异相photo-Fenton催化剂—铁柱撑粘土光催化降解活性艳橙X-GN研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代,合成染料广泛应用于印染工业,因此产生了大量的印染废水。近年来,高级氧化技术(AOPs)由于其在均相或异相体系中可以产生高氧化活性的羟基自由基而被用于偶氮染料的废水处理。然而,在均相Fenton体系中,铁离子溶于水中,处理后的水体中的残留铁含量通常超过10 mgL-1 ,因此需要后续处理。这就增加了处理成本,同时也产生二次污染的问题,制约了均相Fenton体系的工业应用。为了克服这些缺陷并合成可循环利用的催化剂,越来越多的研究致力于发展异相Fenton催化剂,例如铁膨润土,铁离子交换沸石和铁负载树脂等。许多研究报道铁离子插层的柱撑矿物作为异相Fenton催化剂可有效对偶氮染料去色和矿化。
     一直以来异相photo-Fenton体系在紫外光降解活性染料废水的应用都备受关在。然而,紫外光只占到达地球的太阳光中的3~5%,而人工紫外线设备通常消耗大量的电能。因此,异相photo-Fenton体系的发展方向主要是制备可有效利用太阳光或可见光的催化剂。
     在本文中,我们通过离子交换的方式,即使用羟基铁离子交换矿物层间的可交换阳离子,制备了异相photo-Fenton催化剂,并用于研究其对偶氮染料X-GN的去色和矿化性能。本研究探讨了不同降解体系对X-GN的降解效果,以及不同实验参数对异相photo-Fenton体系的降解效果的影响,包括pH条件,H2O2浓度,催化剂投加量,初始X-GN浓度和反应温度。同时分析了TOC去除率并作了降解动力学研究。本研究工作表明铁柱撑蛭石、铁柱撑蒙脱石作为一种异相photo-Fenton催化剂在处理工业染料废水中有很大的应用潜力。
     本研究的主要结论如下:
     1.本研究制备了新型的异相photo-Fenton催化剂——铁柱撑蛭石(Fe-VT)。使用激光粒度分析,X射线粉末衍射分析(XRD),X射线粉末荧光分析(XRF),比表面积分析(BET),电子显微镜扫描(SEM)和X射线电子能谱分析(XPS)对Fe-VT进行表征。结果表明低聚合度的羟基铁进入了蛭石的硅片层。在紫外光照射下,在pH =3,温度为30oC, 3.92 mM H2O2以及0.5g/L Fe-VT投加量的实验条件下,75 min后Fe-VT对100 ml的X-GN的去色率为98.7%,TOC去除率为54.4%。同时,原子吸收光谱分析(AAS)结果表明最大铁溶出量小于1 ppm。动力学研究表明,X-GN的去色符合一级动力学方程。其良好的光催化性能和低浓度铁离子溶出量表明铁柱撑蛭石是一种有很大应用潜力的处理染料废水的催化剂。
     2.使用Fe-Mt/ H2O2作为异相photo-Fenton反应剂在可见光下(λ≥420 nm)对活性艳橙X-GN的去色和矿化。对Fe-Mt的表征结果((XRD、FTIR、XRF、BET、XPS、UV–vis光谱)表明,通过柱撑过程小分子羟基铁成功地进入了矿物的层间域。通过重复使用催化剂和逸出的铁离子浓度探讨Fe-Mt的稳定性。催化实验结果表明,在可见光照射下,在温度为30℃, pH =3.0, H2O2 =4.9mmol/L及0.6 g/L催化剂投加量的条件下,140 min后Fe-Mt对X-GN的去色率为98.6 %。同时,Fe-Mt重复使用3次后去色率仍高于90%。研究过程使用卤钨灯作为可见光光源,表明可见光可有效应用于异相photo-Fenton体系。
Nowadays, synthetic dyes are consumed broadly in textile industries and large volumes of dye wastewater are produced. Advanced oxidation processes (AOPs) have been widely applied to deal with azo dye wastewater in recent years, which are characterized by the generation of highly oxidative hydroxyl radicals (?OH) in the homogeneous or heterogeneous phase. However, iron ions which act as catalyst are dissolved in water in the homogeneous Fenton process. Remained iron ions in the treated water normally exceed 10 mg L-1 and need to be removed. This adds to the cost as well as secondary pollution, thus limiting its industrial application. To overcome such limitations and to synthesize reusable catalysts, efforts have been made to develop hetero-Fenton catalysts, such as Fe-treated laponite, iron exchanged zeolite and iron-loaded resin. Many researchers have reported that pillared clays intercalated by iron cations have been used as active heterogeneous Fenton catalysts in decoloration and mineralization of azo dyes.
