SD大鼠初级视皮层第Ⅱ/Ⅲ层兴奋性神经元在发育过程中内部侧向突触联系可塑性长时程增强效应(LTP)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,哺乳动物中枢神经系统在发育过程中的可塑性变化一直都是大家非常感兴趣的问题,其中由于视觉经验很容易被控制,同时控制的结果可以在解剖,生理和分子的水平上进行测量,因此初级视皮层一直以来都是经验依赖性可塑性的研究材料和重要模型。LTP(长时程增强)就是神经系统突触联系可塑性的研究方向之一,被认为参与到了神经系统中神经回路整合以及学习和记忆过程的重要机制。在SD大鼠初级视皮层的发育过程中,兴奋性神经元第Ⅱ/Ⅲ层内部侧向突触可塑性变化的精确时间窗口以及这种侧向突触联系可塑性变化对于纵向(第Ⅳ层到第Ⅱ/Ⅲ层投射)突触联系可塑性的影响并未被完全了解。在本研究中,我们采用膜片钳全细胞记录的方法研究了SD大鼠初级视皮层第Ⅱ/Ⅲ层内部侧向突触联系可塑性发育变化的动态过程,揭示了SD大鼠初级视皮层第Ⅱ/Ⅲ层内部侧向突触联系可塑性从强到弱,从有到无的时间窗口,以及此过程中突触后膜上AMPA受体的自发反应变化情况。在了解内部侧向突触联系可塑性的变化情况后,我们采用双侧刺激的方法研究侧向输入对纵向突触发育可塑性的影响,并在这基础上,采用双侧强直刺激的方法研究了睁眼后侧向输入和纵向输入在纵向突触联系上的相互作用。实验结果表明:(1)SD大鼠初级视皮层第Ⅱ/Ⅲ层兴奋性神经元突触AMPA受体自发反应受发育调控。睁眼(P12-P13)后,AMPA受体自发反应频率大幅上升,幅度略有下降;(2)SD大鼠初级视皮层第Ⅱ/Ⅲ层之间的侧向联系的长时程突触可塑性(LTP)的时间窗口为到出生后第12天(未睁眼)为止。眼睁开后神经突触可塑性只呈现短时程增强(STP),而且强度较弱;(3)SD大鼠初级视皮层第Ⅱ/Ⅲ层兴奋性神经元在睁眼前,第Ⅱ/Ⅲ层内部突触联系LTP的表达不影响第Ⅳ层到第Ⅱ/Ⅲ层突触联系LTP的表达:(4)SD大鼠初级视皮层第Ⅱ/Ⅲ层兴奋性神经元睁眼后,水平方向的(第Ⅱ/Ⅲ层之间)强直刺激可诱导第Ⅳ层到第Ⅱ/Ⅲ层之间的突触联系LTP,但是幅度小于垂直方向强直刺激产生的LTP:当同时给予水平和垂直方向的强直刺激,其LTP的幅度为最小。
     根据我们的研究结果和以往的一些研究成果,我们认为在SD大鼠初级视皮层第Ⅱ/Ⅲ层的内部侧向相互作用起到了如下的作用:(1)通过可塑性时间窗口的关闭完成了兴奋性神经元间侧向突触联系的成熟化;(2)通过与纵向输入的相互作用修饰了来自于视网膜上行传导的信号处理,使之精细化:(3)这种侧向的抑制作用可能是神经网络中竞争机制的基础;可能在功能柱的形成过程中起到重要的调节作用:(4)这种侧向的相互抑制的基础很可能来源于神经突触后AMPA通道的联系强度的可塑性变化
The development plasticity of the mammalian central nervous system (CNS) has been an attractive field in neuroscience for a long time. The visual cortex has long been a proving ground and model for the study of experience-dependent plasticity because visual experience can be easily manipulated and the consequences of manipulations can be readily measured at the anatomical, physiological and molecular levels. LTP (long-term potentiation) is one of the questions in the field of synaptic plasticity in nervous system which is thought to be one of the important mechanisms of information storage and neural circuit refinement in the brain. The precise 'time window' of horizontal synaptic plasticity and the influence of this horizontal synaptic connection in the vertical synaptic plasticity during the development of primary visual cortex in SD rats has not been clearly understood. In our researches, we used whole-cell recording patch clamp to study the changes of the internal horizontal synaptic plasticity in LayerⅡ/Ⅲof the rats' primary visual cortex and revealed the process of plasticity which is from strong to weak even loss at last which we called 'time windows' and the changes of AMPA receptors (AMPARs) in the aspects of frequency and amplitude during this process. After that, we used both horizontal and vertical pairing stimulation to study influence of the horizontal inputs to the vertical synaptic plasticity. For further researches, we used both horizontal and vertical LTP stimulation at the same time to study the interaction between horizontal inputs and vertical inputs in the vertical synaptic plasticity.
