流化床—石英光纤光催化装置的建立及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对现有光催化反应器中光传输效率低、光子、反应物、催化剂三者不能有效接触的缺点,本论文开展了新型光催化反应器的设计,搭建了流化床-光纤光催化反应装置,进行了光催化反应器的性能优化和测试,利用该装置进行了甲醛光催化氧化的研究,并得到了一系列有意义的结果。研究内容主要包括:
     (1)设计了流化床-光纤光催化反应系统,包括整体气路的设计、流化床设计和光纤光源设计。整体气路由气体发生器、气体混合室、光催化反应器、检测系统等组成。流化床反应器外形为圆柱形,流化床直径10mm、高度100mm;扩大段直径16mm、高度16mm;分离段高度120mm、出口段高度50mm;反应器总长426mm。以橡胶板固定光纤,光源系统的的组成为每平面8个光纤孔,上下间距3.4mm。气路中,对光催化反应器影响重要的有入口管路口径和气体分布板,分别选取了直径2mm和400目。
     (2)对新设计和搭建的流化床-光纤光催化反应装置进行了性能优化和测试,主要从流化床流态影响、光强的影响等方面来进行优化,在催化剂粒径为60~120目、气体总流量为180mL/min、流化床的静床层高度为68mm时,流化床高度为90mm,得到最好的流态效果。以丙酮和TCE作为研究对象,在最优条件时进行光催化,得到丙酮的光催化降解率为69.9%、光量子效率为3.46%,反应速率为3.98μmol/(g催化剂·min)。三氯乙烯的光催化降解率可以达到100%、光量子效率为4.66%,反应速率为4.55μmol/(g催化剂·min)。与以往的固定床光纤光催化反应器和流化床光催化反应器进行了对比,流化床-光纤光催化反应器具有更优的光催化性能。
     (3)利用流化床-光纤光催化反应系统进行了甲醛的光催化降解研究,降解率可以达到85.71%,光量子效率为7.95%,反应速率为6.44μmol/(g催化剂·min)。
The optical transmission efficiency of the present photo catalytic reactor is low and the contact of photon-reactants-catalyst is bad. In view of this situation, this paper aims at designing a new-type photocatalytic reactor to take a good contact among photo-reactants-catalyst. A fluidized-bed optical fiber photocatalytic reactor is set up, the performance optimizing and testing of the photocatalytic reactor have been carried out. Furethermore, this reactor can be applied to do the research in the photocatalytic oxidation of formaldehyde.The research can be summarized as following.
     (1) Design of fluidized bed-optical fiber photo catalytic reactor, which includes the design of the overall gas route, and the light for optical fiber. The overall gas route consists of gas generator, gas mixing chamber, photo catalytic reactor and detection system. Fluidized-bed is cylindrical, the diameter of fluidized section is 10mm, and height is 100mm. The diameter and height of expanded section are both 16mm. The height of the other part of this reactor as following, the separate section is 120mm, and export section is 50mm. The totoal height of reactor is 426mm. The optical fibers are fixed on rubber plate. The light system is composed of 8 optical fibers in each plane, and the pitch between every two plane is 3.4mm. In gas route, diameter and the gas distribution plate have important impact to photo catalytic reactor. The diameter of the entrance pipe is 2mm and the gas distribution plate is 400 mesh.
     (2) The performance of new photo catalytic reactor has been optimized and tested. The flow pattern and light intensity of the fluidized-bed are main optimizing factors. If the catalyst particle is 60~120 mesh the total flow of gas is 180mL/min, and the static bed height of fluidized-bed is 68mm, the optimal flow pattern can be known, and then, the height of fluidized-bed can be measured as 90mm. Choosing acetone and TCE as the object pollutants, under optimal conditions, the conversion of acetone is 69.9%, quantum efficiency is 3.46%, and steady-state reaction rate is 3.98μmol of acetone (g of catalyst)-1min-1.The conversion of TCE is 100%, the quantum efficiency is 4.66%, and the steady-state reaction rate is 4.55μmol of TCE (g of catalyst)-1min-1. Compared to traditional fixed optical fiber photo catalytic reactor and fluidized-bed photo catalytic reactor, the new reactor has more excellent photo catalytic properties.
     (3) The application of this new reactor to degrade formaldehyde. The conversion of formaldehyde can reach 85.71%, the quantum efficiency is 7.95%, and steady-state reaction rate is 6.44μmol of formaldehyde (g of catalyst)-1min-1.