     Attention has been focused on the application of a heterogeneous photo-Fenton process to the photodegradation of reactive dye wastewater under UV irradiation. However, the ultraviolet band occupies only 3~5% of the solar light energy that reaches the earth, while artificial ultraviolet apparatus typically consumes large quantities of electrical power. Therefore, it is accepted that an important issue in the heterogeneous photo-Fenton process is to develop catalysts which efficiently use sunlight or visible light irradiation instead of UV as the light source.
     In this study, iron pillared vermiculite, which was obtained by exchanging the interlayer cations of layered clays with hydroxyl iron ions, was developed as a photo-heterogeneous catalyst in the decoloration and mineralization of the azo dye X-GN. Decoloration of X-GN by different processes was discussed, and the effects of parameters in heterogeneous photo-Fenton process such as solution pH, H2O2 concentration, catalyst dosage, initial X-GN concentration and reaction temperature, were evaluated, to elucidate their effects on the photocatalytic degradation of X-GN. TOC removal and degradation kinetics were also investigated. The present study reveals that iron pillared vermiculite and iron-pillared montmorillonite have great potential as heterogeneous photo-Fenton catalysts for the treatment of industrial dyeing wastewater.
     The conclusions are as follows:
     1. In the present study, a novel heterogeneous photo-Fenton catalyst was prepared by iron-pillared vermiculite (Fe-VT). The catalyst Fe-VT was characterized by Laser particle size analyzer, X-ray diffraction (XRD), X-ray fluorescence (XRF), Brunauer-Emmett-Teller (BET), Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) methods. It was found that hydroxy-Fe of low polymerization degree intercalated into the silicate layers of vermiculite successfully. Under the following experimental conditions: 100mg/L reactive brilliant orange X-GN (named as X-GN) solution, pH 3, 30oC, 3.92 mM H2O2 and 0.5g/L Fe-VT dosage, 98.7% decoloration and 54.4% TOC removal could be achieved with 75 min UV irradiation. The kinetics results showed that decoloration kinetics of X-GN was well fitted by a pseudo-first order equation. In addition, the maximum dissolved iron, determined by atomic absorption spectrophotometer (AAS), was less than 1 ppm. Hence, taking into account the favorable photocatalytic properties and low leaching of iron ions, iron-pillared vermiculite is a promising catalyst for dye wastewater treatment.
     2. Decolorization and mineralization of reactive brilliant orange X-GN was investigated under visible light irradiation (λ≥420 nm) by using Fe-Mt / H2O2 as the heterogeneous photo-Fenton reagent. The characterization results (XRD、FTIR、XRF、BET、XPS、UV–vis diffuse spectra) of Fe-Mt suggested that small-sized hydrolyzed iron successfully intercalated into the interlayer spaces of the clay via pillaring. The stability of the Fe-Mt catalyst was evaluated according to the decolorization efficiency for X-GN with used catalyst from previous runs and the concentration of iron ions leached from the solid structure into the reaction solution. The catalytic results showed that at a reaction temperature of 30℃, pH 3.0, 4.9mmol/L H2O2 and 0.6 g/L catalyst dosage, 98.6 % discoloration of X-GN were achieved under visible irradiation after 140 min treatment. Furthermore, decoloration efficiency was till higher than 90% after the catalyst Fe-Mt being used for 3 cycles. A halogen lamp as light source has demonstrated that visible radiation can be successfully used for a heterogeneous photo-Fenton process.
