湿化学法制备锗材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金属Ge材料的制备研究近年来在国内外受到广泛关注,其中包括纳微尺度Ge粒子、纤维和薄膜材料。本论文通过研究六方晶型GeO2粉末与氨水的化学反应,合成出了高浓度、高稳定性的锗酸根离子前驱液。使用还原剂。NaBH4,在室温下还原此锗酸根离子前驱液,合成出了纳微尺度Ge纳米材料,并对各类材料的微观形貌、结构和生长机制进行了研究。
     通过改变NaBH4与GeO2的比例在相同条件下进行反应,在比例为4-6时获得了结晶性较好的Ge材料。通过不同反应时间和烘干温度条件下的实验发现制得结晶性较好Ge材料的反应时间为12小时以上,烘干温度为120℃。研究发现制备Ge纳米材料的最佳工艺条件为:前驱液中Ge02的浓度为3%。NaBH4/GeO2摩尔比为5,还原时间24小时,120℃烘干。NaBH4还原锗酸根离子前驱液12小时得到的Ge粒子为球型(20-50 nm),24小时为蠕虫状。粒子此形状的变化符合奥斯瓦尔德熟化机制。
     以NaBI-14还原锗氨溶液所得氢化的Ge溶胶为原料,通过干燥和蒸镀可以得到致密Ge薄膜材料。薄膜由直径在100纳米左右的粒子组成。随着蒸发温度的升高,致密Ge薄膜中粒子的结晶性随之提高,薄膜厚度增加。Ge薄膜的拉曼光谱在300 cm-1左右有一个尖锐的峰,对应着晶态Ge的,在265-270 cm-1左右有一个强度较弱的峰,对应着非晶态的Ge,随着蒸镀温度的升高非晶峰逐渐消失,与XRD结果相一致。Ge薄膜材料由325nm波长激发产生的发光峰主要集中在693nm到835 nm之间,峰的最高点位于753 nm左右。Ge薄膜的拉曼和荧光性质与纯Ge单晶不同,是由Ge薄膜生长时形成的缺陷和晶格内应力效应引起的。我们所制备的Ge薄膜为p型半导体,空穴浓度的数量级为1023cm-3,迁移率为60cm2.V-1.s-1。
The fabrication of germanium materials including Ge nanocrystals and Ge thin films has attracted much more attention recently. In this work, stable germanate ion aqueous solution with high solid content was synthesized through interaction between hexagonal GeO2 powders and aqueous ammonia. A reducing agent NaBH4 was used to reduce GeO2 solute into nano crystalline Ge. Ge thin films were obtained by evaporating the hydrogenated Ge nano products. The morphologies, structures and growth mechanisms of these materials were investigated.
     The molar ratio of NaBrVGeO2 under which crystalline Ge products can be obtained is from 4 to 6. The reaction time and drying temperature are no less than 12 hours and 120°C, respectively. The best reaction conditions for synthesis of crystalline Ge products are as follows: The GeCh content of the germanate ion precursor is 3%, NaBH4/GeO2 molar ratio is 5, reaction time 24 hours and drying temperature 120°C. When the reaction time is 12 hours, the Ge nano samples consist of sphere-shape Ge nano particles (20-50nm). Worm-like crystallined Ge product was obtained as the reaction time remains 24 hours. The growth mechanism of the products follows Ostwald Ripening mechanism.