引文
1 Lynette A. Dibble, Gregory B. Raupp. Kinetics of the gas-solid heterogeneous photocatalytic oxidation of trichloroethylene by near UV illuminated titanium dioxide. Catalysis Letter. 1990, 4:345~354
    2汪军.纳米二氧化钛的光催化机理及其应用研究.污染防治技术. 1998, 11(3):l57~160
    3 J. E.R. Carraway, A.J. Hoffman, M.R. Hoffmann. Photocatalytic Oxidation of Organic-Acids on Quantum-Sized Semiconductor Colloids. Environmental Science & Technology. 1994, 28(5): 786~793
    4 H. Gerischer, A. Heller. Photocatalytic Oxidation of Organic-Molecules at TiO2 Particles by Sunlight in Aerated Water. Journal of the Electrochemical Society. 1992, 139(1): 113~118
    5王桂茹,张颖,杨凌霄. 98全国光催化化学学术论文摘要集.北京:中国化学会出版社, 1998:94~97
    6 Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem Rev. 1993, 93(1): 267~300
    7 Andrew Mills, Slephen Le Hunte. An over View of Semiconductor photobiology. J.Photobiology A. 1997, 108:1~35
    8郭建平,刘祖武,郭军等.纳米TiO2光催化氧化机理及研究.天津化工. 2003, 17(4):1~3
    9 A.L. Linsebigler, G.Q. Lu, J.T. Yates. Photocatalysis on TiO2 Surfaces-Principles, Mechanism, and Selected Results. Chemical Reviews. 2005, 95(3): 735~758
    10沈迅伟,袁春伟.基于二氧化钛多相光催化的环境净化技术研究及进展.东南大学学报(自然科学版). 2004, (6):872~878
    11 Hong Fei Lin, Kalliat T. Valsaraj, et al. A titania thin film annular photocatalytic reactor for degradation of polycyclic aromatic hydrocarbons in dilute water streams. Journal of Hazardous Materials B. 2003, 99(2):203~219
    12 Kuo Hua Wang, Yunghsu Hsieh, et al. The photocatalytic degradation of trichloroethane by chemical vapor deposition method prepared titanium dioxide catalyst. Journal of Hazardous Materials B, 2002, 95(1~2):161~174
    13尹晓红,辛峰,张凤宝等.转筒式负载膜光催化反应器及用于降解4BS染料的研究.化学反应工程与工艺. 2005, 21(6):560~565
    14 Vorontsov AV, Kurkin EN. Savinov EN. Study of TiO2 deactivation during gaseous acetone photocatalytic oxidation. Journal of Catalysis. 1999, 186(2):318~324
    15 Placidus B Amama; Kiminori I; Masayuki M. Photocatalytic oxidation of trichloroethylene in humidified atmosphere. Journal of Molecular Catalysis A:Chemical. 2001, 176(1~2):165~172
    16 Yatmaz HC, Wallis C, Howarth CR. The spinning discreactor studies on a novel TiO2 photocatalytic reactor. Chemosphere. 2002, 42:397~403
    17肖新颜,张强宇,万彩霞,邓沁.气-固相光催化反应器及其在空气净化中的应用研究进展.青岛科技大学学报. 2003, 24(6):496~500
    18 Kobayakawa K, Sato C, et al. Continuous-flow photoreactor packed with titanium dioxide immobilized on large silica gel beads to decompose oxalic acid in excess water. Photochem.Photobiol. A:Chem. 1998, 118:65~69
    19 Lim Tak Hyoung, Jeong Sang Mun, Kim Sang Done, et al. Photocatalytic decomposition of NO by TiO2 particles. Photochemistry & Photobiology A:Chemistry. 2000, 134:209~217
    20 Mehrval M, Anderson WA, Young MM. Preliminary analysis of a tellerette packed-bed photocatalytic reactor. Advances Environ.Res. 2002, 6:411~418
    21 Hofstadler K, Bauer R, Novalic S, Heisler G. New reactor design for photocatalytic waste-water treatment with TiO2 immobilized on fused-silica glass-fibers photomineralization of 4-chlorophenol. Environtal Science & Technology. 1994, 28(4):670~674
    22 Peill NJ, Hoffmann MR. Development and optimization of a TiO2 coated fiberoptic cable reactor-photocatalytic degradation of 4-chlorophenol. Environmental Science & Technology. 1995, 29(12):2974~2981
    23 Peill NJ, Hoffmann MR. Chemical and physical characterization of a TiO2-coated fiber optic cable reactor. Environmental Science & Technology. 1996, 30 (9):2806~2812