引文
[1]冯天照,王红林,严宗诚,等.印染废水脱色研究进展[J].科技导报, 2009, 27(19):112-115
    [2]王绍温,陈胜,孙德智.物化法处理印染废水的研究进展[J].工业水处理,2010,30(1):8-12
    [3]戴日成,张统,郭茜,等.印染废水水质特征及处理技术综述[J].给水排水,2000,26(10): 33-37
    [4]范迪.印染废水处理机理与技术研究[D].青岛:中国海洋大学,2008
    [5]张宇峰,滕洁,张雪英,等.印染废水处理技术的研究进展[J].工业水处理,2003,23(4): 23-27
    [6]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社,1997:75-120
    [7]王英.三维电极—电Fenton法处理印染废水的试验研究[D].西安:西安建筑科技大学,2009
    [8]张宇峰,滕洁,张雪英,等.印染废水处理技术的研究进展[J].工业水处理,2003,23(4): 23-27
    [9]许坤,贾智萍,姜兆春.氢氧化镁对水溶性阴离子染料废水脱色的研究[J].环境化学,1998,17(1):95-99
    [10]景晓辉,尤克非,丁欣宇,等.印染废水处理技术的研究与进展[J].南通大学学报(自然科学版),2005,4(3):18-22
    [11]孟范平,易怀昌.各种吸附材料在印染废水处理中的应用[J].材料导报,2009,23(7): 69-73
    [12]严刚,孙瑛.改性高岭土处理含酸性媒介染料的印染废水[J].化工环保,2009,29(6): 522-525
    [13]张竹青.粉煤灰对有机活性染料脱色效果的研究[J].吉林农业大学学报,2003,25(4): 416-420
    [14]张艳,赵宜江,嵇鸣,等.印染废水物理化学脱色方法的研究进展[J].水处理技术,2001, 27(6):311-314
    [15]刘久清,刘婉蓉,蒋彬.混凝-膜生物反应器工艺处理印染废水[J].中南大学学报(自然科学版), 2009,40(6):1488-1493
    [16]吴伟,许明,白永刚,等.混凝法深度处理印染废水中试研究[J].化工环保,2009,29(5): 426-429
    [17]王鑫,李海波,苏丹,等.直流电絮凝法处理印染废水研究[J].环境科学与技术,2010,33(2):150-153
    [18] Jian J.Q., Maung H.O., Kiran A.K. Nanofiltration forrecovering wastewater from a specific dyeing facility[J]. Separation and Purification Technology,2007, 56:199-203
    [19]胡萃,黄瑞敏,谢春生,等.印染度水回用中除盐技术的应用[J].印染助剂,2006,9,23(9): 34-36
    [20] Lopes C.N., Petrus J.C.C. Humberto G. Riella. Color and COD retention by nanofiltration membranes [J]. Desalination, 2005, 172(1) : 77-83
    [21]刘梅红.印染废水处理技术研究进展[J].纺织学报,2007,28(1):116-119
    [22]孙凌凌,俞从正.印染废水的治理现状及展望[J].2009,26(12):1-6
    [23]童玲.废铁屑在染料生产废水处理中的应用试验研究[J].再生资源研究,2005(1):28-32
    [24]黄理辉,马鲁铭,毕学军.催化铁内电解法处理印染废水试验[J].水处理技术, 2006, 32 (4):56-59
    [25] Demmin T.R., Unrich K.D., Timothy Y. Improving carpet wastewater treatment [J]. American Dyestuff Reporter ,1988 ,77 (6) :13-18
    [26]雷阳明,申哲民,贾金平,等.电化学氧化法和高铁混凝法处理染料废水的研究[J].环境科学与技术,2006 ,29 (2) :75 - 76.
