网络联盟环境下可重构机床优化配置理论与方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:可重构机床(Reconfigurable Machine Tools, RMT)是通过机床模块的重构来提供所需的生产能力或功能,以机床生产能力与功能冗余最小化为目标的一种新型机床,能以较低的转换成本实现机床功能的定制化,从而经济、迅速地响应动态多变的市场需求。为实现此目标,企业已经不能局限于自身内部的资源,而必须更有效地利用外部制造资源,综合考虑企业间的信息交流与资源共享,与外部资源进行协同,实现RMT的优化配置。因此,将RMT的研究拓展到网络联盟(Network Alliance, NA)环境中,研究该环境下RMT的优化配置理论与方法具有重要的理论价值与现实意义。
     本文围绕NA环境下RMT优化配置问题,在深入研究其特征及复杂性的基础上,提出了NA环境下RMT优化配置的体系结构、相关概念及关键过程。在此基础上对优化配置过程中的加工功能需求及RMT资源建模方法、配置评估、优选等基础理论与关键技术进行了深入研究。论文的主要研究内容和成果如下:
     对NA环境下RMT优化配置的理论基础进行了研究。依据RMT的生产模式,提出了面向RMT优化配置的网络联盟平台的构建方式及资源共享模式。在对其优化配置过程中涉及到的制造资源进行成本分析的基础上,研究了NA环境下RMT优化配置特征、概念及优化配置过程。
     基于加工特征的定义与分类,提出了富集加工特征的定义,建立了基于富集加工特征的可拓基元模型以及基于XML的描述方法。以XML文档为输入,基于图论与启发式算法相结合的加工特征族的生成算法,生成了零件的加工特征族划分方案,提出了定性与定量相结合的零件的加工任务定义方法,并进行了实例应用验证,为后续RMT的配置优化建立了基础。
     分析了现有RMT的模块划分方法及模块选择模式。提出了基于可拓基元模型及XML的RMT机械系统(包括机床本体、机械模块、模块接口及模块连接关系)建模与描述方法。在此基础上,提出了基于线平衡的重构策略及面向重构的RMT快速虚拟装配方法,并进行了实例应用验证,为快速地向联盟用户提供RMT较优的重构方案提供了支持。
     为了实现NA环境下RMT优化配置过程中的多目标决策,提出了RMT资源预配置及配置路径优化生成两阶段优化策略。
     NA环境下RMT预配置:研究了网络联盟环境下RMT预配置的总体方案,建立了RMT预配置评价指标体系,提出了基于可拓关联函数的定性、定量指标的统一的量化方法。基于层次网络及模块选择约束建立了模块选择模型,提出了可行的模块组合路径生成算法。基于模块的指标值对路径容量的影响,提出了模块路径容量的求解算法,并进行了实例应用验证,生成了P个较优的模块组合方案,实现了NA环境下RMT的资源预选过程。
     RMT配置路径优化生成:对RMT配置路径优化生成问题进行定义,建立了其多目标优化数学模型。在此基础上,基于多级优度评价方法对该模型进行改进,建立了其优化决策改进模型——两级RMT配置路径优化决策模型,提出了基于改进的离散粒子群优化(Modified Discrete PSO, MDPSO)算法的模型求解方法,并进行了实例应用验证,生成了较优的RMT配置路径方案。
     依托相关研究项目,采用.NET技术框架,开发了基于ASP模式的NA环境下RMT优化配置原型系统(RMTOPTCONFG@NA),并以某一典型零件族ANC-90, ANC-101为例,对论文所提出的理论方法进行了应用与验证。
ABSTRACT:Reconfigurable machine tools (RMT) are being developed to respond rapidly to changing market demands. With a modular structure, which allows specific components to be added and deleted as the operation requirements change, it provide customized flexibility for a specified range of operation requirements within a part family that enables it to combine the advantages of high productivity of dedicated stations with the flexibility of CNC machines. To achieve this goal, enterprises cannot confine to their own internal resources any more, but have to be more effective utilization of external manufacturing resources with the comprehensive consideration of the enterprise information exchange, resource sharing and collaboration, to realize the optimal allocation of RMT. So, extend the research topic of RMT into the Network Alliance (NA) environment, and study the theories and methods of optimization configuration of RMT are very important and practical significant.
