静电喷涂机器人轨迹优化与仿真技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷涂机器人是一种非常重要的先进涂装生产装备,在国内外被广泛应用于汽车等产品的涂装生产线。在静电喷涂技术出现以前,非静电喷涂的涂料转移率低,不仅增加成本,而且严重污染环境。随着静电喷涂技术的出现,涂料转移率达到80%以上。机器人静电喷涂技术是汽车等工业产品喷涂工艺的新潮流。新的喷涂建模分析和高性能喷涂机器人轨迹优化算法、控制策略的研究一直是国内外学者们关注的热点。本课题来源于国家自然科学基金项目——《静电喷涂机器人变量喷涂轨迹优化关键技术研究》。
     本文以静电喷涂机器人轨迹优化和可视化仿真为研究内容,主要完成以下工作:
     第一部分介绍了机器人的发展进程、静电喷涂机器人轨迹优化的研究背景和意义、喷涂机器人离线编程系统主要结构、离线编程系统各模块间的相互关系以及本文做的主要工作。
     第二部分研究了静电喷涂工艺和雾化机理。系统地阐述了静电喷涂的工艺原理、流程和特点,给出了静电喷涂工艺的原理图和流程图。在此基础上从高压静电场的形成、电晕放电和静电雾化三个方面着手分析了静电雾化机理,得出通过增大高压静电场的电压或减少喷枪与被涂工件的距离,可使涂料微粒受到更大的电场力,充分雾化,提高涂着效率,有利于静电喷涂的结论。并给出了实际操作中静电高压的选择范围以及涂料涂着效率和电压之间的非线性关系。
     第三部分研究了优化算法和喷枪轨迹优化设计。通过分析拟牛顿法及其改进算法的原理,给出算法实现的迭代步骤,为静电喷涂机器人轨迹优化做好数学理论准备。并以涂层厚度和工件表面涂层均匀度为指标要求,提出喷枪轨迹优化设计问题,确定了喷枪轨迹优化的数学模型,建立评价喷涂效果的目标函数。采用目标函数的差分替代其梯度的差分拟牛顿法,并利用乘子罚函数将有约束优化问题转化为无约束优化问题,从而求解沿指定空间路径的喷枪轨迹优化问题。
     第四部分针对喷涂机器人喷枪轨迹优化研究中,采用数值仿真方法,数据复杂造成可视化分析涂层分布难度较大的问题。通过建立喷涂数学模型和优化算法,在Visual C++6.0程序界面中利用OpenGL,实现图形化显示喷枪沿某一指定路径喷涂时工件表面的涂层覆盖情况,并以不同色彩的方式显示出涂料的空间分布,对比分析了不同喷涂方式的喷涂效果,从而实现可视化研究喷涂机器人喷枪轨迹优化。
     本文对轨迹优化设计方案进行了可视化仿真研究。仿真结果表明,本文提出的数学模型以及轨迹优化方法均可获得良好的效果。
Painting robot is a kind of important and advanced spray equipment. It is widely used in automotive manufacturing. Non-electrostatic spraying not only increases costs, but also causes serious environmental pollution. With the emergence of electrostatic spraying, paint transfer efficiency is more than 80%.Robot electrostatic spraying technology is a new trend. New painting models and tool planning algorithms are active research for many years.
     The content of the article are trajectory optimization of the electrostatic spraying robot and visualization of simulation. The main work of this dissertation as follows:
     In the first part, robot's development process, background and significance of researching for electrostatic spraying robot are discussed. And then the frame of off-line programming system and some problems which are studied in this dissertation are introduced.
     In the second part, electrostatic spraying technology and atomization mechanism are studied. The principle of electrostatic spraying technology, processes and characteristics are systematically expounded. From the formation of high-voltage electrostatic field, corona discharge, electrostatic atomization, mechanism of electrostatic atomization is analyzed. High voltage electrostatic field is obtained by increasing the voltage or reducing the distance between the spray gun and work-piece. This can increase the electric field strength, so that paint particles are subject to increasing electric field strength, full spray, improve the efficiency of electrostatic spray .The relationship between paint transfer efficiency and voltage is nonlinear.
     In the third part, optimal algorithms and gun trajectory are studied. Analyzing quasi-Newton method prepares mathematical theory for trajectory optimization. Model of trajectory optimization problem is defined in order to establish the function for evaluating spray effects. The differential of objective function is instead of gradient. Using penalty function solves the problem of trajectory optimization.
     In the fourth part, complex data resulted in visually analyzing distribution of film difficult due to adopting numerical simulation. Simulation of trajectory optimization for painting robots is researched. Overlay of film on the surface is graphically displayed based on OpenGL in Visual C++ program interface when tool is painting around the designated spatial path. Different colors express spatial distribution of paint. Visualization of trajectory optimization of robotic spray painting is achieved.
     In this dissertation, visual simulations are made for design schemes of optimization of trajectory. The results of simulations have shown that model and the tool planning algorithms are feasible.
引文
[1]熊有伦.机器人技术基础[M].武汉:华中科技大学出版社,1996.
    [2]蔡自兴,徐光枯.人工智能及其应用:研究生用书[M].第三版.北京:清华大学出版社,2004.
    [3]刘能广.基于遗传算法的二层优化在喷涂机器人轨迹规划中的研究[D].武汉,武汉理工大学硕士论文,2008。
    [4]王燚,赵德安,王振滨等.喷漆机器人喷枪最优轨迹规划的研究[J].江苏理工大学学报,2001,22(5):55-59.