    24 Peill NJ, Hoffmann MR. Mathematical model of a photocatalytic fiber-optic cable reacor for heterogeneous photocatalysis. Environmental Science & Technology. 1998, 32(3):398~404
    25 Ren De Sun, Akira Nakajima, et al. TiO2-coated optical fiber bundles used as a photocatalytic filter for decomposition of gaseous organic compounds. Journal of Photochemistry and Photobiology A:Chemistry. 2000, 136(1~2):111~116
    26 Choi Wangyong, Ko Joung Yun, Park Hyunwoong,et al. Investigation on TiO2-coated optical fibers for gas-phase photocatalytic oxidation of acetone. Applied Catalysis B:Environmental. 2001, 31:209~220
    27 D. Iatridis; P. L. Yue. The absorption of light energy in flat fluidized photoreactors. Chemical Engineering Journal. 1990, 45:1~8
    28 Yue P.L; Khan, F.; Rizzuti, L. Photocatalytic ammonia synthesis in a fluidised bed reactor. Chemical Engineering Science. 1983, 38(11),1893~1900
    29 Lynette A. Dlbble and Gregory B. Raupp, Fluidlzed-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams. Environ. Sci. Technol. 1992, 26(3):492~495
    30 S.M. Borghei; S.N. Hosseini. Comparison of furfural degradation by different photooxidation methods. Chemical Engineering Journal. 2008, (139):482~488
    31 Tak Hyoung Lim, Sang Mun Jenong, Sang Done Kim, Janos Gyenis. Photocatalytic decomposition of NO by TiO2 particles. journal of Photochemistry and photobiology A:Chemistry. 2000, 134(3):209~217
    32 Gustavo E. Imoberdorf; Fariborz Taghipour; Mehrdad Keshmiri; Madjid Mohseni, Predictive radiation fieldmodeling for fluidized bed photocatalytic reactors. Chemical Engineering Science. 2008, (63):4228~4238
    33 Matsuda S, Ultrafine particle fluidization and its application to photocatalytic NOX treatment. Chemical Engineering Journal. 2001, 82:183~188
    34 Ramesh Thiruvenkatachari, Saravanamuthu Vigneswaran, A review on UV/TiO2 photocatalytic oxidation process. Korean J. Chem. Eng. 2008, 25(1):64~72
    35周继良,王臣,徐辉,邹宗树,余艾冰.流化床反应器的流动模型.中国冶金. 2007, 17(9):39~43
    36 Chung U.C, Lee I. O, Kim H.G, et al. Degradation Characteristics of iron ore fines of a wide size distribution in fluidized-bed Reduction. ISIJ International. 1998, 38:943~952
    37江立文,李耀中,周岳溪,邱熔处.流化床光催化反应器动力学模式.中国环境科学. 2000, 20(6):540~543
    38吴鑫干,王宝珠,李文生.气固流化床反应器工艺计算.石油与天然气化工. 2004, 33(1):30~34
    39解立平,王能亮,黄伟.一体式光催化氧化-膜分离流化床反应器性能的研究[J].环境工程学报. 2007, 1(9):20~24
    40陈平,聂芊,张亚丽.光催化氧化流化床参数的研究.工业用水与废水. 2004, 35(5):38~42
    41 Jong Ho Lee,Wooseok Namb, Misook Kangc, Gui Young Han, Ki June Yoon. Design of two types of fluidized photo reactors and their photo-catalytic performances for degradation of methyl orange. Applied Catalysis A: General. 2003, 244: 49~57
    42李成岳,王建.化学反应器的动态操作.化工学报. 2004, 55(6):861~868
    43李伟,张述伟,王长英,刘长厚,张沛存.流化床反应器流化高度的计算.齐鲁石油化工. 2001, 29(4):273~276
    44 Van Sint Annaland M, Nijssen RC. A novel reverse flow reactor coupling endothermic and exothemic reactions: An experimental study. Chem.Eng. Sci. 2002, 57(22~23):4967~4985
    45 V. Keller; P. Bernhardt; F. Garin. Photocatalytic oxidation of butyl acetate in vapor phase on TiO2, Pt/TiO2 and WO3/TiO2 catalysts. Journal of Catalysis. 2003, 215:129~138
    46 Lizhong Sun; James R. Bolton. Determination of the Quantum Yield for the Photochemical Generation of Hydroxyl Radicals in TiO2 Suspensions. J. Phys. Chem. B. 1996, 100(10), 4127~4134
    47赵莲花,伊藤公纪,村林真行,近藤正志,文学洙.三氯乙烯预处理的TiO2薄膜上挥发性有机物的光催化反应.催化学报. 2004, 25(8):669
    48 Wang Z, Zhu F, Rong Z M, et al, Experimental determination and estimation of the evaporation rate of pure solvents. Print & coatings industry. 2008, 38(6):5~9