     This paper analyzed the features and complexity of optimal configuration of RMT in NA environment, and studied the overall framework, the concept model and configuration process of optimal configuration system of RMT in NA. The basic theories and key technologies to realize the optimal configuration of RMT in NA were studied, including the definition and model methods of machining task and RMT mechanical module, configuration evaluation and optimization, etc. The main contributions and works of this dissertation are as follows:
     The basic theory of optimal configuration of RMT in NA was discussed and analyzed. Based on the production paradigm of RMT, the resource sharing platform and mode of for RMT optimal configuration were established. The necessity of extension of RMT configuration into NA environment was brought. The concept definition and key processes of RMT optimal configuration in NA were proposed.
     The modeling and definition of machining methods were proposed, which determine the machining and reconfiguration function of RMT. First, the universal and formal extension element model method and XML description method were proposed based on definition, classification and enrichment of machining feature (MF). Then a new approach of machining feature family generation for RMT configuration synthesis was proposed using extended-hybrid graph theory and heuristic algorithm, and a standard case study was used to validate its feasibility and effectiveness.
     In order to realize the multi-objective decision-making of optimal configuration of RMT in NA, the two level optimization strategy, RMT preliminary configuration and optimization generation of RMT configuration path, was proposed.
     The preliminary configuration of RMT:First, based on the definition and description of the problem of preliminary configuration of RMT, a RMT mechanical module selection model method using layered network was constructed. Then, according to module selection constrains, feasible module selection path set was generated. To calculate the path capacity, a uniform quantitative measurement method was proposed, and module evaluation index were classified to static, dynamic indicator according to their influence to the path capacity, and then the P-best combination schemes of RMT configuration were obtained.
     The optimization generation of RMT configuration path:First, the multi-objective optimization mathematical model was established based on the definition of this problem, then, the model was modified to a two-step optimal decision model using multi-level extension superiority evaluation method, based on the modified model, a solution method using the modified discrete particle swarm optimization (MDPSO) algorithm was proposed to generate the best RMT configuration path scheme.
     Supported by correlative research project, an optimization configuration prototype system of RMT in NA (RMTOPTCONFG@NA) was developed based on the technique framework of ASP.NET. Take the typical part family of ANC-101, ANC90as example, the theories and methodologies proposed in the dissertation were applied and verified.
引文
[1]Biren P. Concurrent engineering fundamentals - Integrated product and process organization [M]. Upper Saddle River, NJ:Prentice Hall PTR,1996.
    [2]Bi Z, Lang S, Verner M, et al. Development of reconfigurable machines[J]. The International Journal of Advanced Manufacturing Technology,2008,39(11):1227-1251.
    [3]Wiendahl H P,EIMaraghy H A,Nyhuis P, et al. Changeable Manufacturing-Classification, Design and Operation[J]. Annals of the CIRP,2007,56(2):783-802.
    [4]Koren Y. Competitive Sustainable Manufacturing-Personalized Production Paradigm[EB/OL]. http://erc.engin.umich.edu/PersonalizeddProductionv22009.pdf.
    [5]Koren Y, Heisel U, Jovane F, et al. Reconfigurable Manufacturing Systems[J]. Annals of the CIRP,1999,48(2):527-540.
    [6]Council N R. Visionary Manufacturing Challenges for 2020[R]. National Academy Press, Washington D.C.:National Research Council,1998.
    [7]Kevin C. Reconfigure it out-reconfigurable manufacturing system gain ground in the automotive sector[J]. Cutting Tool Engineering,2004,56(9):40-45.
    [8]任思成,徐德,王芳,等.可重构制造系统研究与发展[J].制造业自动化,2005,27(3):1-4.
    [9]Raghothama S, Shapiro V. Topological Framework for Part Families[J]. Journal of Computing and Information Science in EngineeringJ. Comput. Inf. Sci. Eng., 2002,2(4):246.
    [10]许虹.可重构机床设计理论与方法研究[D].浙江大学,2003.
    [11]Katz R. Design principles of reconfigurable machines[J]. The International Journal of Advanced Manufacturing Technology,2007,34(5):430-439.
    [12]Landers R G, Mid B K, Koren Y. Reconfigu rable Machine Tools[J]. CIRP Annals-Manufacturing Technology,2001,50(1):269-274.
    [13]Koren Y. Reconfigurable machine tool:UM,29/26A[P].1999.