     Ge films could be prepared by evaporating hydrogenated Ge sol that was synthesized by interaction between NaBH4 and germanate ion aqueous solution. The films are composed of Ge nanoparticles with size of about 100 nm. The degree of crystallinity and thickness of the films increases with rising temperature. There is a sharp peak corresponding to crystalline Ge at about 300 cm-1 and an amorphous shoulder at 265-270 cm'1 in the Raman spectrum of the Ge film. The amorphous peak disappears gradually with increasing temperature, which is consistent with the XRD results. Photoluminescence (PL) peaks centralize at 693-835 nm. The strongest PL peak appears at 753 nm under excitation with 325 nm light. The observed Raman and PL are different from that of a single crystal Ge, which likely originates from the compressive strain in the crystal lattices. The Ge films are p-type and their hole densities are in the order of magnitude of 1023 cm-3 The average mobility of carrier is about 60 cm2.V
引文
[1]郑能瑞.锗的应用与市场分析[J].广东微量元素科学, 1998, 5(2): 12-18
    [2]姜小波,叶志镇.锗硅材料在微电子、光电子方面的应用[J].材料科学与工程, 1996, 14(3): 18-21
    [3] Daniele Gerion, Natalia Zaitseva, Cheng Saw, et.al. Synthesis of germanium nanocrystals[J] Nano Lett., 2004, 4 (4): 597-602
    [4] Dutta A. Visible photoluminescence from Ge nanocrystal embedded into a SiO2 matrix fabricated by atmospheric pressure chemical vapor deposition[J]. Appl Phys Lett, 1996, 68(9) : 1189
    [5] Maeda Y, Tsukamoto N, Yazawa Y. Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices[J]. Appl Phys Lett, 1991, 59 (24) : 3168-3170
    [6] Nogami, Masayuki Abe, Yoshihiro. Sol-gel method for synthesizing visible photoluminescent nanosized Ge-crystal-doped silica glasses[J]. Appl Phys Lett, 1994, 65 (20) : 2545-2547
    [7] K S Min, K V Shcheglov, C M Yang, et.al. The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals[J]. Appl Phys Lett, 1996, 68 (18) : 2511-2513
    [8]冯玉英,顾晓天,周家宏,等.掺锗SiO2玻璃的发光现象[J].应用化学, 2005, 22(8): 926-928
    [9]杨合情,刘守信,张邦劳,等.新的溶胶-凝胶法制备Ge/SiO2量子点玻璃[J].高等学校化学学报, 2001, 22: 1707-1710
    [10] Bongiorno A, Pasquarello A, Hybertsen M S, et.al. Transition structure at the Si(100)-SiO2 interface[J]. Physical Review Letters, 2003, 90(18): 186101
    [11] Pavesi L, DalNegro L. Optical gain in silicon nanocrystals[J]. Nature, 2000, 408: 440-444
    [12]黄伟其,刘世荣,秦朝建.锗晶的零维纳米结构的光致发光模型[J].贵州科学, 2006, 24(3): 5-8
    [13] W. Pan, K Fujiwara, N. Usami, et.al. Ge composition dependence of properties of solar cells based on multicrystalline SiGe with microscopic compositional distribution[J]. Appl. Phys. 2004, 96(2): 1238-1241
    [14]李成虎,赵玉文,黎雪梅,等.一种新型锗硅混晶异质结构太阳电池的设计与理论分析[J].太阳能学报, 2000, 21(4): 1-7
    [15] I. Yonenaga, M. Sakurai. Bond lengths in Gel-xSix crystalline alloys grown by the Czochralski method[J]. Phys. Rev.b, 2001, 64: 113206
    [16]阙端麟,陈修治.硅材料科学与技术[M].浙江,浙江大学出版社.
    [17] I. Yonenaga, T. Taishi, X. Huang, et.al. Dynamic characteristics of dislocations in Ge-doped and (Ge + B) codoped silicon[J]. Appl. Phys. 2003, 93(1): 265-269
    [18] I Yonenaga, K Sumina. Mechanial strength of GeSi alloy[J]. Appl. Phys. 1996, 80: 3244-3247
    [19] J P Wilcoxon, P P Provencio, G A Samara. Synthesis and optical properties of colloidal germanium nanocrystals[J]. Physical review B. 2001, 64(035417): 1-9
    [20] W Z Wang, B Poudel, J Y Huang, et.al. Synthesis of gram-scale germanium nanocrystals by a low-temperature inverse micelle solvothermal route[J]. Nanotechnology. 2005, 16: 1126-1129
    [21] Jamie HWarner, Richard D Tilley. Synthesis of water-soluble photoluminescent germanium nanocrystals[J]. Nanotechnology. 2006, 17: 3745-3749
    [22] Jiann Shieh, Hsuen Li Chen, Tsung Shine Ko, et.al. Nanoparticle-assisted growth of porous germanium thin films [J]. Adv. Mater. 2004, 16(13): 1121-1124
    [23] Ran Young Kim, Ho-Gi Kim, Soon-Gil Yoon. Ge film growth in the presence of Sb by metal organic chemical vapor deposition [J]. Journal of Applied Physics. 2007, 102: 0835311- 0835315
    [24] Y. H. Ahh, Jiwoong Park. Efficient visible light detection using individual germanium nanowire field effect transistors[J]. Applied Physics Letter, 2007, 91: 1621021-1621023
    [25] B A Imran, Aykutlu Dana, Atilla Aydinli. Comparison of electron and hole charge-discharge dynamics in germanium nanocrystal flash memories [J]. Applied physics letters, 2008, 92(052103): 1-3
    [26] K. Sakaike, S. Higashi, H. Murakami, et.al. Crystallization of amorphous Ge films induced by semiconductor diode laser annealing [J]. Thin Solid Films. 2008, 516: 3595-3600
    [27] H P Wu, J F Liu, Y W Wang, et.al. Preparation of Ge nanocrystals via ultrasonic solution reduction [J]. Materials letters. 2006, 60: 986-989
    [28] Louisa J. Concentration-dependent size control of Germanium nanocrystals. Chemistry Letters [J]. 2005, 34(11): 1526-1527
    [29] Gerung H, Boyle T J, Tribby L J, et al. Solution synthesis of germanium nanowires using a Ge2+ alkoxide precursor[J]. J Am Chem Soc, 2006, 128: 5244-5250.
