,1999,21(5):554~558.
    [51]赖远明,刘松玉,邓学钧.寒区大坝温度场和渗流场耦合问题的非线性数值模拟[J].水利学报,2001,33(2):26~31.
    [52]王新建.堤坝集中渗漏温度场探测模型及数值实验[D].河海大学博士学位论文,2006,7:554~558.
    [53] Jianhua Zhou, Yuwen Zhang, J.K.Chen. Numerical simulation of compressible gas flow and heat transfer in a microchannel surrounded by solid media [J]. Heat and fluid flow, 2007, 12:1-8.
    [54]白兰兰,陈建生.王新建.裂隙岩体热流模型研究[J].人民黄河,2007,29(5):61-63.
    [55] Thomas Loimer. Linearzed description of the non-isothermal flow of a saturated vapor through a micro-porous membrane [J]. Journal of membrane scienc, 2007, 301:107-117.
    [56] Lewis. Finite element modeling of two phase heat and fluid flow in deforming porou media [J]. Trans porous media, 1989, 4:319-334.
    [57] Yu-Shu Wu, Karsten Pruess. Numerical simulation of non-isothermal multiphase tracer transport in heterogeneous fractured porous media [J]. Advances in water resources, 2000, 23:699-723.
    [58] H.Class, R.Helmig, P.Bastian. Numerical simulation of non-isothmal multiphase multicomponent processes in porous media.1.An efficient soulution technique [J]. Advances in water resources, 2002, 25:533-550.
    [59] H.Class, R.Helmig. Numerical simulation of non-isothmal multiphase multicomponent processes in porous media.2.Applications for the injection of steam and air [J]. Advances in water resources, 2002, 25:55-564.
    [60] Tanuja Sheorey, K.Muralidhar. Isothermal and non-isothermal oil-water flow and viscous fingering in a porous medium [J]. Intermational journal of thermal sciences, 2003, 42:665-676.
    [61]计有权.二氧化碳混相驱多组分多相非等温数学模拟[M].吉林大学博士学位论文,2005.
    [62]胡绍彬.注蒸汽油藏二氧化硫影响地层孔隙度和渗透率的研究[M].大庆石油学院硕士研究生学位论文,2003.
    [63]成庆林,刘扬,项新耀.二维非等温渗流驱动势场的传递分析[J].哈尔滨工业大学学报,2005,37(5):646~648.
    [64]成庆林,刘扬,项新耀.油水两液相一维非等温渗流的传递分析[J].工程热物理学报,2006,27(1):20~22.
    [65]刘晓旭.三场耦合的数学模型研究及有限元解法[M].西南石油学博士学位论文,2005:39~46.
    [66]陈波,李宁,禚瑞花.多孔介质的变形场-渗流场-温度场耦合有限元分析[J].岩土力学与工程学报,2001,20(4):467~472.
    [67]刘建军,冯夏庭.我国油藏渗流-温度-应力耦合的研究进展[J].岩土力学,2003,8:645~650.
    [68]刘建军,刘先贵.开发过程中三场耦合的数学模型[J].特种油气藏,2001,8(2):31~33.
    [69]王自明.油藏热流固耦合模型研究及应用初探[D].西南石油学博士论文,2002:13~24.
    [70] William K.S Pao, Roland W.Lewis. Three-dimentional finite element simulation of three-phase flow in a deforming fissured reservoir [J]. Computer methods in applied mechanics and engineering, 2002, 191:2631-2659.
    [71] Bear, J., Corapcioglu, M. Y. A mathematieal model for comsolidation in athermoelastic aquifer due to hot water injection or pumping [J]. Water Resource Res. 1981, 7:723-736.
    [72] Jing, L. Tsang C.F. et al. Int. J. Rock Mech. Min. Sci & Geomech. Abstr. 1995,32:389-398.
    [73]刘建军,梁冰,章梦涛.非等温条件下煤层瓦斯运移规律研究[J].西安科技学院学报.1999,(04).
    [74]王自明,杜志敏.变温条件下弹塑性油藏中多相渗流的流固耦合数学模型与数值模拟[J].石油勘探与开发,2001,28(6):68~72.
    [75]王自明,杜志敏.油藏热流固耦合问题的有限元方法[J].西南石油学院学报,2002,24(2):28~30.
    [76] Lewis R W. Finite element modeling of three phase flow in deforming saturated oi1 reservoirs [J]. Int J Num Anal Methods Geomech, 1993, 17:577-598.
    [77] Gutierrez, M. and Makura, A. Coupled HTM mode11ing of cold water injection infractured hydrocarbon reservoirs [J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.1997, 34(3/4):429.
    [78]成庆林,刘扬,王志国,项新耀.蒸汽驱热-水力-力学-化学的耦合机制研究[A].2009年中国工程热物理学会,编号:091025.
    [79]成庆林,刘扬,王志国,项新耀.稠油热驱过程的多场耦合分析[A].2009年中国工程热物理学会,编号:091026.
    [80]吴迪祥,张继芬李虎君.油层物理[M].石油工业出版社,1994:62~259.
    [81]张继芬,赵明国,刘中春.提高石油采收率基础[M].石油工业出版社,1997:28~30.
    [82]郭尚平,刘磁群,黄延章,阎庆来,于大森.渗流力学的新进展[J].力学进展.1986,16(4):443~444.
    [83] Willman B. T., etal, Trans. AIME, 222(1961):681.
