内脏脂肪素在动脉粥样硬化中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一章血浆内脏脂肪素水平与动脉粥样硬化的相关性研究
     目的:通过测定不同动脉粥样硬化程度受试者的血浆visfatin水平与内皮功能状态,探讨在动脉粥样硬化患者中血浆visfatin水平与血管内皮功能紊乱之间关系,评估血浆visfatin水平在预测动脉粥样硬化发生发展中的意义。
     方法:同时接受冠脉造影和超声检测颈总动脉、肱动脉的215例患者纳入本研究,包括55名接受PCI术的急性冠状动脉综合征(ACS)患者。采用冠脉造影及颈总动脉超声和颈总动脉IMT结果评估冠状动脉粥样硬化的严重程度,采用Gensini积分系统,将入选患者分为正常对照组、轻度动脉粥样硬化组、中度动脉粥样硬化组、重度动脉粥样硬化组。所有组患者检测血浆visfatin和血清ADMA水平并同时超声检测肱动脉FMD评估血管内皮功能。
     结果:(1)与正常对照组比较,动脉粥样硬化组血浆visfatin水平显著升高,且严重动脉粥样硬化组高于早期和中度动脉粥样硬化组。(2)采用线性回归统计学方法证实,血浆visfatin水平与颈总动脉IMT呈正相关(r=0.158;P<0.05);血浆visfatin水平与冠脉Gensini积分的正相关(r=0.306;P<0.01);血浆visfatin水平与ADMA水平呈显著正相关(r=0.323;P<0.01),而与肱动脉FMD呈负相关(r=-0.243;P<0.01)。(3)急性冠状动脉综合征(ACS)患者接受PCI术后,血浆visfatin水平和血清AMDA水平显著降低(P<0.01)。
     结论:动脉粥样硬化患者血浆visfatin水平升高,并能反映血管内皮功能紊乱情况和动脉粥样硬化严重程度,提示血浆visfatin水平可能与动脉粥样硬化的发生和发展密切相关,是一个新的心血管疾病预测因子。
     第二章内脏脂肪素对内皮细胞血管形成能力的影响及机制研究
     目的:内脏脂肪素(visfatin)是一种能够促进血管新生的新型脂肪细胞因子。血管内皮生长因子(VEGF)作为血管新生中非常关键的因子,在培养的内皮细胞,二甲基精氨酸一二甲胺水解酶2(DDAH_2)能够上调VEGF的表达促进血管新生。本实验研究DDAH_2在visfatin诱导的内皮细胞血管新生中的作用。
     方法:在培养人脐静脉内皮细胞(HUVEC),不同浓度的重组visfatin(0.01 nM-3 nM)处理6-24 h。Tube形成实验和迁移实验评价内皮细胞血管新生能力;Real time PCR检测DDAH_2和VEGFmRNA水平;HLPC(高效液相色普仪)测定细胞内ADMA水平;Griess法测定细胞内NO水平;ELISA试剂盒检测细胞内VEGF水平;Western blot测定Akt的磷酸化和DDAH_2蛋白水平;hDDAH_2siRNA沉默内皮细胞DDAH_2的表达。
     结果:重组visfatin能呈浓度和时间依赖性增强内皮细胞血管形成和迁移能力;同时,visfatin能够上调DDAH_2和VEGF的mRNA和蛋白水平。在DDAH_2沉默的内皮细胞,visfatin促内皮细胞新生的作用也显著降低。Western blot结果显示,visfatin作用内皮细胞能诱导Akt磷酸化。预先使用PI3K的特异性抑制剂能抑制visfatin诱导的DDAH_2和VEGF的表达上调。
     结论:我们的实验证明,visfatin能够促进内皮细胞血管新生,其机制与激活PI3K/Akt,上调DDAH-VEGF通路有关。
     第三章内脏脂肪素对内皮祖细胞衰老的影响
     目的:内脏脂肪素(Visfatin)是一种新的脂肪细胞因子。最近研究发现,visfatin通过调节SIRT1水平抗内皮细胞衰老。冠心病患者内皮祖细胞(EPCs)的衰老损伤其增殖、迁移能力和脉管的形成,同时导致循环中EPC数量的降低,提示EPCs衰老在动脉粥样硬化发生、发展中起着重要的作用。因此,本实验研究visfatin对EPCs衰老的影响。
     方法:密度梯度离心法分离人脐血和外周血的单个核细胞,利用EGM-2细胞培养基(含EPCs分化所需各种生长因子)进行培养,诱导单个核细胞贴壁向EPCs分化。流式细胞术测定早期EPCs干细胞分子标志CD34+、vWF;Dil-ac-LDL和FITC-UEA-1双染鉴定正在分化的EPCs。不同浓度的重组visfatin(0.01nM-10nM)处理24h。Tube形成实验和迁移实验评价EPCs血管新生能力;Real time PCR检测SIRT1mRNA水平;Western blot测定SIRT1蛋白水平;端粒酶定量法检测端粒酶活性;β-半乳糖苷酶染色试剂盒检测细胞β-半乳糖苷酶活性;使用荧光染料H2DCF检测细胞内氧自由基(ROS)的生成。
     结果:(1)0.1nM和1nM的visfatin能增加EPCs形成管腔样结构和促进EPCs迁移,10nM的visfatin组EPCs形成管腔样结构能力和迁移能力却显著降低(与1nM visfatin组比)。(2)0.1nM和1nMvisfatin组细胞端粒酶活性和SIRT1水平明显升高(和对照组比),而3nM和10nM visfatin组细胞端粒酶活性和SIRT1水平明显降低(与1nM visfatin组比)。(3)0.1nM visfatin组细胞β-半乳糖苷酶活性明显降低(和对照组比),而3nM和10nM visfatin组细胞β-半乳糖苷酶活性明显升高(与0.1nM visfatin组比)。(4)visfatin能浓度依赖地增加EPCs内ROS的水平,而预先使用DPI 300μM和Allopurinol100μM能显著抑制10nM visfatinm所致EPCs端粒酶活性、SIRT1mRNA表达的降低和β-半乳糖苷酶活性的升高(P<0.01)。
     结论:生理浓度visfatin能抑制EPCs的衰老,病理浓度抑制其衰老作用降低,其机制可能与激活ROS的水平,引起氧化应激降低SIRT1的表达水平有关。
Objective:The aim of the present study was to investigate the pathophysiological links between plasma level of visfatin and endothelial function,and evaluate the significance of visfatin in genesis and development of atherosclerosis(AS).