    [14]张根保.可重构机床及其关键技术[J].世界制造技术与装备市场,2002(1):33-35.
    [15]Moon Y M. Reconfigurable machine tool design:Theory and application[D]. United States-Michigan:University of Michigan,2000.
    [16]李铬.可重构机床机械界面的设计探讨[J].成组技术与生产现代化,2006,23(2):8-11.
    [17]Ito Y. Modular Design of Machine Tools[M]. McGraw-Hill Companies,2007.
    [18]Moon Y M, Kota S. Generalized Kinematic Modeling of Reconfigurable Machine Tools[J]. Journal of Mechanical Design,2002.
    [19]Chen L, Xi F J, Macwan A. Optimal Module Selection for Preliminary Design of Reconfigurable Machine Tools[J]. Transactions of the ASME,2005,127.
    [20]Limei M, Jianyong L, Wensheng X, et al. Network alliance for the total life cycle of reconfigurable machine tool[C].2011 International Conference on Management Science and Industrial Engineering (MSIE),2011.
    [21]曹振新,朱云龙,宋崎.制造系统的设备布局方法[J].辽宁工程技术大学学报:自然科 学版,2005,24(3):413-416.
    [22]刘振涛.面向可重构制造的车间配置的研究与开发[D].南京航空航天大学,2002.
    [23]Chou Y C. Configuration Design of Complex Integrated Manufacturing Systems[Z]. Springer London,1999:15,907-913.
    [24]王倩.基于自适应遗传算法的柔性制造系统的优化配置[D].北京交通大学,2008.
    [25]李建勇.自动化制造系统稳健设计的研究[D].北京交通大学,2003.
    [26]彭文利.基于制造资源优化配置的网络化工艺分工规划技术研究[D].西北工业大学西北工业大学航空宇航制造工程,2006.
    [27]姚倡锋.复杂零件异地协同制造资源优化配置技术研究[D].西安:西北工业大学航空宇航制造工程,2006.
    [28]刘帅华.基于制造网格的虚拟企业制造资源优化配置研究[D].中南大学管理科学与工程,2009.
    [29]Liu W, Liang M. A Particle Swarm Optimization Approach to A Multi-objective Reconfigurable Machine Tool Design Problem[C].2006 IEEE Congress on Evolutionary Computation, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada,2006.
    [30]Ying Z. Alliance-based Network View on Chinese Firms' Catching-up:Case Study of Huawei Technologies Co. Ltd[J]. PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INNOVATION AND MANAGEMENT, VOLS I AND II, 2009:86-100.
    [31]荣烈润.面向21世纪的经济实体——网络联盟企业[J].机电一体化,2006,12(1):6-10.
    [32]Liao T W. Classification and coding approaches to part family formation under a fuzzy environment[J].2001,122(3):425-441.
    [33]Rakesh K. A framework for simultaneous recognition of part families and operation groups for driving a reconfigurable manufacturing system[J]. Advances in Production Engineering & Management,2010,5(1):45-58.
    [34]Kuo R J, Chi S C, Teng P W. Generalized part family formation through fuzzy self-organizing feature map neural network[J].2001,40(1-2):79-100.
    [35]Kuo R J, Su Y T, Chiu C Y, et al. Part family formation through fuzzy ART2 neural network[J].2006,42(1):89-103.
    [36]Jeon G, Leep H R. Forming part families by using genetic algorithm and designing machine cells under demand changes[J].2006,33(1):263-283.
    [37]Landers R G, Min B K, Koren Y. Reconfigurable Machine Tools[J]. CIRP Annals-Manufacturing Technology,2001,50(1):269-274.
    [38]Landers R G, Ruan J, Liou F. Reconfigurable Manufacturing Equipment[J]. Reconfigurable Manufacturing Systems and Transformable Factories,2006:79-110.
    [39]Tilbury D M, Kota S. Integrated Machine and Control Design for Reconfigurable Machine Tools[C]. Proceedings of the 1999 IEEEYASME International Conference on Advanced Intelligent Mechatronics, Atlanta, USA,1999.
    [40]Katz R, Moon Y. Virtual Arch Type Reconfigurable Machine Tool Design:Principles and Methodology[Z].2000.
    [41]Katz R, Chung H. Design of an experimental reconfigurable machine tool[C]. Proceeding of the Japan-USA symposium on flexible automation, Ann Arbor, MI, USA,2000.
