蓝宝石的冲击光辐射及其高压相图
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铝单晶(蓝宝石)在常温常压下具有优异的力学强度和光学透明性,在冲击作用下也具有较高的冲击阻抗,因此它常在冲击测温和激光速度干涉实验技术中被用作窗口材料。经掺杂铬离子后,它还常被用作静高压DAC实验中的压力标定材料。研究蓝宝石在高温高压下物理性质对于高压技术的发展和对其地学应用具有重要意义。
     在冲击压缩状态下蓝宝石的光学性质,一直受到动高压研究领域的广泛关注,因为它在冲击测温实验中直接关系到对实测热辐射信号的正确解读。在冲击压力低于85GPa的低压区,前人曾经报道过蓝宝石的热辐射发光效应,但在100GPa以上压力区,蓝宝石的发光性质还未见到比较系统的研究报道。本文采用无氧铜作为基板对蓝宝石在124-172GPa压力区的热辐射进行了较为系统的实验研究。并取得了以下有意义的结果:
     1、在所研究压力区间内均发现蓝宝石材料具有明显的冲击发光效应。实测的光谱辐亮度与波长的关系表现为灰体辐射特征,辐射温度基本上不随压力而变化,其值约为4000K,分析后,认为这种“异常”的高温辐射效应源自受压蓝宝石中的不均匀绝热剪切带中的高温区热辐射,与前人根据P≤85GPa实验结果对蓝宝石热辐射机理的分析意见一致。
     2、实测光谱辐亮度随蓝宝石样品中冲击压缩厚度增加而增强的趋势表明,在本文实验条件下的蓝宝石具有较大的光学厚度,其光吸收系数值较小。根据实验结果拟合得到的光吸收系数α_W与加载压力P的关系式为:式中α_W单位为cm~(-1),P的单位为GPa。并发现同一压力下α_W不随波长而变。
     3、与静高压实验和理论研究确定的蓝宝石相图相对照,发现本文测得的124-172GPa区的蓝宝石冲击辐射温度明显低于前人在P≤85GPa区测量的蓝宝石辐射温度值(约低1000K),而且呈突然下降趋势,在P-T图上的位置大致对应于蓝宝石相图中从Rh_2O_3),(Ⅱ)相变化到CaIrO_3相的相边界上,故推测在冲击压缩下蓝宝石中不均匀生成的局域绝热剪切带结构及其热性质与它的固相结构类型有关。
     4、对由铜基板和蓝宝石两个热辐射源组成的实验测量复合热辐射场中提取出铜基板热源温度和发射率的信息做了尝试,得到了初步的结果。此项研究对发展金属材料的冲击温度测量技术有重要意义。
The monocrystalline alumina (sapphire) has excellent mechanical and optical transparent properties at ambient condition, and relative high impedance under shock compression, thus it is commonly used as optical window for shock temperature measurement or velocity measurement by laser interference. In static high pressure experiments, alumina doped with Cr~(3+) is also used as pressure calibrant, and in some engineering applications it is one of important ceramic materials. In addition, alumina is believed to be one of the major constituent in the Earth's mantle. Therefore, research on the high-pressure properties of sapphire is significant for further achievements in the high pressure science and technology, for the constraint of the Earth's model, and for concerned engineering applications.
     Optical properties of sapphire under shock compression, such as optical absorption and emission, have been especially focused by the researchers working on the subjects of dynamic high pressure science and technology, because they will directly affect the interpretation for the shock-induced radiation from the contact interface of metal/sapphire. At the low pressure range of several tens of GPa, people had observed obvious emission of shocked sapphire, however, the transparency or emission properties of sapphire under strong shock compression is still an open question. In this thesis, in virtue of the low emission property of the oxygen-free copper baseplate, the self-emission effects of monocrystalline alumina under Mega bar pressures are investigated, and some advances are made in the following aspects:
     1、Obvious shock-induced emission from c-cut sapphire has been found in the pressure range of 124-172GPa, the wavelength dependence of the radiance is relating to the gray body's radiation character, and the apparent temperature of the emission is fitted to be about 4000K. In this thesis, the high-temperature thermal radiations are attributed to the local melt shear banding induced by one-dimensional shock compression;
     2、The correlation between the observed temperature of the heterogeneous thermal radiation and the phase diagram of sapphire is founded. The temperatures of alumina in CaIrO_3 phase region at 124-172Gpa are lower by about 1000K than those inα-phase below 85GPa, this discrepancy is attributed to the phase transition induced by shock compression. Combining with the characteristics of P-T equilibrium curve for the solid-solid transformation, we supposed a three-phase point at 4000K and 80-125GPa in alumina's phase diagram;
     3、The intensity of apparent radiation linearly rises with the thickness of the shocked part of sapphire sample; It shows that the c-cut sapphire under shock still has a considerable optical transparent thickness or a relative small absorption coefficient. The values of absorbance at different wavelengths are determined by use of the time-dependence radiance curves, and they are found insensitive to the radiation wavelength. Therefore, the sapphire's optical emission induced by shock waves in our experiments can be treated by the gray-body model. The relationship between the absorption coefficient and shock stress is obtained by fitting the emission history curve, which is described by:α_W=0.503-0.022P+1.829*10~(-4)*P~2 (α_W in cm~(-1), P in GPa)According to this formula, the effect of sapphire's optical transparency on the temperature measurement can be quantitatively accessed.
     In summary, the characteristics of shock-induced emission in the crystalline alumina are systemically studied in this thesis, and the obtained results are of great importance. The present work shows that sapphire gives off obvious thermal radiation from heterogeneous shear banding at 120-172GPa, with a color temperature of about 4000K, and the temperature is found to be related to the structural transition of sapphire. Therefore, when the sapphire is used as optical window to measure the shock temperature, the optical emission and the structural transformation of sapphire will affect not only the observed intensity but also the history of the radiation signal. The functional relationship between the absorption coefficient and shock pressure can be applied to make a correction to the measurement temperature.
引文
[1] G.Subhash and M.Klecka, Ductile to brittle transition depth during single-grit scratching on alumina ceramics, Journal of the American Ceramic Society,2007, 90:3704
    [2]O.Guillon,J.Rodel and R.K.Bordia, Effect of green-state processing on the sintering stress and viscosity of alumina compacts, Journal of the American Ceramic Society,2007, 90 : 1673
    [3] R.Roman, I.Canadas and J.Rodriguez, Solar sintering of alumina ceramics:Microstructural development , Solar Energy ,2008,82 : 893-902
    [4] M.Seleman, Effects of nickel distribution on the strengthening and toughening of alumina ceramics, Journal of Materials Science and Technology, 2008,24:723-728
    [5] M.Klecka, G.Subhash, Grain size dependence of scratch-induced damage in alumina ceramics, Wear, 2008, 265:612-619
    