     Methods:In the present study,215 patients including 55 patients received the PCI operations,who had undergone coronary angiography and ultrasound detection of carotid and brachial artery,were enrolled.The severities of coronary stenosis and carotid atherosclerosis were determined by coronary angiography and carotid ultrasound and carotid intima-media thickness(IMT),respectively.Based on the results of Gensini score,these patients were classified into four groups:control(no AS),mild AS,middle AS and severe AS groups.The flow mediated dilation(FMD) of brachial artery was also measured by color Doppler ultrasound.The plasma levels of both visfatin and asymmetric dimethylarginine(ADMA),a new marker of endothelial dysfunction, were determined by ELISA and HPLC,respectively.
     Results:Plasma level of visfatin in patients with severe AS was significantly higher than those in patients with middle AS,mild AS or in the control group.We confirmed these findings by linear regression analyses,plasma level of visfatin was positively correlated with carotid IMT,serum level of ADMA and Gensini score in all enrolled patients, and was negatively correlated with the FMD of brachial artery.Especially, the serum level of ADMA and visfatin was significantly decreased after the PCI operations.
     Conclusions:The present data firstly showed that plasma level of visfatin,which was markedly increased in the patient with AS,was correlated negatively with endothelial function and can reflect the severity of AS.Our present findings that visfatin is closely related to the genesis and development of AS suggest visfatin may be a new predictive factor of cardiovascular disease.
     Objective:Visfatin,a new adipocytokine,has been reported to promote angiogenesis.Dimethylarginine dimethylaminohydrolase (DDAH),which can upregulate vascular endothelial growth factor (VEGF) expression in endothelial cells,is thought as a novel modulator of angiogenesis.The aim of the study was to investigate the role of DDAH_2 in visfatin-induced angiogenesis in human umbilical vein endothelial cells(HUVECs).
     Methods:HUVECs were incubated with different concentrations of visfatin(0.1-3 nM) for 6-24 hours.We detected the capabilities of migration and tube formation in HUVECs to judge the angiogenic effects of visfatin.Quantitative real time PCR was used to detect the expression of DDAH_2 and VEGF mRNA.The level of ADMA was measured by high-performance liquid chromatography and the level of NO was determined indirectly as the content of nitrite and nitrate using NO assay kits.The level of VEGF was detected by the ELISA kit.DDAH_2 siRNA was used to interference the expression of mRNA and protein of DDAH_2. The phosphorylation of Akt and the protein expression of DDAH_2 were determined by western blot analysis.
     Results:Visfatin concentration- and time-dependently enhanced cell migration and tube formation reflecting angiogenic capability of HUVECs.Moreover,visfatin upregulated the expression of DDAH_2 and VEGF(both mRNA and protein).Angiogenic effects of visfatin were attenuated by DDAH_2 small interfering RNA Visfatin induced protein kinase B(Akt) phosphorylation and phosphoinositide 3 kinase(PI3K) inhibitors could suppress visfatin-induced upregulation of the expression ofDDAH_2 and VEGF.
     Conclusions:Taken together,our results suggest that PI3K/Akt-mediated upregulation of DDAH_2 expression plays a critical role in visfatin-promoted angiogenesis via regulating VEGF-dependent pathway.