    [30] Tuan H Y, Lee D C, Hanrath T, et al. Germanium nanowire synthesis: An example of solid-phase seeded growth with nickel nanocrystals[J]. Chem Mater, 2005, 17: 5705-5711.
    [31] Dailey J W, Taraci J, Clement T, et al. Vapor-liquid-solid growth of germanium nano structures on silicon[J]. J Appl Phys, 2004, 96 (12): 7556-7567.
    [32] Mathur S, Shen H, Sivakov V, et al. Germanium nanowires and core-shell nano structures by chemical vapor deposition of [Ge(C5H5)2] [J]. Chem Mater, 2004, 16: 2449-2456.
    [33] Han W Q, Wu L J, Zhu Y M, et al. In-situ growth of crystalline Ge nanowires by using nanotubes as template[J]. Microsc Microanal, 2005, 11: 1506-1507.
    [34] Mei Y F, Li Z M, Chu R M, et al. Synthesis and optical properties of germanium nanorod array fabricated on porous anodic alumina and Si-based templates [J]. Appl Phys Lett, 2005, 86: 021111.
    [35] Boucaud P, Le Thanh V, Sauvage S, et al. Intraband absorption in Ge/Si self - assembled quantum dots [J]. Appl Phys Lett, 1999, 74(3): 401 - 403.
    [36] Kim E S, Usami N, Shiraki Y. Control of Ge Dots in Dimension and Position by Selective Epitaxial Growth and Optical Properties[J]. Appl Phys Lett, 1998, 72(13): 1617- 1619.
    [37] Unal B, Parkinson M, Bayliss S C. Photolu minescence Lifetime and Structure of Molecular Beam Epitaxy Porous Si1-xGex Grown on Si[J]. Porous Materials, 2000, 7: 143-146.
    [38] Yang H Q, Wang X J, Shi H Z, et al. Sol-gel Preparation of Ge Nanocrystals Embedded in SiO2 Glasses[J]. Journal of Crystal Growth, 2002, 236(1-3): 371-375.
    [39] Islamgaliev R K, Chmelik F, Gibadullin I F, et al. The nanocrystalline structure formation in germanium subjected to severe plastic deformationnm[J]. Nanostructured Materials, 1994, 4(4): 387-395.
    [40] Soumyendu G H, Mark W, Lloyd L C. Growth and characterization of Ge nanocrystals[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1999, 147(1-4): 367-372.
    [41] Simon A, Csik A, Pászti F, et al. Study of interdiffusion in amorphous Si/Ge multilayers by Rutherford backscattering spectrometry, Nuclear Instruments and Methods in Physics Research, 2000, B161-163:471-475.
    [42] Choi W K, Ng S P, Ng V, et al. Microstructural and photoluminescence studies of germanium nanocrystals in amorphous silicon oxide films[J]. J Appl Phys, 2001, 89(4): 2168-2172.
    [43] X H Cheng, D W He, Z R Song, et.al. The effect of blocking layer of Al2O3 on thermal stability and electrical properties fo HfO2 dielectirc films deposited on SiGe layer[J]. Microelectronic Engineering, 85(9): 1888-1891.