    [6] L.Ivanova,N.Savanina and A.Malygina, Improving the thermal-shock resistance of high-alumina ceramics, Glass and Ceramics,1979,36 :518-520
    
    [7] E. Zaretsky,G. Kanel, Evidence of ductile response of alumina ceramic under shock wave compression, Applied Physics Letters, 2002,81:192
    [8]B.Hahn and H.Lee,Effect of environmental factors on thermal shock behaviour of polycrystalline alumina ceramics,Journal of Materials Science,1999,34:3623-3630
    [9]高涛,罗顺忠,马美仲,谢安东,朱正和 谌晓洪,AlXOy(x=1-2,y=1-3)分子几何结构与稳定性的DFT研究,物理学报,2006,55:1113-1118.
    [10]W.R.Panero,Aluminum incorporation in stishovite,Geophysical Research Letters,2006,33:L20317
    [11]W.Panero,S.A.Knutson and L.Stixrude,Al_2O_3 incorporation in MgSiO_3perovskite and ilmenite,Earth and Planetary Science Letters,2006,252:152
    [12]F.Zhang and A.Oganov,Mechanisms of Al~(3+) incorporation in MgSiO_3post-perovskite at high pressures,Earth and Planetary Science Letters,2006,248(1-2):69-76
    [13]R.Caracas and R.E.Cohen,Effect of chemistry on the stability and elasticity of the perovskite and post-perovskite phases in the MgSiO_3-FeSiO_3-Al_2O_3 system and implications for the lowermost mantle,Geophysical research letters,2005,32:16310
    [14]Y.Xu,T.J.Shankland and B.T.Poe,Laboratory-based electrical conductivity in the Earth's mantle,Journal of Geophysical Research 2000,105:27865-27875
    [15]Y.Xu,C.McCammon,B.T.Poe,The effect of alumina on the electrical conductivity of silicate perovskite, Science, 1998, 282:922 - 924
    