     Objective:Visfatin is a new adipocytokine.Recent studies have shown that visfatin enables to inhibit the endothelial cells aging via upregulating the expression of SIRT1.In coronary heart disease patients, endothelial progenitor cells(EPCs) have the impairment of proliferative, migratory capacity and network formation,and the number of circulating EPCs is reduced,suggesting that EPCs plays a critical role in genesis and development of atherosclerosis
     Methods:EPCs were isolated by density gradient centrifugation from human cord blood mononuclear cells,and cultured in EBM-2 supplemented with EGM-2 Single-Quots.Adherent EPCs were characterized by dual staining for acetylated low-density lipoprotein (ac-LDL) and ulex europaeus agglutinin-1(UEA-1),and by flow cytometry detecting the stem cell marker CD34+ and vWF or by immunofluorescent analysis.After incubation of EPCs with different concentrations of visfatin(0.1-10 nM) for 24 hours,we detected the capabilities of migration and tube formation in EPCs to judge the angiogenic effects of visfatin.Quantitative real time PCR was used to detect the expression of SIRT1 mRNA and western blot analysis was used to detect the protein level of SIRT1.To quantitatively analyze telomerase activity,we used a Quantitative Telomerase Detection Kit to perform telomeric repeat amplification protocol(TRAP) assay according to the supplier's instructio.Senescent Cells Staining Kit was used to determine the senescence-associatedβ-galactosidase activity.Intracellular oxidant productions were measured by using H2DCF,a fluoresent indicator.
     Results:(1) 0.1 nM and 1 nM visfatin could enhance cell migration and tube formation reflecting angiogenic capability of EPCs,the increased of migration and tube formation were decreased by 10 nM visfatin(compared with 1 nM visfatin).(2) 0.1 nM and 1 nM visfatin could upregulate the level of SIRT1 and telomerase activity(compared with control),the level of SIRT1 and telomerase activity were decreased with 3 and 10 nM visfatin(compared with 1 nM visfatin).(3) Senescence-associatedβ-galactosidase activity were significantly decreased with 0.1 nM visfatin(compared with control),β-galactosidase activity were increased with 3 and 10 nM visfatin(compared with 0.1 nM visfatin).(4) Visfatin could concentration-dependently enhance the level of ROS,pretreatment with the inhibitor of ROS production could inhibit the decrease level of SIRT1 and telomerase activity with 10 nM visfatin and the increase inβ-galactosidase activity.
     Conclusions:Visfatin at the physiological concentration could inhibit the EPCs aging,and the protection of EPCs aging were attenuated by the pathological concentration of visfatin via oxidative stress-mediated downregulation of the expression of SIRT1.
引文
[1] Guzik TJ, Mangalat D, Korbut R. Adipocytokines - novel link between inflammation and vascular function? J Physiol Pharmacol. 2006;57:505-528.
    [2] Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.Science. 2005;307:426-430
    [3] Samal B, Sun Y, Stearns G, et al. Cloning and Characterization of the cDNA encoding a novel human Pre-B-Cell colony-enhancing factor. Mol Cell Biol.1994;14:1431-1437.
    [4] Kitania T, Okunoa S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factorl. FEBS Letters.2003;544:74-78.
    [5] McGlothlin JR, Gao L, Lavoie T, et al. Molecular cloning and characterization of canine pre-B-cell colony-enhaancing factor. Biochem Genet.2005;43:127-141.
    [6] Liu SW, Qiao SB, Yuan JS, et al. Association of plasma visfatin levels with inflammation, atherosclerosis, and acute coronary syndromes in humans. Clin Endocrinol.2008 Oct 20 (in press).
    [7] Malyszko J, Malyszko JS, Mysliwiec M. Visfatin, a new adipocytokine, is predominantly related to inflammation/endothelial damage in kidney allograft recipients. Transplant Proc.2009;41:150-153.
    [8] Adya R, Tan BK, Chen J, et al. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: Role in visfatin-induced angiogenesis. Atherosclerosis. 2008 Dec 3 (in press).
    [9] Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation. 2007;115:972-980.
    [10] Takebayashi K, Suetsugu M, Wakabayashi S, et al. Association between plasma visfatin and vascular endothelial function in patients with type 2 diabetes.Metabolism.2007;56:451-458.
    [11] Boger RH. Association of asymmetric dimethylarginine and endothelial dysfunction. Clin Chem Lab Med.2003;41:1467-1472.
    [12] Tran CT, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Atheroscler (Suppl) 2003;4:33-40.
    [13] Falk E, Shanl PK, Fuster V. Coronary plaque disruption. Circulation.1993;92:657-672.
    [14] Shah PK. New insights into the pathogenesis and prevention of acute coronary syndromes. Am J Cardiol.1997;79:17-23.
    [15] Conti CR. Updated pathophysiologic concepts in unstable coronary artery disease. Am Heart J.2001;141:12-14.
    [16] Park JB, Charbonneau F, Schiffrin EL. Correlation of endothelial function in large and small arteries in human essential hypertension. J Hypertens.2001;19:415-420.
    [17] Celermajer DS, Sorensen KE, Gooch VM, et al. Non-invasive detection of endothelial dysfunction in children and adults at risk of atherosclerosis.Lancet. 1992;340:1111-1115.