     We finally found out that: (1) AMPARs in the LayerⅡ/Ⅲneuron synapses of rats' primary visual cortex are influenced by the process of development. After eyes opening (Postnatal days 12-13), the frequency of AMPAR-mEPSCs(miniature postsynaptic spontaneous currents) obviously increases, meanwhile the amplification gently decreases. (2) the precious 'time windows' of horizontal synaptic plasticity in LayerⅡ/Ⅲprimary visual cortex of rats is terminated in P12 before eyes opening. After it, the horizontal synaptic plasticity is short-term potentiation and weaker than before; (3) the generation of LTP in the horizontal synapses will not make a long term influence in the developing process of vertical synaptic connections before eyes opening (P10). (4)After eyes opening, the horizontal tetanic stimulation will make a long term influence in it and the amplification of it is weaker than the influence made by vertical tetanic stimulation; horizontal inputs and vertical inputs will have an inter-inhibited influence in the developing process of vertical synaptic plasticity to some extends.
     Based on our results and some former results, we think that the internal horizontal interactions in the LayerⅡ/Ⅲneurons of rats' primary visual cortex play following roles: (1) finished the process of maturation in the horizontal synaptic connection by the closing of the plasticity 'time windows'; (2) finely modified the neuron signals from retina by interaction with the vertical inputs; (3) the horizontal inhibition may be the basis of competition mechanisms in the neuron network and the regulation mechanisms in the process of function columns development; (4) this inter-inhibition may be based on the changes of AMPARs in the neuron post-synapses.
引文
[1]Ascher P,Nowak L.The Role of divalent-cations in the N-methyl-D-aspartate responses of mouse central neurons in culture[J].Journal of Physiology-London,1988,399(247-66).
    [2]Barria A,Derkach V,Soderling T.Identification of the Ca2+/calmodulin-dependent protein kinase Ⅱ regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole -propionate-type glutamate receptor[J].Journal of Biological Chemistry,1997,272(52):32727-30.
    [3]Barria A,Muller D,Derkach V,et al.Regulatory phosphorylation of AMPA-type glutamate receptors by CaM-KII during long-term potentiation[J].Science,1997,276(5321):2042-5.
    [4]Bayer K U,De Koninck P,Leonard A S,et al.Interaction with the NMDA receptor locks CaMKII in an active conformation[J].Nature,2001,411(6839):801-5.
    [5]Bear M F,Malenka R C.Synaptic plasticity:LTP and LTD[J].Current Opinion in Neurobiology,1994,4(3):389-99.
    [6]Beique J C,Anderade R.PSD-95 regulates synaptic transmission and plasticity in rat cerebral cortex[J].Journal of Physiology-London,2003,546(3):859-67.
    [7]Bliss T V P,Collingridge G L.A synaptic model of memory:Long-term potentiation in the hippocampus[J].Nature,1993,361(6407):31-9.
    [8]Brabilla R,Gnesutta N,Minichiello L,et al.A role for the Ras signalling pathway in synaptic transmission and long-term memory[J].Nature,1997,390(6657):281-6.
    [9]Brenman J E,Chao D S,Gee S H,et al.Interaction of nitric oxide synthase with the postsynaptic density protein PSD-95 and alpha 1-syntrophin mediated by PDZ domains [J]. Cell, 1996, 84(5): 757-67.
    [10] Chen H J, Rojas-Soto M, Oguni A, et al. A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II [J]. Neuron, 1998, 20(5): 895-904.
    [11] Chen L, Chetkovich D M, Petralia R S, et al. Stargazin regulates synaptic targeting of AMPA receptors by two distinct mechanisms [J]. Nature, 2000, 408(6815): 936-43.
    [12]Cho K O, Hunt C A, Kennedy M B. The rat-brain postsynaptic density fraction contains a homolog of the drosophila disks-large tumor suppressor protein [J]. Neuron, 1992, 9(5): 929-42.