    [16] R.Hide and J. O.Dickey, Earth's variable rotation, Science, 1991,253:629-637
    
    [17] M. Dumberry, Geodynamic constraints on the steady and time dependent inner core axial rotation, Geophysical Journal International,2007,172(2):886-895
    [18] W. Kuang, J. Bloxham, On the dynamics of topographical core-mantle coupling, Physics of the Earth and Planetary Interiors, 1997, 99: 289-294
    
    [19] M. Stix, P.H. Roberts, Time-dependent electromagnetic core-mantle coupling, Physics of the Earth and Planetary Interiors, 1984, 36: 49 - 60
    
    [20] D.N. Stewart, F.H. Busse, K.A. Whaler et.al, Geomagnetism,Earth rotation and the electrical conductivity of the lowermantle, Physics of the Earth and Planetary Interiors, 1995, 92 :199-214
    
    [21] R. Holme, Electromagnetic core - mantle coupling, I, explaining decadal changes in the length of day, Geophysical Journal International, 1998,132:167-180
    
    [22] R. Holme, Electromagnetic core - mantle coupling: II. Probing deep mantle conductance, in: M. Gurnis, M.E. Wysession, E.Knittle, B.A. Buffett (Eds.),The Core-Mantle Boundary Region,AGU, 1998, pp. 139-151
    
    [23] J. Wicht, D. Jault, Electromagnetic core-mantle coupling for laterally varying mantle conductivity, Journal of Geophysical Research.2000,105:23569-23578
    [24] T. Katsura, K. Sato, E. Ito, Electrical conductivity of silicate perovskite at lower-mantle conditions, Nature 1998,395:493-495
    [25] G.F.Raiser,J.LWise, R.J.Clifton,et al. Plate impact response of ceramics and glasses, Journal of Applied Physics, 1994,75(8):3862-3869
    [26] B.Holm, R. Ahuja, Y. Yourdshahyan, et al., Elastic and optical properties of a- and k-Al_2O_3, Physical Review B,1999,59(12):777-787
    [27] N. K. Bourne, The onset of damage in shocked alumina, Proceedings of the Royal Society A,2001,457: 2189-2205
    [28] C.Zhang, Deformation mechanisms and damage in α-alumina under hypervelocity impact loading, Journal of Applied Physics, 2008,103(8) :083508
    [29] G.Subhash and M. Klecka,Ductile to brittle transition depth during single-grit scratching on alumina ceramics, Journal of the American Ceramic Society, 2007,90(11):3704-3707
    [30] N.K.Bourne,On the Hugoniot elastic limit in polycrystalline alumina.Journal of Applied Physics, 2007,l02(7):73514
    [31] J.Bass, B. Svendsen ,T.J.Ahrens, in High Pressure Research in Mineral Physics (eds Manghnani, M. H. & Syono,Y.) 393-402 (Geophys.Monogr.Ser. 39,American Geophysical Union,Washington DC, 1987)
    [32] W.J. Nellis and C.S. Yoo, Issues concerning shock temperature measurements of iron and other metals, Geophysical research letters, 1990,95:21749-21752
    [33] S.T.Weir, A.C.Mitchell, W.J. Nellis, Electrical resistivity of single-crystal Al_2O_3 shock-compressed in the pressure range 91-220 GPa (0.91-2.2 Mbar),Journal of Applied Physics,1996, 80: 1522-1525
    [34] J.Hama and K. Suito, The evidence for the occurrence of two successive transitions in Al_2O_3 from the analysis of Hugoniot data, High Temperature High Pressure,2002, 34: 323-334
    [35] J.L. Pelissier and D.Partouche-Sebban, Pyrometry measurements on shock-heated bismuth using PMMA and sapphire windows, Physica B, 2005,364: 14-28
    [36] G. Kathleen, G.Bass, D. Jay, et al, Shock temperature of stainless steel and a high pressure-high temperature constraint on thermal diffusivity of A1_2O_3,High pressure science and technology, 1993, 309:963-966
    [37]Y.E.Gorbaty, G.V.Bondarenko, S.T.Mileiko, Soldered high-pressure high-temperature sapphire window, Review of Scientific Instruments, 1994, 65(8):2739-2740
    [38]T.J.Ahrens, K.G. Holland, G.Q.Chen, Shock temperatures and the melting point of iron, the tenth American Physical Society topical conference on shock compression of condensed matter, 1998, 429: 133-136
    [39] L.M.Barker and R.E.Hollenbach, Shock-Wave Studies of PMMA, Fused Silica, and Sapphire, Journal of Applied Physics, 1970, 41 (10): 4208-4226
    [40] S.C.Jones, B.A.Vaughan and Y.M. Gupta, Refractive indices of sapphire under elastic, uniaxial strain compression along the a axis, Journal of Applied Physics,2001, 90:4990-4996
    