    [44] C Tételin, X Wallart, J P Nys, et.al. Kinetics and mechanism of low temperature atomic oxygen-assisted oxidation of SiGe layers[J]. Appl. Phys. 1998, 83: 2842-2846
    [45] J M Madsen, Z J Cui, C G Takoudis. Low temperature oxidation of SiGe in ozone: Ultrathin oxides[J]. Appl. Phys. 2000, 87: 2046
    [46]黄伟其,刘世荣.激光照射下的低温氧化生成锗的纳米结构及其特性[J].物理学报, 2005, 54(2): 972-976
    [47] Giovanni Flamand, Jef Poortmans, Kristof Dessein. Formation of porous Ge using HF-based electrolytes[J]. phys. stat. sol. 2005, 9, (c) 2: 3243-3247
    [48] Sutter P W, Sutter E A. Dispensing and surface-induced crystallization of zeptolitre liquid metal-alloy drops[J]. Nat Mater, 2007, 6 (5): 363-366.
    [49] Yoshihito M. Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism[J]. Phys. Rev. B., 1995, 51: 1658-1670
    [50] J H Liu, G Jin, Y S Tang, et.al. Optical and acoustic phonon modes in self-organized Ge quantum dot superlattices[J]. Applied Physics Letters, 2000, 76: 586
    [51] Samy A. Excitation energy transfer and photodecomposition of some diolefinic laser dyes[J]. 1998, 129(8-9): 835-842
    [52] Nakashita T, Hagiwara S, Uehara F et.al. Defect compensation by bonded hydrogen in undoped a-Ge: H films with mono-and dihydride bonding[J]. J. Appl. Phys., 1992, 31: 186-191
    [53] Nakashita T, Inoue A, Hagiwara S,et.al. Energy band model of undoped a-Ge: prepared by plasma CVD[J]. Jpn. J. Appl. Phys, 1990, 29: 820-823
    [54] Hanrath T, Korgel B A. Chemical passivation and Ge nanowire surfaces. J. Am. Chem. Soc. 2004, 126: 15466-15472
    [55] Viswanathamurthi P., Bhattarai N., Kim H. Y., et. al, GeO2 fibers: preparation, morphology and photoluminescence property[J], J. Chem. Phys., 2004, 121:441-445
    [56] Wu X. C., Song W. H., Zhao B., et. al, Preparation and photoluminescence properties of GeO2 nanowires[J], J. Chem. Phys. Lett., 2001, 349: 210-21
    [57]陆栋,蒋平,徐至中.固体物理学[M].上海,上海科学技术出版社. 2006, 167
    [58]徐祥书,肖艳,朱平川,等.铅离子-硼氢化钠-铁氰化钾产生铅烷的机理研究.
    [59]熊聪,唐新峰,祁琼,等.Ⅰ型锗基笼合物Ba8Ge16-xSbxGe30的合成及热电性能[J].物理学报, 2006, 55(12)
    [60] Xuejun Niu, Vikram L Dalal. Growth and properties of nanocrystalline germanium films [J]. Journal of applied physics, 2005, 98: 0961031-0961033.
    [61] F. Cerdeira, C. J. Buchenuauer, Fred H. Pollak, et.al. Stress-induced shifts of first-order Raman frequencies of diamond- and Zinc-blende-type semiconductors[J]. Physical Review B. 1972, 15: 580-593
    [62] J. L. Liu, J. Wan, Z. M. Jiang, et.al. Optical phonons in self-assembled Ge quantum dot superlattices: strain relaxation effects [J]. Journal of Applied Physics. 2002, 92(11): 6804-6808
    [63]刘恩科,朱秉升,罗晋生,等.半导体物理学[M].国防工业出版社, 1997: 301-302
    [64] Tobias F. Wietler, AndréOtt, Eberhard Bugiel, et.al. Advances in surfactant-mediated growthof germanium on silicon: high-quality p-type Ge films on Si[J]. Materials Science in Semiconductor Processing. 2005, 8: 73–77
    [65] Xuejun Niu, Vikram L Dalal. Growth and properties of nanocrystalline germanium films[J]. Journal of Applied Physics, 2005, 98: 0961031-0961033

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700