    [13] Choi S, Klingauf J, Tsien R W. Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses' [J]. Nature Neuroscience, 2000, 3(4): 330-6.
    [14]Crair M C, Malenka R C. A Critical preiod for long-term potentietion at thalamocortical synapses [J]. Nature, 1995, 375(6529): 325-8.
    [15]Craven S E, Bredt D S. PDZ proteins organize synaptic signaling pathways [J]. Cell, 1998, 93(4): 495-8.
    [16] Das S, Sasaki Y F, Rothe T, et al. Increased NMDA current and spine density in mice lacking the NMDA receptor subunit NR3A [J]. Nature, 1998, 393(6683): 377-81.
    [17]De Villers-Sidani E, Chang E F, Bao S W, et al. Critical period window for spectral tuning defined in the primary auditory cortex (A1) in the rat [J]. Journal of Neuroscience, 2007, 27(1): 180-9.
    [18]Derkach V, Barria A, Soderling T R. Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(6): 3269-74.
    [19] Dong H L, Obrien R J, Fung E T, et al. GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors [J]. Nature, 1997, 386(6622): 279-84.
    [20] El-Hussein A E, Schnell E, Chetkovich D M, et al. PSD-95 involvement in maturation of excitatory synapses [J]. Science, 2000, 290(5495): 1364-8.
    [21]Emptage N J, Reid C A, Fine A, et al. Optical quantal analysis reveals a presynaptic component of LTP at hippocampal Schaffer-associational synapses [J]. Neuron, 2003, 38(5): 797-804.
    [22]Esteban J A, Malinow R. A molecular mechanism for the regulated synaptic delivery of GluR4-containing AMPA receptors [J]. Society for Neuroscience Abstracts, 2001, 27(1): 20.
    [23] Garner C C, Kindler S. Synaptic proteins and the assembly of synaptic junctions [J]. Trends in Cell Biology, 1996, 6(11): 429-33.
    [24] Garner C C, Nash J, Huganir R L. PDZ domains in synapse assembly and signalling [J]. Trends in Cell Biology, 2000, 10(7): 274-80.
    [25] Gilbert C D, Wiesel T N. Columnar specificity of intrinsic horizontal and corticocoritical connections in cat visual-cortex [J]. Journal of Neuroscience, 1989, 9(7): 2432-42.
    [26] Gordon J A, Stryker M P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse [J]. Journal of Neuroscience, 1996, 16(10): 3274-86.
    [27]Greengard P, Jen J, Nairn A C, et al. Enhancement of the glutamate response by cAMP-dependent protein-kinase in hippocampal-neurons [J]. Science, 1991, 253(5024): 1135-8.
    [28]Hata Y, Nakanishi H, Takai Y. Synaptic PDZ domain-containing proteins [J]. Neuroscience Research, 1998, 32(1): 1-7.
    [29]Hayashi Y, Shi S H, Esteban J A, et al. Driving AMPA receptors into synapses by LTP and CaMKII: Requirement for GluR1 and PDZ domain interaction [J]. Science, 2000, 287(5461): 2262-7.
    [30]Hirai H, Kirsch J, Laube B, et al. The glycine binding site of the N-methyl-D-aspartate receptor subunit NR1: Identification of novel determinants of co-agonist potentiation in the extracellular M3-M4 loop region [J]. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(12): 6031-6.
    [31]Hu N W, Zhang H M, Hu X D, et al. Protein synthesis inhibition blocks the late-phase LTP of C-fiber evoked field potentials in rat spinal dorsal horn [J]. Journal of Neurophysiology, 2003, 89(5): 2354-9.
    [32]Hubel D H, Wiesel T N. Functional architecture of macaque monkey visual-cortex [J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 1977, 198(1130): 1-&.
    [33]Ikeda K, Nagasawa M, Mori H, et al. Cloning and expression of the epsilon-4 subunit of the NMDA receptor channel [J]. Febs Letters, 1992, 313(1): 34-8.
    [34]Irie M, Hata Y, Takeuchi M, et al. Binding of neuroligins to PSD-95 [J]. Science, 1997,277(5331): 1511-5.
    [35]Ishii T, Moriyoshi K, Sugihara H, et al. Molecular characherization of the family of the N-methyl-D-aspartate receptor subunits [J]. Journal of Biological Chemistry, 1993, 268(4): 2836-43.
    [36]Issa N P, Trachtenberg J T, Chapman B, et al. The critical period for ocular dominance plasticity in the ferret's visual cortex [J]. Journal of Neuroscience, 1999, 19(16): 6965-78.