    [27]滕洪辉,吴新兴,刘潘,等.不同态二氧化钛处理模拟印染废水的研究[J].环境工程学报,2010,4(2):327-330
    [28]张艳芳,李亮,陈军,等.催化氧化深度处理印染废水的研究[J].工业水处理,2009,29(7):18-20
    [29]储金宇,曹凯杰,吴春笃.印染废水处理技术综述[J].安徽农业科学, 2007, 35(7): 2041-2043
    [30] Soon A.O., Eiichi T., Makoto H., et al. Decolorization of azo dye(Orange II)in a sequential UASB-SBR system [J]. Separation and Purification Technology, 2005, 42: 297-302
    [31]张可蓉.UASB-好氧-物化组合法处理印染废水.资源与环境,2007,34;121-122
    [32] ?kte A.N., Say?ns?z E. Characterization and photocatalytic activity of TiO2 supported sepiolite catalysts [J]. Separation and Purification Technology, 2008,62(3): 535-543
    [33] Tomohiro Y., Teruyoshi Y.,Tomohiko Y., et al. Preparation of novel porous solids from alumina-pillared fluorine micas by acid-treatment [J]. Microporous and Mesoporous Materials, 2008,111,285–291
    [34] Hong H.L., Jiang W.T., Zhang X.L., et al. Adsorption of Cr(VI) on STAC-modifiedrectorite [J]. Applied Clay Science, 2008, 42(1-2):292-299
    [35] Campos A., Gagea B., Moreno S., et al. Decane hydroconversion with Al-Zr, Al-Hf, Al-Ce-pillared vermiculites [J]. Applied Catalysis A: General, 2008, 345(1): 112-118
    [36] Iurascu B., Siminiceanu I., Vioneb D., et al. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite[J]. Water Research, 2009,43(5):1313-1322
    [37] Kondru A.K., Kumar P., Chand S. Catalytic wet peroxide oxidation of azo dye (Congo red) using modified Y zeolite as catalyst [J]. Journal of Hazardous Materials, 2009, 166(1):342-347
    [38] Huang J.H., Liu Y.F., Wang X.G. Selective adsorption of tannin from flavonoids by organically modified attapulgite clay [J]. Journal of Hazardous Materials, 2008, 160(2-3): 382-387
    [39] Soundararajah Q.Y., Karunaratne B.S.B., Rajapakse R.M.G. Montmorillonite polyaniline nanocomposites: Preparation,characterization and investigation of mechanical properties [J]. Materials Chemistry and Physics,2009, 113(2-3):850-855
    [40] Yuan P., Fan M.D., Yang D., et al. Montmorillonite-supported magnetite nanoparticles for the removal of hexavalent chromium [Cr(VI)] from aqueous solutions [J]. Journal of Hazardous Materials, 2009, 166(2-3):821-829
    [41] Zhu M.X, Ding K.Y., Xu S.H., et al. Adsorption of phosphate on hydroxyaluminum and hydroxyiron-montmorillonite complexes [J]. Journal of Hazardous Materials, 2009, 16(1-3): 645-651
    [42] Bineesh K.V., Kim S.Y., Jermy B.R., et al. Synthesis, characterization and catalytic performance of vanadia-doped delaminated zirconia-pillared montmorilloniteclay for the selective catalytic oxidation of hydrogen sulfide [J]. Journal of Molecular Catalysis A: Chemical,2009,308(1-2): 150-158