    [18] Arki T, Kanaya H, Shimizu M, et al. Changes in serum malondialdehyde-modified low-density lipoprotein in patients with acute myocardial infarction and stable angina pectoris treated hy coronary angioplasty. Am J Cardiol.2001;38:55-60.
    [19] Auge N, Escargneil I, Lajoie I, et al. Potental role for ceramide in mitogen-activated protein kinase activation and proliferation of vascular smooth muscle cells induced by oxidated low density lipoprotein. J Biol Chem.1998;273:893-900.
    [20] Yang CM, Chien CS, Hsiao LD, e al. Mitogenic effect of oxidized low density lipoprotein on vascular smooth muscle cells mediated by activation of Ras/Raf/MEK/MARK pathway. Br J Pharmacol.2001;132:531-541.
    [21] Chen BM, Xia LW, Zhao RQ. Determination of N(G),N(G)-dimethylarginine in human plasma by high-performance liquid chromatography. J Chromatogr B Biomed Sci.1997;692:467-471.
    [22] Feng Q, Lu X, Jones DL, et al. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation.2001;104:700-704.
    [23] Antuna-Puente B, Feve B, Fellahi S, et al. Obesity, inflammation and insulin resistance: which role for adipokines. Therapie.2007;62:285-292.
    [24] Steppan CM, Lazar MA. Resistin and obesity-associated insulin resistance. Trends Endocrinol Metab.2002;13:18-23.
    [25] Caro JF, Sinha MK, Kolaczynski JW, et al. Leptin: the tale of an obesity gene.Diabetes.1996;45:1455-1462.
    [26] Maia-Fernandes T, Roncon-Albuquerque R Jr, Leite-Moreira AF.Cardiovascular actions of adiponectin: pathophysiologic implications. Rev Port Cardiol.2008;27:1431-1449.
    [27] Miyazaki H, Matsuoka H, Cooke JP, et al. Endogenous nitric oxide synthase inhibitor:a novel marker of atherosclerosis. Circulation.1999;99:1141-1146.
    [28] Boger RH, Bode-Boger SM, Sydow K, et al. Plasma concentration of asymmetric dimethylarginine, an endogenous inhibitor of nitric oxide synthase,is elevated in monkeys with hyperhomocyst(e)inemia or hypercholesterolemia.Arterioscler Thromb Vasc Biol.2000;20:1557-1564.
    [29] Surdacki A, Nowicki M, Sandmann J, et al. Reduced urinary excretion of nitric oxide metabolites and increased plasma levels of asymmetric dimethylarginine in men with essential hypertension. J Cardiovasc Pharmacol.1999;33:652-658.
    [30] Saitoh M, Osanai T, Kamada T, et al. High plasma level of asymmetric dimethylarginine in patients with acutely exacerbated congestive heart failure:role in reduction of plasma nitric oxide level. Heart Vessels.2003;18:177-182.
    [31] Stuhlinger MC, Oka RK, Graf EE, et al. Endothelial dysfunction induced by hyperhomocyst(e)inemia: role of asymmetric dimethylarginine.Circulation.2003;108:933-938.
    [32] Paiva H, Laakso J, Lehtimaki T, et al. Effect of high-dose statin treatment on plasma concentrations of endogenous nitric oxide synthase inhibitors. J Cardiovasc Pharmacol.2003;41:219-222.
    [33] Eid HM, Eritsland J, Larsen J, et al. Increased levels of asymmetric dimethylarginine in populations at risk for atherosclerotic disease. Effects of pravastatin.Atherosclerosis.2003;166:279-284.
    [34] Fard A, Tuck CH, Donis JA, et al. Acute elevations of plasma asymmetric dimethylarginine and impaired endothelial function in response to a high-fat meal in patients with type 2 diabetes. Arterioscler Thromb Vasc Biol.2000;20:2039-2044.
    [35] Lundman P, Eriksson MJ, Stuhlinger M, et al. Mild-to-moderate hypertriglyceridemia in young men is associated with endothelial dysfunction and increased plasma. J Am Coll Cardiol.2001 ;28:111-116.
    [1] CaroJF, SinhaMK, Kolaczynski JW, et al. Leptin: the tale of an obesity gene.Diabetes.1996;45:1455-1462.
    [2] Guzik TJ, Mangalat D, Korbut R. Adipocytokines - novel link between inflammation and vascular function? J Physiol Pharmacol. 2006;57:505-528.
    [3] Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin.Science. 2005;307:426-430
    [4] Chen MP, Chung FM, Chang DM, et al. Elevated plasma level of visfatin/ Pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab.2006; 91:295-299.
    [5] Smith J, Al-Amri M, Sniderman A, et al. Visfatin concentration in Asian Indians is correlated with high density lipoprotein cholesterol and apolipoprotein A1.Clin Endocrinol.2006;65:667-672.
    [6] Takebayashi K, Suetsugu M, Wakabayashi S, et al. Association between plasma visfatin and vascular endothelial function in patients with type 2 diabetes.Metabolism.2007;56:451-458.
    [7] Dahl TB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation.2007; 115:972-980.