    49 C. G. Hatchard and C. A. Parker, A new sensitive chemical actinometer. II. potassium ferrioxalate as a standard chemical actinometer. Mathematical and Physical Sciences. 1956, 235(1203):518-536
    50 Jaesang Lee, Jungwon Kim, and Wonyong Choi, Ferrioxalate-Polyomometalate system as a new chemical actinometer. Environ. Sci. Technol. 2007, 41:5433~5438
    51 Zuo Guomin, Xu Min, Cheng Zhenxing, et al. Study on gas phase photolytic and photocatalytic degradation of volatile organic compounds VOCs. Journal of molecular catalysis(China). 2001, 15(6):463~466
    52赵莲花,伊藤公纪,村林真行,近藤正志.二氧化钛薄膜上三氯乙烯光催化氧化反应机理.催化学报. 2004, 25(11):915~919
    53 Schiavello, M.; Augugliaro, V.; Palmisano, L. J. Catal. 1991, 127, 332
    54 Cabrera, M. I.; Alfano, O. M.; Cassano, A. E. Ind. Eng. Chem. Res. 1994, 33, 3031
    55梅长松,钟顺和.负载金属对WO3-TiO2光催化剂结构与催化性能的影响.化学学报. 2005, 63(19):1789~1794
    56 Sauer M. L, Ollis D. F. Acetone Oxidation in a photacatalytic monolith reactor. J Catal. 1994, 149:81
    57 Shen Hangyan, Tang Xinshuo, Guan Minyuan, et al. Study on the preparation of supported TiO2 catalyst and photocatalytic degradation of acetone. Journal of Molecular Catalysis(China). 1999, 13(6):435~440
    58 Tang Peisong ,Hong Z L, Zhou S F , et al, Nanosize-TiO2 with high photocatalysis performance under visible light irradiation. Acta energiae solaris sinica. 2006, 27(3):289~294
    59肖新颜,赵宝顺,张会平.纳米TiO2气相光催化降解丙酮[J].华南理工大学学报(自然科学版). 2005, 33(5):83~87
    60 Song Han, Zhou X P,et al. An in-situftir investigation of acetone photodegradation. Journal of Molecular Catalysis(China). 2008, 22(5):454~660
    61 Peral J, Ollis D F. Heterogeneous photocatalytic oxidation of gas-phase organics for air purification:acetone,1-butanol,butyraldehyde,formaldhyde,and m-xylene oxidation. Journal of catalysis. 1992, 136:554~565
    62 Wang KH, Tsai HH, Hsieh YH. A studyof photocatalytic degradation of trichloroethylene in vapor phase on TiO2 photocatalyst. Chemosphere. 1998, 36(13): 2763~2773
    63 Zhang Maolin, An Taicheng, Hu Xiaohong,et al. Photocatalytic degradation of trichloroethylene in air on nanometer ZnO-SnO2 coupled oxides supported onto the porous nickel mesh. Acta Scientiae Circumstantiae. 2005, 25(2):259-263
    64 Zhao L H, Ozaki S, Itoh K, Murabayashi M. Electrochemistry (Tokyo). 2002, 70(1):8
    65张宜恒,陈琦,闫天堂等.甲醛光催化氧化的ESR研究.化学物理学报. 1998, 11(5):461
    66 Noguchi T, Fujishima A, et al, Photocatalytic degradation of gaseous formalde-hyde using TiO2 film. Environmental science & technology. 1998, 32(23):3831
    67 Yiku D, Joseph R, The measure of TiO2 photocatalytic efficiency and the comparison of different photocatalytic titama. J Phys Chem B. 2003, 107:11970
    68廖东亮,肖新颜,邓沁.纳米TiO2的制备及甲醛光催化降解的研究.华南理工大学学报(自然科学版). 2003, 31(4):10
    69黄勇,杨建军,毛立群.光催化降解甲醛的波长效应研究.感光科学与光化学. 2005, 23(4):253~260
    70杨丽珍,周震,郝燕萍,谢芬艳. TiO2纳米颗粒光催化降解甲醛的影响因素.北京印刷学院学报. 2006, 14:39~42
    71梁世强,穆筱梅,葛建芳.活性炭纤维负载纳米TiO2在光反应器中降解空气中微量甲醛的研究.精细化工. 2006, 23(5):456~459
    72彭峰,任艳群. TiO2光催化降解气相有机物的研究进展.化工进展. 2003, 22(1):39~42
    73彭人勇,刘淑娟,赵玉美.活性炭纤维负载TiO2光催化降解甲醛的影响因素.环境工程学报. 2009, 3(7):1294~1299
    74 Zhang M L, An T C, Fu J M, et al. Photocatalytic degradation of mixed gaseous carbonyl compounds at low level on adsorptive TiO2/SiO2 photocatalyst using a fluidized bed reactor. Chemosphere. 2006, 64(3):423~431
    75刘宝鸿,杨雷库.化学反应器.第二版.化学工业出版社, 2005:118~120
    76郭慕孙,李洪钟.流态化手册.北京化学工业出版社, 2008:362~367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700