    [42]孙习武,褚学宁,苏於梁,等.基于聚类分析法的装夹规划算法研究[J].计算机集成制造系统,2009,15(6):1179-1186.
    [43]Ming X G, Mak K L. Intelligent setup planning in manufacturing by neural networks based approach[J]. Journal of Intelligent Manufacturing,2000,11:311-333.
    [44]L Q, X-Y W, S-C W. A GA-based approach to machining operation sequencing for prismatic parts[J]. International Journal of Production Research,2000,38:3283-3303.
    [45]Peng G, Liu W, Zhang Y. Intelligent setup planning in manufacturing by fuzzy set theory based approach[C]. Automation Science and Engineering,2005. IEEE International Conference on,2005.
    [46]Zhang Y, Hu W, Rong Y, et al. Graph-based set-up planning and tolerance decomposition for computer-aided fixture design[J]. International Journal of Production Research, 2001,39(14):3109-3126.
    [47]Kannan M, Saha J. A feature-based generic setup planning for configuration synthesis of reconfigurable machine tools[J]. The International Journal of Advanced Manufacturing Technology,2009,43(9):994-1009.
    [48]ISO Technical Commitee S. STEP-ISO 10303[S].1998.
    [49]Ling M. Patterning algorithms for operation clustering for reconfigurable machining systems[D]. United States -- Michigan:University of Michigan,2001.
    [50]许虹,唐任仲,程耀东.面向可重构机床设计的工艺规划技术研究[J].浙江大学学报:工学版,2004,38(11):1496-1501.
    [51]Mehrabi M G, Ulsoy A G, Koren Y. Reconfigurable manufacturing systems and their enabling technologies[J]. Int. J. Manufacturing Technology and Management, 2000,1(1):114-131.
    [52]Brusher G A, Kabamba P T, Ulsoy A G. Coupling Between the Modeling and Controller-Design Problems---Part I:Analysis [J]. Journal of Dynamic Systems, Measurement, and ControlJ. Dyn. Sys., Meas., Control,1997,119(3):498.
    [53]Moon Y M, Kota S. Reconfigurable power spindle:475/10A[P].2001.
    [54]Moon Y M, Kota S. Reconfigurable automatic tool changer:29/40R[P].2000.
    [55]Koren Y, Moon Y M, Kota S. Reconfigurable Multi-spindle apparatus:UM,408/42A[P]. 2003.
    [56]Lin Y, Kramarczyk M A, Jones G L, et al. Reconfigurable Workholding Fixture:UM, 269/32[P].2004.
    [57]Segall S B, Koren Y. Reconfigurable Surface Finish Inspection Apparatus for Cylinder Bores and other Surfaces:356/241.1[P].2006.
    [58]Moon Y M. Reconfigurable Machine Tool Design[J]. Reconfigurable Manufacturing Systems and Transformable Factories,2006:111-139.
    [59]Wang S Y, Tai K. Graph representation for structural topology optimization using genetic algorithms[J].2004,82(20-21):1609-1622.
    [60]Ito Y, Shinno H. Structural description and similarity evaluation of the structural configuration in machine tools[J].1982,22(2):97-110.
    [61]Li H, Landers R, Kota S. A Review of Feasible Joining Methods for Reconfigurable Machine Tool Components[C]. Japan-USA Flexible Automation Conference, Ann Arbor, Michigan, July 23-26,2000.
    [62]Landers R G. A New Paradigm in Machine Tools:Reconfigurable Machine Tools[C]. Proceeding of the Japan-USA symposium on flexible automation, Ann Arbor, MI, USA, 2000.
    [63]Abele E, Worn A, Fleischer J, et al. Mechanical module interfaces for reconfigurable machine tools[J]. Production Engineering,2007,1(4):421-428.
    [64]Kuo C H, Dai J S, Yan H S. Reconfiguration principles and strategies for reconfigurable mechanisms[J]. Proceedings of the 2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, ReMAR 2009,2009:1-7.
    [65]Moon S K. Error prediction and compensation of reconfigurable machine tool using screw kinematics[D]. United States -- Michigan:University of Michigan,2002.
    [66]Yigit A S, Ulsoy A G. Design of Vibration Isolation Systems for Reconfigutalbe Precision Equipment[C]. Japan-USA Flexible Automation Conference, Ann Arbor, Michigan, July 23-26,2000.