    [8] Bailey SD, Loredo-Osti JC, Lepage P, et al. Common polymorphisms in the promoter of the visfatin gene (PBEF1) influence plasma insulin levels in a French-Canadian population. Diabetes.2006;55:2896-2902.
    [9] Brentano F, Schorr O, Ospelt C, et al. Pre-B cell colony-enhancing factor/visfatin, a new marker of inflammation in rheumatoid arthritis with proinflammatory and matrix-degrading activities. Arthritis Rheum.2007;56:2829-2839.
    [10] Adya R, Tan BK, Punn A, et al. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovascular Research.2008;78:356-365
    [11] van der Wai AC, Becker AE. Atherosclerotic plaque rupture-pathologic basis of plaque stability and instability. Cardiovasc Res.1999;41:334-344.
    [12] Ackah E, Yu J, Zoellner S, et al. Aktl/protein kinase Balpha is critical for ischemic and VEGF-mediated angiogenesis. J Clin Invest.2005; 115:2059-2064.
    [13] Iran CT, Leiper JM, Vallance P. The DDAH/ADMA/NOS pathway. Atheroscler.2003;4:33-40.
    [14] Hasegawa K , Wakino S , Tanaka T , et al. Dimethylarginine dimethylaminohydrolase 2 increases vascular endothelial growth factor expression through Sp1 transcription factor in endothelial cells. Arterioscler Thromb Vasc Biol.2006;26:1488-1494.
    [15] Fang J, Ding M, Yang L, et al .PI3K/PTEN/AKT signaling regulates prostate tumor angiogenesis. Cell Signal.2007;19:2487-2497.
    [16] Kim SR, Bae SK, Choi KS, et al .Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem Biophys Res Commun.2007;357:150-156.
    [17] Mosmann T. Rapid colorimetric assay for cellular growth and survival:application to proliferation and cytotoxicity assays. J Immunol Methods.l983;65:55-63.
    [18] Jiang DJ, Jia SJ, Dai Z, et al. Asymmetric dimethylarginine induces apopto- sis via p38 MAPK/caspase-3-dependent signaling pathway in endothelial cells. J Mol Cell Cardio.2006;140:529-539.
    [19] Feng Q, Lu X, Jones DL, et al. Increased inducible nitric oxide synthase expression contributes to myocardial dysfunction and higher mortality after myocardial infarction in mice. Circulation.2001;104:700-704.
    [20] Samal B, Sun Y, Stearns G, et al. Cloning and Characterization of the cDNA Encoding a Novel Human Pre-B-Cell Colony-Enhancing Factor. Mol Cell Biol.l994;14:1431-1437.
    [21] Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor ,whose expression is up-regulated in activated lymphocytes , is a nicotinamide phosphoribosyltransferase , a cytosolic enzyme involved in NAD+ biosynthesis. Eur J Immunol.2002;32:3225-3234.
    [22] Leiper JM, Santa Maria J, Chubb A, et al. PIdentification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem J.1999;343:209-214.
    [23] ZicheM, Morbidelli L, Masini E, et al. Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P.J Clin Invest. 1994;94:2036-2044.
    [24] Jacobi J, Sydow K, von Degenfeld G, et al. Overexpression of dimethylarginine dimethylaminohydrolase reduces tissue asymmetric dimethylarginine levels and enhances angiogenesis. Circulation.2005; 111:1431 -143 8.
    [25] Scalera F, Borlak J, Beckmann B, et al. Endogenous nitric oxide synthesis inhibitor asymmetric dimethyl L-arginine accelerates endothelial cell senescence. Arterioscler Thromb Vasc Biol.2004;24:1816-1822.
    [26] Zachary I, Gliki G. Signaling transduction mechanisms mediating biological actions of the vascular endothelial growth factor family. Cardiovasc Res.2001;49:568-581.
    [1] Vanhoutte PM. Endothelial dysfunction and atherosclerosis. Eur Heart. 1997; 18:19-29
    [2] Moreno PR, Purushothaman KR, Sirol M, et al. Neovascularization in Human Atherosclerosis. Circulation.2006; 113:2245-2252.
    [3] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothe-lial cells for angiogenesis. Science.1997;275:964 -967.
    [4] Wartenberg M, Finkensieper A, Hescheler J, et al. Confrontation cultures of embryonic stem cells with multicellular tumor spheroid to study tumor-induced angiogenesis. Methods Mol Biol.2006;331:313-328.
    [5] Hristow M, Erl W, Weber PC. Endothelial progenitor cells: mobilization, Differentitation, and homing. Thromb Vasc Biol.2003;23:1185-1189.
    [6] ImanishiT, Moriwaki C, HanoT, et al. Endothelial progenitor cell senescence is accelerated in both experimental hypertensive rats and patients with essential hypertension. J Hypertens.2005;23:1831-1837.
    [7] Fadini GP, Schiavon M, Rea F, et al. Depletion of endothelial progenitor cells may link pulmonary fibrosis and pulmonary hypertension. Am J Respir Crit Care Med.2007;176:724-725.