    [43] Hamal D.B., Klabunde K.J. Synthesis,characterization,and visible light activity of new nanoparticle photocatalysts based on silver,carbon,and sulfur-doped TiO2 [J]. Journal of Colloid and Interface Science, 2007,311(2):514-522
    [44]杨雅秀.中国黏土矿物[M].北京:地质出版社, 1994: 187-190
    [45] Ma J.H., Song W.J., Chen C.C., et al. Fenton Degradation of Organic Compounds Promoted by Dyes under Visible Irradiation [J]. Environ. Sci. Technol., 2005,39(15) 5810-5815
    [46]范拴喜,江元汝. Fenton法的研究现状与进展.现代化工,2007,27(S1):104-107
    [47]陈芳艳. Fenton试剂处理活性艳橙X-GN染料废水研究[J].辽宁城乡环境科技, 2002, 22 (6) :14 - 16
    [48]李绍锋,张秀忠,张德明,等.Fenton试剂氧化降解活性染料的试验研究[J].给水排水,2002,28(3):46-48
    [49]王滨松,黄君礼,张杰.Fenton试剂氧化活性染料废水的研究[J].哈尔滨工业大学学报,2005,37(9):1280-1282
    [50]吕艳菲.Fenton氧化技术处理印染废水[J].环境科技,2009,22(S2):63-67
    [51]暴雅娴,华兆哲,陈坚,等.Fenton氧化法处理含甲基橙染料模拟废水的条件研究[A].中国环境保护优秀论文集[C].北京:中国环境科学出版社,2005:1141-1144
    [52] Zepp G.,Faust C.,Hoigne J. Hydroxyl radieal formation in aqueous reaetions (pH3-8) of iron(Ⅱ) with hydrogen peroxid:The photo-Fenton reaction [J]. Environ. Sci. Technol. 1992, 26(2):313-319
    [53] Parsons S. Advanced Oxidation Processes for Water and Wastewater Treatment [M]. London: IWA Publishing, 2004: 111-132
    [54]包木太,王娜,陈庆国,等.Fenton法的氧化机理及在废水处理中的应用进展[J].化工进展,2008,27(5):660-665
    [55]丁巍,尚艳.光助Fenton氧化法降解水中的活性艳蓝KN-R[J].化工环保,2009,29(3):212-215
    [56]郑怀礼,相欣奕.光助Fenton氧化反应降解染料罗丹明B[J].光谱学与光谱分析,2004,24(6):726-729
    [57]陈培榕,吴耀国,刘保超,等.金属柱撑黏土催化非均相Fenton技术的研究[J].现代化工, 2009, 29(12) :20-25
    [58]胥焕岩,彭明生,刘羽,等.矿物类Fenton反应降解有机污染物的研究进展[J].矿物岩石地球化学通报,2009,28(4):394-400
    [59]温丽华,李益民,刘颖,等.含铁的柱撑膨润土光催化降解甲基橙[J] .化学学报, 2005, 63 (1) :55-59
    [60]杨士建,何宏平,吴大清,等.钛磁铁矿异相Fenton法对亚甲基蓝模拟废水的脱色研究[J].环境化学,2009,28(5):697-701
    [61] De León M.A., Castiglioni J., Bussi J., et al. Catalytic activity of an iron-pillared montmorillonitic clay mineral in heterogeneous photo-Fenton process[J]. Catalysis Today, 2008, 133–135(2):600-605
    [62] Fernandez J., Bandara J., Lopez A., et al. Photoassisted Fenton degradation of nonbiodegradable azo dye (Orange II) in Fe-free solutions mediated by cation transfer membranes [J] .Langmuir,1999, 15(1):185-192
    [63] Tekbas M., Yatmaz H.C., Bektas N. Heterogeneous photo-Fenton oxidation of reactive azo dye solutions using iron exchanged zeolite as a catalyst [J]. Microporous and Mesoporous Materials, 2008, 115 (3):594–602
    [64] Feng J.Y., Hu X.J., Yue P.L. Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study[J]. Environ. Sci. Technol., 2004, 38:5773–5778
    [65] Ramirez J.H., Costa C.A., Madeira L.M., et al. Fenton-like oxidation of Orange II solutions using heterogeneous catalysts based on saponite clay [J]. Applied Catalysis B: Environmental , 2007 , 71 (1-2): 44-56
    [66] Chen J.X., Zhu L.H. Heterogeneous UV-Fenton catalytic degradation of dyestuff in water with hydroxyl-Fe pillared bentonite[J] . Catalysis Today ,2007 ,126 (3-4) :463-470