    [67]Yigit A, Ulsoy A. Dynamic stiffness evaluation for reconfigurable machine tools including weakly non-linear joint characteristics [J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture,2002,216(1):87-101.
    [68]Dhupia J S, Powalka B, Ulsoy A G, et al. Effect of a nonlinear joint on the dynamic performance of a machine tool [J]. Journal of manufacturing science and engineering, 2007,129(5):943-950.
    [69]Dhupia J S. Effect of joint nonlinearities on the dynamic performance of machine tools[D]. United States -- Michigan:University of Michigan,2007.
    [70]Lorenzer T, Weikert S, Bossoni S, et al. Modeling and evaluation tool for supporting decisions on the design of reconfigurable machine tools[J].2007,26(3-4):167-177.
    [71]http://www.icvr.ethz.ch/research/projects/active/index_EN[EB/OL].
    [72]Dhupia J S, Galip Ulsoy A, Koren Y. Arch-type Reconfigurable Machine Tool[J]. Smart Devices and Machines for Advanced Manufacturing,2008:219-238.
    [73]Xu Z. Modular architecture design of reconfigurable machine tools for agile manufacturing[D]. Canada:University of Toronto (Canada),2006.
    [74]R C, RR, GH, et al. Metrics for Evaluating Design of Reconfigurable Machine Tools[J]. Cooperative Design, Visualization, and Engineering,2006:234-241.
    [75]Ahuett H, Aca J, Molina A. A Directed Evolution Modularity Framework for Design of Reconfigurable Machine Tools[J]. Cooperative Design, Visualization, and Engineering, 2005:243-252.
    [76]Liu W, Liang M. Multi-objective design optimization of reconfigurable machine tools, a modified fuzzy-chebyshev programming approch[J]. International Journal of Production Research,2008,46(6):1587-1618.
    [77]Liu W. A multi-objective approach for RMT design[D]. Canada:University of Ottawa (Canada),2006.
    [78]许虹,唐任仲,程耀东.可重构机床整个寿命周期的配置设计方法[J].机械工程,2004,15(5):418-422.
    [79]Abdi M R. Fuzzy multi-criteria decision model for evaluating reconfigurable machines[J]. Int. J.Production Economics,2009,1(15).
    [80]Gindy N N, Saad S M. Flexibility and responsiveness of machining environments[Z].1998.
    [81]Perez R R, Aca S J, Valverde T A, et al. A Modularity Framework for Concurrent Design of Reconfigurable Machine Tools[J]. Cooperative Design, Visualization, and Engineering, 2004:87-95.
    [82]Riba R C, Perez R R, Sanchez A J L, et al. A Concurrent Approach to Design of Reconfigurable Machine Tools to Process Bamboo[J]. Cooperative Design, Visualization, and Engineering,2005:210-217.
    [83]Mpofu K, Kumile C M, Tale N S. Adaption of Commercial off the Shelf Modules for Reconfigurable Machine Tool Design[C].15th International conference on Mechatronics and Machine Vision in Practice (M2VIP08), Auckland, New Zealand,2008.
    [84]刘小静.制造网格资源服务平台及其关键技术研究[J].武汉理工大学学报:信息与管理工程版,2007,29(6):5-9.
    [85]魏军英,栾倩,杨正波.网络化制造资源共享系统关键技术研究[J].煤矿机械,2010,31(6):57-59.
    [86]孟晓军,张旭,宁汝新,等.基于Web服务的企业集成平台框架研究[J].计算机集成制造系统,2008,14(5):891-897.
    [87]武昕.基于移动Agent的网络制造协商调度方法研究[D].沈阳工业大学系统工程,2007.
    [88]和延立,何卫平,杨海成,等.基于Agent和工作流的跨企业协同制造支持系统[J].中国机械工程,2005,16(22):2010-2015.
    [89]杨杰,刘银,孙立鹏.基于Web的敏捷制造模式下的供应链合作伙伴选择研究[J].武汉理工大学学报:交通科学与工程版,2004,28(3):424-426.
    [90]姜康.网络联盟企业生产管理关键技术及ASP支持平台研究[D].合肥工业大学,2007.
    [91]郝洪艳,汤文威,孔凡新.基于制造网格平台的模具制造资源共享机制研究[J].中国制造业信息化,2007,36(10):117-120.