    [8] Werner N, Wassmann S, Ahlers, et al. Endothelial progenitor cells correlate with endothelial function in patients with coronary artery disease. Basic Res Cardiol.2007;102:565-571.
    [9] Balbarini A, Barsotti MC, Di Stefano R, et al. Circulating endothelial progenitor cells characterization, function and relationship with cardiovascular risk factors.Curr Pharm Des.2007;13:1699-1713.
    [10] Kim SR, Bae YH, Bae SK, et al. Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-kB activation in endothelial cells. Biochim BiophysActa.2008;1783:886-895.
    [11] Adya R, Tan BK, Punn A, et al. Visfatin induces human endothelial VEGF and MMP-2/9 production via MAPK and PI3K/Akt signalling pathways: novel insights into visfatin-induced angiogenesis. Cardiovascular Research.2008;78:356-365
    [12] Kim SR, Bae SK, Choi KS, et al .Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem Biophys Res Commun.2007;357:150-156.
    [13] van der Wal AC, Becker AE. Atherosclerotic plaque rupture-pathologic basis of plaque stability and instability. Cardiovasc. Res.l999;41:334-344.
    [14] DahlTB, Yndestad A, Skjelland M, et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation.2007;115:972-980.
    [15] Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells,vascular function, and cardiovascular risk. N Engl J Med.2003;348:593-600.
    [16] Zhu J, Wang X, et al. Reduced number and activity of circulating endothelial progenitor cells from patients with hyperhomocysteinemia. Arch Med Res.2006;37:484-489.
    [17] Imanishi T, Hano T, et al. Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol.2004;31:407-413.
    [18] Zhu JH, Chen JZ, et al. Homocysteine accelerates senescence and reduces proliferation of endothelial progenitor cells. J Mol Cell Cardiol.2006;40:648-652.
    [19] Ingram A, Moore BD, Graham D. Simultaneous detection of alkaline phosphatase and beta-galactosidase activity using SERRS. Bioorg Med Chem Lett.2009;19:1569-1571.
    [20] Liang Y, Van Zant G, Szilvassy SJ. Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells.Blood.2005;106:1479-1487.
    [21] Zhu J, Wang X, Shang Y, et al. Puerarin reduces endothelial progenitor cells senescence through augmentation of telomerase activity. Vascul Pharmacol.2008;49:106-110.
    [22] Kaeberlein M, McVey M, Guarente L. The SIR2 /3 /4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms.Genes Dev.l999;13:2570-2580.
    [23] Imai S, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase.Nature.2000;403: 795-800.
    [24] Brachmann CB, Sherman JM, Devine SE, et al. The SIR2 gene family,conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev.1995;9:2888-2902.
    [25] Starke-Reed PE, Oliver CN. Protein oxidation and proteolysis during aging and oxidative stress. Arch Biochem Biophys.1989;275:559-567.
    [26] von Zglinicki T. Oxidative stress shortens telomeres .Trends Biochem Sci.2002;27:339-344.
    [27] Imanishi T, Hano T, Nishio I. Estrogen reduces angiotensin II-induced acceleration of senescence in endothelial progenitor cells. Hypertens Res.2005;28:263-271.
    [28] Hur J, Yoon CH, Kim HS, et al. Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis.Arterioscler Thromb Vasc Biol.2004;24:288-293.
    [29] Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res.2001;89:1-7.
    [30] Samal B, Sun Y, Stearns G, et al. Cloning and Characterization of the cDNA Encoding a Novel Human Pre-B-Cell Colony-Enhancing Factor . Mol Cell Biol.1994;14:1431-1437.
    [31] Jia SH, Li Y, Parodo J, et al. Pre-B cell colony-enhancing factor inhibit s neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest.2004;113:1318-1327.
    [32] Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor,whose expression is upregulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase,a cytosolic enzyme involved in NAD+ biosynthesis.Eur J Immunol.2002;32:3225-3234.
    [33] van der Veer E , NongZ, O'Neil C, et al. Pre-B-cell colony-enhancing factor regulates NAD+2dependent protein deacetylase activity and pro-motes vascular smooth muscle cell maturation. Circ Res.2005;97:25-34.
    [34] van der Veer E, Ho C, O'neil C, et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem.2007;13:10841-10845
    [35] Borradaile NM, Pickering JG. Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell.2009;8:100-112.
    [36] Liu SW, Qiao SB, Yuan JS, et al. Association of plasma visfatin levels with inflammation, atherosclerosis, and acute coronary syndromes in humans. Clin Endocrinol.2008 Oct 20 (in press).
    [37] Malyszko J, Malyszko JS, Mysliwiec M. Visfatin, a new adipocytokine, is predominantly related to inflammation/endothelial damage in kidney allograft recipients. Transplant Proc.2009;41:150-153.
    [38] Adya R, Tan BK, Chen J, et al. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: Role in visfatin-induced angiogenesis. Atherosclerosis. 2008 Dec 3 (in press).
    [39] Murasawa S, Llevadot J, Silver M, et al. Constitutive human telomerase reverse transcrip tase exp ression enhances regenerative properties of endothelial progenitor cells. Circulation.2002; 106:1133-1139.