    [41] S.C.Jones,M.C.Robinson and Y.M.Gupta, Ordinary refractive index of sapphire in uniaxial tension and compression along the c axis, Journal of Applied Physics,2003, 93:1023
    
    [42] T.Kobayashi, T.Sekine, X.Li, and Y.Yamashita, Observation of wavelength shifts in ruby under shock compression to 36 GPa by time-resolved luminescence spectroscopy, Physical Review B, 2004, 69:541081
    [43] E.Gaudry, A.Kiratisin, P.Sainctavit, C.Brouder and F.Mauri, Structural and electronic relaxations around substitutional Cr~(3+) and Fe~(3+) ions in corundum,Physical Review B, 2003, 67: 094108
    [44] H.K. Mao,P.M. Bell, J.W. Shaner, et al. Specific volume measurements of Cu,Mo, Pd, and Ag and calibration of the ruby R1 fluorescence pressure gauge from 0.06 to 1 Mbar, Journal of Applied Physics,1978, 49:3276-3283
    [45] J. Xu, H. K. Mao and P.M.Bell, High pressure ruby and diamond fluorescence:Observations at 0.21 to 0.55 terapascal, Science,1986, 232:1404-1406
    [46] A.P. Jephcoat, R.J.Hemley, H.K. Mao, X-ray diffraction of Cr~(3+): A1_2O_3 to 175 GPa. PhysicaB,1988, 150:115-121
    [47] N.Funamori, R. Jeanloz,High-pressure transformation of Al_2O_3, Science, 1997,278:1109-1111
    [48]J.W.Taylor,Residual temperatures of shocked copper,Journal of Applied Physics,1963,34(9):2727-2731
    [49]P.A.Urtiew and R.Grover,Temperature deposition caused by shock interactions with material interfaces,Journal of Applied Physics,1974,45(1):140-145.
    [50]R.Grover and P.A.Urtiew,Thermal relaxation at interfaces following shock compression,Journal of Applied Physics,1974,45(1):146-152
    [51]B.H.Billings,American Institute of Physics Handbook,3rd.New York,1972:6-79
    [52]P.A.Urtiew,Effect of shock loading on transparency of sapphire crystals,Journal of Applied Physics,1974,45(8):3490-3493
    [53]R.G.McQueen and D.G.Isaak,Characterizing windows for shock wave radiation studies,Journal of Geophysical Research,1990,95(21):753
    [54]周显明,汪小松,李赛男,李俊,李加波,经福谦,强冲击压缩下LiF,Al_2O_3和LiTaO_3单晶的透光性,物理学报,2007,56(8):4965
    [55]D.E.Hare,D.J.Webb,S.H.Lee and N.C.Holmes,Optical extinction of sapphire shock-loaded to 250-260 GPa,edited by M.D.Furnish,N.N.Thadhani.Y.Horie,12th APS Topical Conference,Atlanta,Georgia(USA),2002
    [56]O.V.Fat'yanov,R.L.Webb and Y.M.Gupta,Optical transmission through inelastically deformed shocked sapphire: stress and crystal orientation effects,Journal of Applied Physics, 2005, 97 (12): 123529-123529
    [57] T.R. Harrison, Radiation Pyromrtry and its Underlying Principles of Radiant Heat Transfer. Wiley, New York, 1960: 155
    