    [84] Volek C. W., et al, 46th. Annu. SPE of AIME Fall Meeting, No. SPE-3441.
    [85] Wu C. H., etal, 50th Annu. SPE of AIME Fall Meeting, No. SPE-5569.
    [86]АбасовМ.Т.,чдр.,ДАНАэССР., 32, 1(1976):59-63.
    [87]ЧехалюкЭ.Б.,идр.,Аэ.НХ, 5(1954).
    [88]КусаковМ.М.,Сб.гр.Всес.Совт.по.Хлмизпперерабстксвефтч,Изд.АНАзССР(1953).
    [89]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社,1998,12(3):2~3.
    [90]陈月明.注蒸汽热力采油[M].中国石油大学出版社,2006:53.
    [91]刘文章.稠油注蒸汽热采工程[M].石油工业出版社,1997:106.
    [92]刘静.微米/纳米尺度传热学[M].北京:科学出版社,2001.
    [93]袁士义,宋新民,冉启全编著.裂缝性油藏开发技术[M].石油工业出版社,2004,12:334.
    [94]薛世峰,仝兴华,岳伯谦,董波,宋惠珍.地下流固耦合理论的研究进展及应用[J].石油大学学报(自然科学版),2000,24(02):110~114.
    [95] Bowen R M. Theory of Mixtures [A]. In: Continuum Physics (Vol3) [C]. Eringen A C.New York: Academic Press, 1976.
    [96] Bear J.多孔介质流体动力学[M].李竞生,陈崇希译.北京:建筑工业出版社,1984.
    [97]翟云芳主编.渗流力学[M].石油工业出版社, 2003,9(2):10.
    [98]李守德.不可逆热力学理论在多孔介质渗流问题中的应用研究[D].浙江大学, 2003:18.
    [99]李传亮,孔祥言.多相物体的连续介质假设方法[J].岩石力学与工程学报,1999,18(4):441~443.
    [100]江涛.基于细观力学的脆性岩石损伤_渗流耦合本构模型研究[D]河海大学,2006:20.
    [101] SAndréZaoui. Matériaux hétérogènes et composites[M]. 2000. Teaehing material of I’Ecole Polytechnique, Fnaree.
    [102] AndréZoaui. Continuum micromechanics: Suvre [J]. Journal of engineering mechanics. 2002, 128(8):808-816.
    [103]刘向君,罗平亚.岩石力学与石油工程[M].北京:石油工业出版社,2004.
    [104]楼一珊,金业权.岩石力学与石油工程[M].北京:石油工业出版社,2006.
    [105]俞琛.实位移与虚位移[J].大学物理,1993,12(6):45~46.
    [106]范继美.分析力学中的虚位移[J].云南师范大学学报(自然科学版),1985,2:40~43.
    [107]常利.虚位移与功的原理[J].北京师范学院学报(自然科学版),1989,10(2):69~71.
    [108]杨桂通.弹塑性力学[M].北京:人民教育出版社,1980:10.
    [109]徐秉业,刘信声.应用弹塑性力学[M].清华大学出版社,1995.
    [110]黄涛,陈一立.工程岩体地下水渗流-应力-温度耦合作用数学模型研究[J].西南交通大学学报,1999,34(1):11~15.
    [111]刘建军,刘先贵,胡雅礽.低渗透储层流固耦合渗流规律研究[J].岩石力学与工程学报,2002,21(1):46~51.
    [112]冉启全,顾小芸.油藏渗流与应力耦合分析[J].岩土工程学报,1998,20(2):69~73.
    [113]黎水泉,徐秉业.双重介质裂缝型油藏油水两相流动与固体变形耦合数学模型[J].天然气工业,1999,19(4):43~45.
    [114]白茅,刘天泉.孔隙裂隙弹性理论及引用导论[M].北京:石油工业出版社,1999.
    [115]柴军瑞.混凝土坝渗流场与稳定温度场耦合分析的数学模型[J].水力发电学报,2000,(1):27~35.
    [116]赵阳升.矿山岩石流体力学[M].北京:煤炭工业出版社,1994.
    [117]南建林.混凝土的温度-应力耦合本构关系[J].清华大学学报,1997,37(6):87~90.
    [118]赵阳升.冻结壁温度场与弹塑性应力场的耦合分析[J].煤炭学报,1985(2):15~156.
    [119] O.D. Makinde. Entropy-generation analysis for variable-viscosity channel flow withnon-uniform wall temperature [J]. Applied engrgy, 2008, 85:384-393.
    [120] Maria J. Martin-Alfonso, Francisco J. Martinez-Boz.Pressure temperature viscosity relationship for heavy petroleum fraction [J]. Applied engrgy, 2007, 86:227-233.
    [121]张烈辉.实用油藏模拟技术[M].北京:石油工业出版社,2004:39~40.
    [122]张风禄(译).传热的有限差分方程计算[M].北京:治金工业出版社,1982:14~34.
    [123]洪世铎.油藏物理基础[M].石油工业出版社,1985: 60~82.
    [124] M.N. Islam and J. Azaiez. Nonlinear Simulation of Thermo-Viscous Fingering in Nonisothermal Miscible Displacements in Porous Media. U. of Calgary, Society of Petroleum Engineers (2006), 103243.
    [125]常文,张毅.稠油热采技术新进展[M].北京:石油工业出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700