    [40] Rosso A, Balsamo A, Gambino R, et al. p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem.2006;281:4339-4347.
    [1] Fukuhara A, Matsuda M, Nishizawa M, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 2005;307:426-430
    [2] Samal B , Sun Y, Stearns G, et al . Cloning and Characterization of the cDNA Encoding a Novel Human Pre-B-Cell Colony-Enhancing Factor. Mol Cell Biol.1994;14:1431-1437.
    [3] Ognjanovic S , Bao S , Yamamoto SY, et al. Genomic organization of the gene coding for human pre-B-cell colony enhancing factor and expression in human fetal membranes. J Mol Endocrinol.2001;26: 107-117.
    [4] Rongvaux A, Shea RJ, Mulks MH, et al. Pre-B-cell colony-enhancing factor,whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in NAD biosynt hesis.Eur J Immunol.2002;32:3225-3234.
    [5] Kitania T, Okunoa S, Fujisawa H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factorl. FEBS Letters.2003;544:74-78.
    [6] McGlothlin JR, Gao L, Lavoie T, et al. Molecular cloning and characterization of canine pre-B-cell colony-enhaancing factor. Biochem Genet 2005;43:127-141.
    [7] Chen MP ,Chung FM,Chang DM,et al. Elevated plasma level of visfatin/ Pre-B cell colony-enhancing factor in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab.2005;Oct 18 (in press).
    [8] Hammarstedt A, Pihlajamaki J, Sopasakis VR, Gogg S, Jansson PA, Laakso M,et al. Visfatin is an adipokine but it is not regulated by thiazolidinediones. J Clin Endocrinol Metab.2006;91:1181-1184.
    [9] Dogru T, Sonmez A, Tasci I, et al. Plasma visfatin levels in patients with newly diagnosed and untreated type 2 diabetes mellitus and impaired glucose tolerance.Diabetes Res Clin Pract.2007;76:24-29.
    [10] Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med.2005;171:361-370.
    [11] Takebayashi K, Suetsugu M, Wakabayashi S,et al. Association between plasma visfatin and vascular endothelial function in patients with type 2 diabetes.Metabolism. 2007;56:451-458.
    [12] Haider DG, Schaller G, Kapiotis S, et al. The release of the adipocytokine visfatin is regulated by glucose and insulin. Diabetologia. 2006;49:1909-1914.
    [13] Berndt J, Kloting N, Kralisch S,et al. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes. 2005;54:2911-2916.
    [14] Teoh H, Lovren F, Verma S. Vascular dysfunction: a Janus face of visfatin in diabetes? Metabolism. 2007;56:459-461.
    [15] Kitani T.Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor. FEBS Lett.2003;544: 74-78
    [16] Sethi JK, Vidal-Puig A. Visfatin :the missing link between intra-abdominal obesity and diabetes ? Trends Mol Med.2005;11:344-347.
    [17] Choi KC, Ryu OH, Lee KW, et al. Effect of PPAR-alpha and -gamma agonist on the expression of visfatin, adiponectin, and TNF-alpha in visceral fat of OLETF rats. Biochem Biophys Res Commun.2005; 336:747-753.
    [18] Wolzt Sabina M. Baumgartner-Parzer, Gerhard Prager, et al. visfatin release Free fatty acids normalize a rosiglitazone-induced. Am J Physiol Endocrinol Metab. 2006; 291:885-890
    [19] Wen Y, Wang HW, Wu J, et al. Effects of fatty acid regulation on visfatin gene expression in adipocytes. Chin Med J.2006;119:1701-1708.
    [20] Pagano C, Pilon C, Olivieri M, et al. Reduced plasma visfatin/pre-B cell colony-enhancing factor in obesity is not related to insulin resistance in humans.J Clin Endocrinol Metab.2006; 91: 3165-3170.
    [21] Smith J, Al-Amri M, Sniderman A,et al. Visfatin concentration in Asian Indians is correlated with high density lipoprotein cholesterol and apolipoprotein A1.Clin Endocrinol. 2006;65:667-672.
    [22] Bailey SD, Loredo-Osti JC, Lepage P, et al. Common polymorphisms in the promoter of the visfatin gene (PBEFl) influence plasma insulin levels in a French-Canadian population. Diabetes. 2006;55:2896-2902.
    [23] Haider DG, Schindler K, Schaller G, et al. Increased plasma visfatin concentrations in morbidly obese subjects are reduced after gastric banding. J Clin Endocrinol Metab. 2006;91:1578-1581.
    [24] Sreedharan Sandeep, Kaliyaperumal Velmurugan, Raj Deepa, et al.Serum visfatin in relation to visceral fat, obesity, and type 2 diabetes mellitus in Asian Indians. Metabolism Clinical and Experimental.2007; 56 :565—570.
    [25] Pagano C, Pilon C, Oliveri M, et al. Reduced plasma visfatin/pre-B cell colony enhancing factor in obesity is not related to insulin resistance in humans. J Clin Endocrinol Metab.2006;91:3165- 3170.