    [58] N.C.Holmes,C.S.Yoo and E.See, Shock-Induced Optical Changes in A1_2O_3 at 200 GPa: Implications for Shock Temperature Measurements in Metals New York: Elsevier Science, edited by Yoo, G. S. See and E See (1992)
    [59]K.Kondo, Window problem and complementary method for shock-temperature measurements of iron, edited by S.C. Schmidt, J.W.Shaner, G.A. Samara et al., High Pressure Science and Technology Colorado (USA), 1993, Colorado Springs, 1994
    [60]D.E.Hare, N.C.Holmes and D.J.Webb, Shock-wave-induced optical emission from sapphire in the stress range 12 to 45 GPa: Images and spectra, Physical Review B, 2002, 66 (1):014108
    [61]D.Partouche-Sebban, J.L.Pelissiera, W.W.Anderson, et al., Investigation of shock-induced light from sapphire for use in pyrometry studies, Physica B ,2005, 364: 1-13
    [62]Z.W.Wang, H.H.Mao and S.K.Saxena, The melting of corundum under high pressure conditions, Journal of Alloys & Compounds, 2000, 299: 287-291
    [63] H.Tan and T.J.Ahrens, Shock Temperature Measurements for Metals, High Pressure Research, 1990, 2:159-182
    [64] D.R.Schmitt, T.J.Ahrens and B.Svendsen, Shock-induced melting and shear banding in single-crystal NaCl,Journal of Applied Physics,1988,63:99
    [65]D.E.Grady,Dynamic failure of brittle solids,in Fracture and Damage in Quasibrittle Structures,edited by Z.P.Bazant et al.,E&FN Spon (1994):259-272
    [66]T.W.Wright,The physics and Mathematics of Adiabatic Shear bands.Cambridge University Press,London,2002
    [67]孙广年 于旭东,蓝宝石晶体的生长方向研究,人工晶体学报,2006,35(2):431-434
    [68]高书娟 苏铁健,李树奎,王富耻,张朝晖,几种不同硬度和热导率的钢中的绝热剪切带特征,材料工程,2004,7:6-9
    [69]白以龙,徐永波,动态载荷下剪切变形局部化、微结构演化与剪切断裂研究进展,力学进展,2007,37(4):496-516
    [70]G.I.Kanel,S.V.Razorenov,K.Baumung et al.,Dynamic yield and tensile strength of aluminum single crystals at temperatures up to the melting point,Journal of Applied Physics,2001,90:136
    [71]汤文辉,非金属晶体导热系数与压力和温度相关性,高压物理学报,1994,8(2):125-108
    [72]D.R.Schmitt and T.J.Ahrens,Temperatures of shear instabilitie and their relationship to fusion curves,Geophysical Research Letters,1983,10:1077-1080
    [73]K.Kondo and T.J.Ahrens,Heterogeneous shock-induced thermal radiation in minerals,Physics and Chemistry of Minerals,1983,9:173-181.
    [74]K.Kondo,T.J.Ahrens and A.Samaoka,shock-induced spectra of fused quartz,Journal of Applied Physics,1983,54:4382-4385.
    [75]经福谦,陈俊祥,动高压原理与技术.国防工业出版社,北京,2006.
    [76]经福谦,实验物态方程导引,第二版.科学出版社,北京,1999
    [77]谭华,金属的冲击波温度测量(Ⅰ)--高温计的标定和界面温度的确定,高压物理学报,1994,8(4):254-210
    [78]宋萍,无氧铜高压卸载研究,硕士论文,绵阳:中国工程物理研究院,2003
    [79]谭华,戴诚达,金属的冲击波温度测量(Ⅳ)--“三层介质模型”及其应用,高压物理学报,2000,14(2):081-011
    [80]戴诚达,谭华,金属冲击温度的辐射法测量问题,高压物理学报,2006,20(2):113-109
    [81]B.Window and G.Harding,Thermal emissivity of copper,Journal of the Optical Society of America,1981,71(3):354-357
    [82]J.M.Brown and R.G.McQueen,Phase transitions,Grüneisen parameter,and elasticity for shocked iron between 77 and 400 GPa,Journal of Geophysical Research B,1986,88:7485.
    [83]张岱宇,刘福生,李西军,经福谦,多孔铁冲击温度的分子动力学模拟,高压物理学报,2003,17(1):016-006.