    [37] Jackson C A, Peduzzi J D, Hickey T L. Visual-cortex development in the ferret. 1. genesis and migration of visual cortical-neurons [J]. Journal of Neuroscience, 1989, 9(4): 1242-53.
    [38]Katz L C, Shatz C J. Synaptic activity and the construction of cortical circuits [J]. Science, 1996,274(5290): 1133-8.
    [39]Keinanen K, Wisden W, Sommer B, et al. A family of AMPA-selective glutamate receptors [J]. Science, 1990, 249(4968): 556-60.
    [40]Kelso S R, Brown T H. Differential conditioning of associative synaptic enhancement in hippocampal brain-slices [J]. Science, 1986, 232(4746): 85-7.
    [41]Kim J H, Liao D Z, Lau L F, et al. SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family [J]. Neuron, 1998, 20(4): 683-91.
    [42]Kistner U, Wenzel B M, Veh R W, et al. SAP90, a rat presynaptic protein related to the product of the drosophila tumor suppessor gene DLG-A [J]. Journal of Biological Chemistry, 1993, 268(7): 4580-3.
    [43]Kullmann D M, Siegelbaum S A. The site of expression of NMDA receptor-dependent LTP - new fuel for an old fire [J]. Neuron, 1995, 15(5): 997-1002.
    [44]Kuryatov A, Laube B, Betz H, et al. Mutational analysis of the glycine-binding site of the NMDA receptor - structural similarity with bacterial amino acid-binding proteins [J]. Neuron, 1994, 12(6): 1291-300.
    [45]Kutsuwada T, Kashiwabuchi N, Mori H, et al. Molecular diversity of the NMDA receptor channel [J]. Nature, 1992, 358(6381): 36-41.
    [46] Laube B, Hirai H, Sturgess M, et al. Molecular determinants of agonist discrimination by NMDA receptor subunits: Analysis of the glutamate binding site on the NR2B subunit [J]. Neuron, 1997, 18(3): 493-503.
    [47]Lisman J,Malenka R C,Nicoll R A,et al.Neuroscience-Learning mechanisms:The case for CaM-KII[J].Science,1997,276(5321):2001-2.
    [48]Lisman J,Schulman H,Cline H.The molecular basis of CaMKII function in synaptic and behavioural memory[J].Nature Reviews Neuroscience,2002,3(3):175-90.
    [49]Macdermott A B,Mayer M L,Westbrook G L,et al.NMDA-receptor activation increases cytoplasmic calcium-concentration in cultured spinal-cord neurons[J].Nature,1986,321(6069):519-22.
    [50]Madison D V,Malenka R C,Nicoll R A.Mechanisms underlying long-term potentiation of synaptic transmission[J].Annual Review of Neuroscience,1991,14(379-97).
    [51]Madison D V,Schuman E M.LTP,post or pre-A look at the evidence for the locus of long-term potentiation[J].New Biologist,1991,3(6):549-57.
    [52]Malenka R C,Kauer J A,Perkel D J,et al.An essential role for postsynaptic calmodulin and protein-kinase activity in long-term potentiation[J].Nature,1989,340(6234):554-7.
    [53]Malenka R C,Nicoll R A.NMDA-receptor-dependent synaptic plasticitymultiple forms and mechanisms[J].Trends in Neurosciences,1993,16(12):521-7.
    [54]Malenka R C,Nicoll R A.Neuroscience-Long-term potentiation-A decade of progress?[J].Science,1999,285(5435):1870-4.
    [55]Malinow R,Schulman H,Tsien R W.Inhibition of postsynaptic PKC or CAMKII blocks induction but not expression of LTP[J].Science,1989,245(4920):862-6.
    [56]Mammen A L,Kameyama K,Roche K W,et al.Phosphorylation of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor GluR1 subunit by calcium/calmodulin-dependent kinase II [J]. Journal of Biological Chemistry, 1997, 272(51): 32528-33.
    [57] Mayer M L, Westbrook G L, Guthrie P B. Voltage-dependent block by Mg~(2+) of NMDA responses in spinal-cord neurons [J]. Nature, 1984, 309(5965): 261-3.
    [58]McGlademcculloh E, Yamamoto H, Tan S E, et al. Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase-II [J]. Nature, 1993, 362(6421): 640-2.