    [92]胡业发,陶飞,丁毓峰,等.支持协同制造的制造网格平台研究[J].中国机械工程,2006,17(18):1903-1907.
    [93]范玉顺,刘飞,祁国宁.网络化制造系统及其应用实践[M].北京:机械工业出版社,2003.
    [94]王国庆,王刚,吕民,等.基于网格的应用服务提供商平台制造资源共享方法研究[J].计算机集成制造系统,2007,13(2):350-355.
    [95]祁型虹,李永锋.基于STEP-XML的制造网格制造资源的描述[J].湖北工业大学学报,2006,21(3):204-206.
    [96]姚倡锋,张定华,卜昆,等.基于物理制造单元的网络化制造资源建模及信息集成[J].计算机集成制造系统,2008,14(4):667-674.
    [97]Kesselman C, Foster I. The Grid:Blueprint for a New Computing Infrastructure[M]. Morgan Kaufmann Publishers,1998.
    [98]井浩,张璟,李军怀.基于WSRF的制造网格资源共享机制研究[J].微电子学与计算机,2007,24(7):13-15.
    [99]周光辉,江平宇.基于移动Agent的网络化制造资源的封装和集成[J].计算机集成制造系统,2002,8(9):728-732.
    [100]李建勇,鄂明成,查建中.基于混合遗传算法的柔性制造系统优化设计[J].计算机集成 制造系统,2003,9(3):5.
    [101]Floss P, Talavage J. A knowledge-based design assistant for intelligent manufacturing systems[J]. Journal of Manufacturing Systems,1990,9(2):87-102.
    [102]Youssef A, ElMaraghy H. Optimal configuration selection for Reconfigurable Manufacturing Systems[J]. International Journal of Flexible Manufacturing Systems,2006,19(2):67-106.
    [103]Talluri S, Baker R C. A quantitative framework for designing efficient business process alliances[C]. International Conference on IEMC 96,1996. aug.
    [104]Kasilingam R G, Lee C P. Selection of vendors -- A mixed-integer programming approach[J]. Computers & Industrial Engineering,1996,31(1-2):347-350.
    [105]付翠玉,李爱平,徐立云.基于ASP平台的动态联盟组建系统设计[J].机电一体化,2008(1):29-33.
    [106]马永军,蔡鹤皋.网络联盟企业中的设计伙伴选择方法[J].机械工程学报,2000,36(1):15-19.
    [107]王斌,谢庆生.基于实例推理的企业动态联盟伙伴选择与优化模型[J].计算机应用,2006,26(3):717-719.
    [108]曾志斌,李言,李淑娟,等.动态联盟合作伙伴选择的多层次模糊综合评判方法[J].计算机工程与应用,2005,41(17):218-220.
    [109]廖貅武,唐焕文.动态联盟中伙伴选择的正确推理方法[J].计算机集成制造系统,2003,9(1):57-62.
    [110]甘屹,齐从谦,杜继涛.基于蚁群算法的动态联盟伙伴选择研究[J].系统仿真学报,2006,18(2):517-520.
    [111]王鹏,曾建潮,白尚旺.基于多Agent的动态联盟伙伴选择系统[J].计算机应用,2007,27(B06):42-45.
    [112]沈斌,曹海勇,吴龙瑛.面向中小企业的动态风络联盟制造[J].同济大学学报:自然科学版,2002,30(8):988-990.
    [113]李玉亭,侯开虎,高燕林.基于ASP模式网络化制造的研究与应用[J].机械工程与自动化,2006(5):39-40.
    [114]姜康,于振华,黄国兴,等.面向中小制造企业的基于ASP模式的网络联盟企业支持平台研究[J].组合机床与自动化加工技术,2007(11):99-102.
    [115]吴辉,李建勇,夏少云.柔性制造系统稳健性优化配置研究[J].计算机集成制造系统,2003,9(11):4.
    [116]汤岑书,褚学宁,孙习武,等.基于几何与公差信息的加工特征识别方法[J].计算机集成制造系统,2010,16(2):7.
    [117]石俊,杨敏.CIMS中零件加工特征分类研究[J].机械,2003,30(1):40-42.
    [118]孙习武,褚学宁,苏於梁,等.基于聚类分析法的装夹规划算法研究[J].计算机集成制造系统,2009,15(6):1179-1186.