    [67] Li Y.M., Lu Y.Q., Zhu X.L. Photo-Fenton discoloration of the azo dye X-3B over pillared bentonites containing iron [J]. Journal of Hazardous Materials, 2006, 132 (2):196–201
    [68]黄应平,刘德富,赵进才,等.可见光/Fenton光催化降解有机染料[J].高等学校化学学报, 2005, 26(12): 2273-2278
    [69] Cheng M.M., Song W.J., Ma W.H., et al. Catalytic activity of iron species in layered clays for photodegradation of organic dyes under visible irradiation [J].Applied Catalysis B: Environmental ,2008,77 (3-4):355–363
    [70]吴平霄,朱能武,党志,等.有机柱撑水黑云母功能材料层间域有机柱结构排布模式[J].功能材料, 2006,37(1):83-86
    [71]吴平霄.蛭石矿物材料层间水的赋存状态研究[J].硅酸盐学报,2005,33(2):209-214
    [72]袁鹏,杨丹,陶奇,等.铁盐水解法制备铁层柱蒙脱及其结构特征研究[J].矿物岩石地球化学通报,2007,26(2):111-117.
    [73]张超,鲁雪生,顾安忠.利用77 K下N2吸附等温线表征碳纳米材料的微观结构[J].上海交通大学学报,2005,39(8):1248-1251
    [74]王蕾,靖丽丽,高春香,等.扫描电子显微镜在无机材料分析中的应用[J].当代化工,2007,36(3):318-320
    [75]李益民,温丽华,刘颖,等.含铁柱撑膨润土光催化降解OrangeⅡ[J].功能材料,2005, 36(6):874-876
    [76] Lei P.X., Chen C.C., Yang J., et al. Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation [J]. Environmental Science and Technology, 2005, 39(21): 8466-8474
    [77] Feng J.Y, Hu X.J., Yue P.L., et al. A novel laponite clay-based Fe nanocomposite and its photo-catalytic activity in photo-assisted degradation of Orange II [J]. Chemical Engineering Science, 2003,58 (3-6): 679–685
    [78] Cheng M.M., Ma W.H., Chen C.C., et al. Photocatalytic degradation of organic pollutants catalyzed by layered iron(II) bipyridine complex-clay hybrid under visible irradiation [J]. Applied Catalysis B: Environmental ,2006,65 (3-4): 217-226
    [79] Huang Y.P., Li J., Ma W.H., et al. Efficient H O Oxidation of Organic Pollutants Catalyzed by Supported Iron Sulfophenylporphyrin under Visible Light Irradiation2 2[J]. J. Phys. Chem. B, 2004, 108 (22):7263–7270
    [80] Cheng M.M., Ma W.H., Li J., et al. Dye Pollutants over Fe(III)-Loaded Resin in the Presence of H2O2 at Neutral pH Values [J]. Environ. Sci. Technol.,2004,38(5) 1569-1575
    [81] Wu F., Li J., Peng Z., et al.Photochemical formation of hydroxyl radicals catalyzed by montmorillonite[J]. Chemosphere,2008,72(3):407-413
    [82]赵超,姜利荣,黄应平.Fenton及Photo-Fenton非均相体系降解有机污染物的研究进展[J].分析科学学报,2007,23(3):355-360
    [83] Parra S., Nadtotechenko V., Kiwi J., et al. Discoloration of azo-dyes at biocompatible pH-values though an Fe-histidine complex immobilized on nafion vis Fenton-like processes [J]. Journal of Physical Chemistry B, 2004, 108(14): 4439-4448
    [84] Feng J.Y., Hu X.J., Yue P.L., et al. Discoloration and mineralisation of Reactive Red HE-3B by heterogeneous photo-Fenton reaction [J]. Water Research, 2003, 37(15) 3776–3784

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700