    [59]McGuire J H. Multiple-Electron excitation, ionization, and transfer in high-velocity atomic and molecular-collisions [J]. Advances in Atomic Molecular and Optical Physics, 1991, 29(217-323.
    [60] Meguro H, Mori H, Araki K, et al. Functional-characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAS [J]. Nature, 1992, 357(6373): 70-4.
    [61]Migaud M, Charlesworth P, Dempster M, et al. Enhanced long-term potentiation and impaired learning in mice with mutant postsynaptic density-95 protein [J]. Nature, 1998, 396(6710): 433-9.
    [62]Mochida H, Sato K, Sasaki S, et al. Effects of anisomycin on LTP in the hippocampal CAI: long-term analysis using optical recording [J]. Neuroreport, 2001, 12(5): 987-91.
    [63]Monyer H, Sprengel R, Schoepfer R, et al. Heteromeric NMDA receptors -molecular and functional distinction of subtypes [J]. Science, 1992, 256(5060): 1217-21.
    [64]Mori H, Mishina M. Structure and function of the NMDA receptor-channel [J]. Neuropharmacology, 1995,34(10): 1219-37.
    [65] Mori H, Yamakura T, Masaki H, et al. Involvement of the carboxyl-terminal region in modulation by TPA of the NMDA receptor channel [J]. Neuroreport, 1993, 4(5): 519-22.
    [66] Moriyoshi K, Masu M, Ishii T, et al. Molecular-cloning and characterization of the rat NMDA receptor [J]. Nature, 1991, 354(6348): 31-7.
    [67]Nicoll R A, Malenka R C. Contrasting properties of 2 forms of long-term potentiation in the hippocampus [J]. Nature, 1995, 377(6545): 115-8.
    [68]Nowak L, Bregestovski P, Ascher P, et al. Magnesium gates glutamate-activated channels in mouse central neurons [J]. Nature, 1984, 307(5950): 462-5.
    [69]Orban P C, Chapman P F, Brambilla R. Is the Ras-MAPK signalling pathway necessary for long-term memory formation? [J]. Trends in Neurosciences, 1999, 22(1): 38-44.
    [70]Ouyang Y, Kantor D, Harris K M, et al. Visualization of the distribution of autophosphorylated calcium calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus [J]. Journal of Neuroscience, 1997, 17(14): 5416-27.
    [71] Passafaro M, Piech V, Sheng M. Subunit-specific temporal and spatial patterns of AMPA receptor exocytosis in hippocampal neurons [J]. Nature Neuroscience, 2001, 4(9): 917-26.
    [72]Poo M M. Neurotrophins as synaptic modulators [J]. Nature Reviews Neuroscience, 2001, 2(1): 24-32.
    [73]Qiu M S, Shimamura K, Sussel L, et al. Control of anteroposterior and dorsoventral domains of Nkx-6.1 gene expression relative to other Nkx genes during vertebrate CNS development [J]. Mechanisms of Development, 1998, 72(1-2): 77-88.
    [74] Rao A, Kim E, Sheng M, et al. Heterogeneity in the molecular composition of excitatory postsynaptic sites during development of hippocampal neurons in culture [J]. Journal of Neuroscience, 1998, 18(4): 1217-29.
    [75] Robinson S R, Dreher B. The visual pathways of eutherian mammals and marsupials develop according to a common timetable [J]. Brain Behavior and Evolution, 1990, 36(4): 177-95.
    [76] Roche K W, Standley S, McCallum J, et al. Molecular determinants of NMDA receptor internalization [J]. Nature Neuroscience, 2001, 4(8): 794-802.
    [77]Romorini S, Piccoli G, Jiang M, et al. A functional role of postsynaptic density-95-guanylate kinase-associated protein complex in regulating shank assembly and stability to Synapses [J]. Journal of Neuroscience, 2004, 24(42): 9391-404.
    [78]Rubenstein J L R. Development of the cerebral cortex: V. Transcription factors and brain development [J]. Journal of the American Academy of Child and Adolescent Psychiatry, 1998, 37(5): 561-2.
    [79]Rubenstein J L R. Development of serotonergic neurons and their projections [J]. Biological Psychiatry, 1998, 44(3): 145-50.
    [80]Scannevin R H, Huganir R L. Postsynaptic organization and regulation of excitatory synapses [J]. Nature Reviews Neuroscience, 2000, 1(2): 133-41.