    [84]A.C.Mitchell and W.J.Nellis,Shock compression of aluminum,copper,and tantalum.Journal of Applied Physics,1981,52:3363-3374.
    [85]S.P.Marsh,LASL Shock Hugoniot Data.University California Press, Berkeley,CA,1980.
    [86]周显明.LiTaO3单晶用作测量Fe冲击温度窗口材料可行性的探索,博士论文,绵阳:中国工程物理研究院,2004
    [87]M.B.Boslough,A model for time dependence in shock-induced thermal radiation of light,Journal of Applied Physics,1985,58(9),3394-3399.
    [88]张凌云,戴诚达,许灿华 等,无氧铜冲击熔化温度的辐射法测量,高压物理学报,2005,4:365-371
    [89]D.R.Schmitt and T.J.Ahrens,Shock temperatures in silica glass:Implications for modes of shock induced deformation,phase transformation,and melting with pressure,Journal of Geophysical Research,1989,54:5851-5871.
    [90]J.F.Lin,O.Degtyareva,C.T.Prewitt,P.Dera,N.Sata,E.Gregoryanz,H.K.Mao and R.J.Hemley,Crystal structure of a high-pressure/high temperature phase of alumina by in situ X-ray diffraction,Nature materials,2004,3:389-393.
    [91]J.Hama,K.Suito,The evidence for the occurrence of two successive transitions in Al_2O_3 from the analysis of Hugoniot data,High Temperature High pressure,2002,34:323-334
    [92]R.Cohen,Calculation of elasticity and high pressure instabilities in corundum and stishovite with the potential induced breathing model,Geophysical Research Letter,1987,14:37-40
    [93] H. Cynn, D. G. Isaak, R.E. ,Cohen,et al., A high-pressure phase transition of corundum predicted by the potential induced breathing model, American Mineralogist, 1990, 75:439-442
    [94]F.C. Marton and R.E. Cohen, Prediction of a high-pressure phase in Al_2O_3,American Mineralogist, 1994, 79: 789-792
    [95] K.T. Thomson, R. M.Wentzcovitch, M.S.Bukowinski, Polymorphs of alumina predicted by first principles: Putting pressure on the ruby pressure scale, Science,1996, 274 :1880-1882
    [96] W. Duan,, R.M. Wentzcovitch and K.T. Thomson, First-principles study of high-pressure alumina polymorphs, Physical Review B,1998,57:10363-10369
    [97] W.Duan,G. Paiva, R.M. Wentzcovitch, et al.,Optical transitions in ruby across the corundum to Rh2O3 (II) phase transformation. Physical Review Letters,1998, 81:3267-3270
    [98] W. Duan, B.B. Karki and R. M.Wentzcovitch,High-pressure elasticity of alumina studied by firstprinciples, American Mineralogist, 1999, 84:1961-1966
    
    [99] T.Mashimo, K.Tsumoto, K.Nakamura, et al., High-pressure phase transformation of corundum (α-A12O3) observed under shock compression,Geophysical Research Letter, 2000, 27: 2021-2024.
    
    [100] S. Ono, A. R. Oganov, T. Koyama and H. Shimizu, Stability and compressibility of the high-pressure phases of Al_2O_3 up to 200 GPa: Implications for the electrical conductivity of the base of the lower mantle,Earth and Planetary Science Letters, 2006, 246: 326.
    
    [101] A. R. Oganov and S. Ono, The high-pressure phase of alumina and implications for Earth's D" layer, Proceedings of the National Academy of Sciences,2005, 102: 10828-10831

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700