    [119]Wang L, Cai N, Feng H Y, et al. Enriched machining feature-based reasoning for generic machining process sequencing[J]. International Journal of Production Research, 2006,44(8):1479-1501.
    [120]张英杰,许艾,Yingjie ZHANG,等.基于特征的箱体类零件数控编程技术[J].西安交通大学学报,2008,42(5):5.
    [121]杨春燕,蔡文.可拓工程[M].北京:科学出版社,2007.
    [122]孟秀丽,曹杰,韩向东.XML在机床产品协同设计支持环境中的应用[J].中国制造业信息化,2006(01).
    [123]张鹏伟,陈桦,陈景霞.机床协同设计中产品信息XML描述模型的研究[J].制造技术与机床,2005(6):52-55.
    [124]Jensen J B, Gutin G. Graph theory, algorithm and its application[M]. Springer Verlag London, Limited,2002.
    [125]Youssef A, ElMaraghy H. Assessment of manufacturing systems reconfiguration smoothness [J]. The International Journal of Advanced Manufacturing Technology, 2006,30(1):174-193.
    [126]田波.基于可重构的轮辋压窝冲孔机的研究[D].重庆大学,2007.
    [127]现代实用机床设计手册编委会.现代实用机床设计手册[M].北京:机械工业出版社,2006.
    [128]陶飞.制造网格资源服务优化配置理论与应用研究[D].武汉理工大学机械设计及理论,2008.
    [129]Saaty T L. The Analytic Hierarchy Process[M]. New York:McGraw-Hill Inc,1980.
    [130]Pasek Z J. Challenges in the Design of Reconfigurable Machine Tools[J]. Reconfigurable Manufacturing Systems and Transformable Factories,2006:141-154.
    [131]杨雷,刘英,李海滨,等.基于:SolidWorks的机床产品虚拟装配[J].林业机械与木工设备,2005(11).
    [132]高建武,王军杰,武殿梁,等.面向协同虚拟装配的模型表达技术研究[J].计算机集成制造系统,2008,14(6):1095-1100.
    [133]http://blog.csdn.net/tzsiyuan/article/details/6068968[EB/OL].
    [134]http://www.mathworks.cn/products/simmechanics/download_smlink.html[EB/OL].
    [135]http://www.mathworks.cn/help/toolbox/physmod/smlink/ref/brpp8fo-l.html[EB/OL].
    [136]刘金山,廖文和,郭宇.基于双链遗传算法的网络化制造资源优化配置[J].机械工程学报,2008,44(2):189-195.
    [137]王海英,黄强,李传涛,等.图论算法及其MATLAB实现[M].北京:北京航空航天大学出版社,2010.
    [138]Angeles J. Fundamentals of Robotic Mechanical Systems Theory, Methods, and Algorithms(Second Edition)[M]. Verlag New York:Springer,2003.
    [139]姚倡锋,张定华,彭文利,等.面向复杂零件网络化制造的资源优化配置方法[J].计算机集成制造系统,2006,12(7):1060-1067.
    [140]应卫平,李仁旺,韦波,等.优度评价法及其Web专家评价模型设计与研究[J].浙江理工大学学报,2006,23(4):409-413.
    [141]孙晓东,焦玥,胡劲松.优度评价法在物流联盟成员选择中的应用[J].工业工程,2006,9(6):113-117.
    [142]Kennedy J, Eberhart R. Particle swarm optimization[C]. Neural Networks,1995. Proceedings., IEEE International Conference on, Perth, WA, Australia,1995.
    [143]纪震,廖惠连,吴青华.粒子群算法及应用[M].北京:科学出版社,2009.
    [144]Parsopoulos K E, Vrahatis M N. Particle swarm optimization method in multiobjective problems[C]. SAC'02, New York, NY, USA,2002. ACM,.
    [145]Venter G, Venter G. Particle Swarm Optimization[J]. AIA A Journal,2002:1583-1589.
    [146]Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization[J]. Evolutionary Computation, IEEE Transactions on,2004,8(3):256-279.
    [147]庞巍,王康平,周春光,等.模糊离散粒子群优化算法求解旅行商问题[J].小型微型计算机系统,2005,26(8):1331-1334.
    [148]翁健红.基于C#的ASP.NET程序设计[M].北京:机械工业出版社,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700