    [81] Scheffzek K, Lautwein A, Kabsch W, et al. Crystal structure of the GTPase-activating domain of human p120GAP and implications for the interaction with Ras [J]. Nature, 1996, 384(6609): 591-6.
    [82]Sheng M, Sala C. PDZ domains and the organization of supramolecular complexes [J]. Annual Review of Neuroscience, 2001, 24(1-29.
    [83] Shin H W, Hsueh Y P, Yang F C, et al. An intramolecular interaction between Src homology 3 domain and guanylate kinase-like domain required for channel clustering by postsynaptic density-95/SAP90 [J]. Journal of Neuroscience, 2000, 20(10): 3580-7.
    [84] Siegelbaum S A, Kandel E R. Learning-related synaptic plasticity: LTP and LTD [J]. Curr Opin Neurobiol, 1991, 1(1): 113-20.
    [85]Srivastava S, Osten P, Vilim F S, et al. Novel anchorage of GruR2/3 to the postsynaptic density by the AMPA receptor-binding protein ABP [J]. Neuron, 1998, 21(3): 581-91.
    [86] Sullivan J M, Traynelis S F, Chen H S V, et al. Identification of 2 cysteine residues that are required for redox modulation of the NMDA subtype of glutamate-receptor [J]. Neuron, 1994, 13(4): 929-36.
    [87]Tashiro A, Makino H, Gage F H. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: A critical period during an immature stage [J]. Journal of Neuroscience, 2007, 27(12): 3252-9.
    [88]Tingley W G, Roche K W, Thompson A K, et al. Regulation of NMDA receptor phosphorylation by alternative splicing of the C-terminal domain [J]. Nature, 1993, 364(6432): 70-3.
    [89]Toldi J, Feher O, Wolff J R. Neuronal plasticity induced by neonatal monocular (and binocular) enucleation [J]. Progress in Neurobiology, 1996, 48(3): 191-&.
    [90]Tso D Y, Gilbert C D, Wiesel T N. Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis [J]. Journal of Neuroscience, 1986, 6(4): 1160-70.
    [91]Tu J C, Xiao B, Naisbitt S, et al. Coupling of mGluR/Homer and PSD-95 complexes by the shank family of postsynaptic density proteins [J]. Neuron, 1999, 23(3): 583-92.
    [92]Usui S, Konno D, Hori K, et al. Synaptic targeting of PSD-Zip45 (Homer 1c) and its involvement in the synaptic accumulation of F-actin [J]. Journal of Biological Chemistry, 2003, 278(12): 10619-28.
    [93]Villacres E C, Wong S T, Chavkin C, et al. Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation [J]. Journal of Neuroscience, 1998, 18(9): 3186-94.
    [94] Wang H B, Pineda V V, Chan G C K, et al. Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation [J]. Journal of Neuroscience, 2003, 23(30): 9710-8.
    [95] Williams J H. Retrograde messengers and long-term potentiation: A progress report [J]. Journal of Lipid Mediators and Cell Signalling, 1996, 14(1-3): 331-9.
    [96]Xia J, Zhang X Q, Staudinger J, et al. Clustering of AMPA receptors by the synaptic PDZ domain-containing protein PICK1 [J]. Neuron, 1999,22(1): 179-87.
    [97] Xiao B, Tu J C, Worley P F. Homer: a link between neural activity and glutamate receptor function [J]. Current Opinion in Neurobiology, 2000, 10(3): 370-4.
    [98] Yamazaki M, Mori H, Araki K, et al. Cloning, expression and modulation of a mouse NMDA receptor subunit [J]. Febs Letters, 1992, 300(1): 39-45.
    [99] Zakharenko S S, Patterson S L, Dragatsis I, et al. Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses [J]. Neuron, 2003, 39(6): 975-90.
    [100] Zhang W D, Vazquez L, Apperson M, et al. Citron binds to PSD-95 at glutamatergic synapses on inhibitory neurons in the hippocampus [J]. Journal of Neuroscience, 1999, 19(1): 96-108.
    [101] Zhu J J, Esteban J A, Hayashi Y, et al. Synaptic potentiation during early development: delivery of GluR4-containing AMPA receptors by spontaneous activity [J]. Society for Neuroscience Abstracts, 2000, 26(1-2): Abstract No.-6.5.
    [102] Zhu J J, Qin Y, Zhao M M, et al. Ras and Rap control AMPA receptor trafficking during synaptic plasticity [J]. Cell, 2002, 110(4): 443-55.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700