    [26] Rongvaux A , Shea RJ ,Mulks MH , et al . Pre-B-cell colony-enhancing factor ,whose expression is up2regulated in activated lymphocytes , is a nicotinamide phosphoribosyltransferase , a cytosolic enzyme involved in NAD+ biosynthesis. Eur J Immunol.2002;32:3225-3234.
    [27] Martin PR ,Shea RJ ,MulksMH. Identification of a plasmid2encoded gene from Haemophilusducreyi which confers NAD+ independence. J Bacteriol.2001;183:1168-1174.
    [28] van der Veer E ,Nong Z ,O'Neil C ,et al . Pre-B-cell colony-enhancing factor regulates NAD+2dependent protein deacetylase activity and promotes vascular smooth muscle cell maturation. Circ Res .2005;97:25-34.
    [29] Ye SQ, Simon BA, Maloney JP, et al. Pre-B-cell colony-enhancing factor as a potential novel biomarker in acute lung injury. Am J Respir Crit Care Med.2005/171:361-370.
    [30] Jia SH , Li Y, Parodo J , et al . Pre-B cell colony-enhancing factor inhibits neutrophil apoptosis in experimental inflammation and clinical sepsis. J Clin Invest.2004;113:1318-1327.
    [31] Malamitsi-Puchner A, Briana DD, Gourgiotis D, et al. Blood visfatin concentrations in normal full-term pregnancies. Acta Paediatr. 2007;96:526-529.
    [32] Lewandowski KC, Stojanovic N, Press M, et al. Elevated serum levels of visfatin in gestational diabetes: a comparative study across various degrees of glucose tolerance. Diabetologia.2007;50:1033-1037.
    [33] AR Moschen, B Enrich, HC Santner, et al. Visfatin in the immunopathogenesis of liver disease. Z Gastroenterol.2006;44.
    [34] Moschen AR, Kaser A, Enrich B, et al. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J Immunol.2007;178:1748-1758.
    [35] Kralisch S , Klein J ,Lossner U ,et al . Hormonal regulation of the novel adipocytokine visfatin in 3T3-L1 adipocytes. J Endocrinol ,2005 ;185 :1-8.
    [36] Kralisch S ,Klein J ,Lossner U ,et al . Interleukin-6 is a negative regulator of visfatin gene expression in 3T3-L1 adipocytes. Am J Physiol Endocrinol Metab.2005;289:-586-590.
    [37] Curat CA, Wegner V, Sengenes C, et al. Macrophages in human visceral adipose tissue: increased accumulation in obesity and a source of resistin and visfatin. Diabetologia. 2006;49:744-747.
    [38] Teoh H, Lovren F, Verma S. Vascular dysfunction: a Janus face of visfatin in diabetes? Metabolism. 2007;56:459-461
    [39] van der Veer E, Ho C, O'neil C, et al. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J Biol Chem. 2007;282:10841-10845.
    [40] Kim SR, Bae SK, Choi KS, et al. Visfatin promotes angiogenesis by activation of extracellular signal-regulated kinase 1/2. Biochem Biophys Res Commun.2007;357:150-156.
    [41] Dahl TB, Yndestad A, Skjelland M,et al. Increased expression of visfatin in macrophages of human unstable carotid and coronary atherosclerosis: possible role in inflammation and plaque destabilization. Circulation. 2007;115:972-980.
    [42] Borradaile NM, Pickering JG. Nicotinamide phosphoribosyltransferase imparts human endothelial cells with extended replicative lifespan and enhanced angiogenic capacity in a high glucose environment. Aging Cell.2009;8:100-112.
    
    [43] Trakada G, Steiropoulos P, Nena E, et al. Plasma visfatin levels in severe obstructive sleep apnea-hypopnea syndrome. Sleep Breath. 2009 Apr 10 (in press).
    
    [44] Nakahata Y, Sahar S, Astarita G, et al. Circadian Control of the NAD+ Salvage Pathway by CLOCK-SIRT1. Science. 2009 Mar 12 (in press).
    
    [45] Ramsey KM, Yoshino J, Brace CS, et al. Circadian Clock Feedback Cycle Through NAMPT-Mediated NAD+ Biosynthesis. Science. 2009 Mar 19 (in press).
    
    [46] Revollo JR, K(?)rner A, Mills KF, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme. Cell Metab.2007;6:363-375.
    
    [47] Liu SW, Qiao SB, Yuan JS, et al. Association of plasma visfatin levels with inflammation, atherosclerosis, and acute coronary syndromes in humans. Clin Endocrinol.2008 Oct 20 (in press).
    [48] Malyszko J, Malyszko JS, Mysliwiec M. Visfatin, a new adipocytokine, is predominantly related to inflammation/endothelial damage in kidney allograft recipients. Transplant Proc.2009; 41:150-153.
    [49] Adya R, Tan BK, Chen J, et al. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: Role in visfatin-induced angiogenesis. Atherosclerosis. 2008 Dec 3 (in press).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700