    [5]王振滨,赵德安,王燚等.喷漆机器人离线编程系统探讨[J].江苏理工大学学报,2000,21(5):78-82.
    [6]刁训娣,赵德安,李医民等.喷涂机器人喷枪轨迹设计及影响因素研究fJ].机械科学与技术,2004,(4):396-398.
    [7]陈伟.喷涂机器人喷枪轨迹优化研究[D].镇江,江苏大学硕士论文,2007.
    [8]高全杰,汪朝晖,王家青.静电喷涂技术及其应用探讨[J].现代涂料与涂装,2006,(5):39-41.
    [9]李斌.高转速杯式静电自动喷涂系统在轿车喷涂中的应用[J].材料保护,2004,37(7):52-54.
    [10]王贞涛,闻建龙,陈燕等.静电雾化理论及应用技术研究进展[J].排灌机械,2004,22(6):41-44.
    [11]张福顺,张大卫.高速旋杯式静电喷涂雾化机理的研究[J].涂料工业,2003,33(12):21-23.
    [12]孙可平,宋广成.工业静电[M].北京:中国石化出版社,1994.
    [13]韩熙麟.静电喷涂[M].北京:机械工业出版社,1991.
    [14]叶扬祥,潘肇基.涂装技术实用手册[M].北京:机械工业出版社,2000.
    [15]庞留泽.静电喷涂原理及其应用[J].表面技术,1989,(4):27-31.
    [16]阙聘.喷漆机器人喷枪轨迹离线编程及仿真技术研究[D].镇江,江苏大学硕士论文,2005.
    [17]王振滨.喷漆机器人最优轨迹设计与仿真[D].镇江,江苏大学硕士论文,2001.
    [18]袁亚湘.非线性规划数值方法[M].上海:上海科学技术出版社,1993.
    [19]周承高,廖原.优化原理及其程序设计[M].北京:中国铁道出版社,1989.
    [20]汪树玉,杨德铨,刘国华等.优化原理、方法与工程应用[M].浙江:浙江大学出版社,1991.
    [21]陈开明.非线性规划[M].上海:复旦大学出版社,1988.
    [22]刘宝光.非线性规划[M].北京:北京理工大学出版社,1988.
    [23]Bazaraa M S,Sherali H D,Shetty C M.Nonlinear Programming:Theory and Algorithms[M].2nded,New York:John Wiley & Sons,1993.
    [24]D.A.Ansdell."Automatic paints" in Paint and Surface Coatings:Theory and Practice[M].edited by R.Lambourne,John Wiley& Sons,New York,NY,1987,pp.431-489.
    [25]Klein A.CAD-Based off-line programming of painting robots[J],Robotic(vol.5,1987):267-271.
    [26]Suh S H,Woo I K,and Nob S K.Development of an automatic trajectory planning system (ATPS) for spray painting robots[C].Proc.1991 IEEE Int'l Conference on Robotics and Automation,April 1991:1948-1955.
    [27]Antonio J K.Optimal Trajectory Planning Problems for spray coating[J].Puedue University,School of Electrical Engineering,Technical Report No.TR-EE-93-29,Sept.1993.
    [28]Ramabhadran R,Antonio J K.Planning Spatial Paths for Automated Spray Coating Applications[C].Proc.1996 IEEE Int'l Conference on Robotics and Automation,April 1996:1255-1260.
    [29]Zaki Aziza,Eskander Mona.Spray painting of a general three-dimensional surface[C].Proceedings of the 2000 IEEE/RSJ International Conference on Robotics and Automation,2000:2172-2176.
    [30]Chen H P,Sheng W H,Xi N,M.Song.Automated robot trajectory planning for spray painting of free form surfaces in automotive manufacturing[C].Proceedings of the 2002IEEE International Conference on Robotics and Automation,Washington.DC,May 2002:450-455.
    [31]Atkar N Prasad,Choset Howie,Rizzi A Alfred.Towards Optimal Coverage of 2-Dimensional Surfaces Embedded in R3:Choice of Start Curve[C].Proc.2003 IEEE/RSJ Int'l Conference on Intelligent Robots and Systems,October 2003:3581-3587.
    [32]Sheng W H,Xi N,Chen H P.Surface partitioning in automated CAD guided tool planning for additive manufacturing[C].In IEEE/RSJ International Conference On Intelligent Robots And Systems,Las Vegas,Nevada,October 2003:2072-2077.
    [33] Chen H P, Xi N, Sheng W H, Chen Y F. Optimal spray gun trajectory planning with variational distribution for forming process[C].Proceedings of the 2004 IEEE International Conference on Robotics and Automation, New Orleans, LA, April 2004:45-50.
    [34] Sheng W H, Chen H P, Xi N. Tool path planning for compound surfaces in spray forming processes [J]. Automation Science and Engineering, 2005, 2(6): 240-249.
    [35] M. Barletta, A. Gisario, V. Tagliaferri. Electrostatic spray deposition (ESD) of polymeric powders on thermoplastic (PA66) substrate[J]. Surface and Coatings Technology, 2006,201(1): 296-308.
    [36] Shaoxing Zhao, Kazimierz Adamiak, G. S. Peter Castle. The Implementation of Poisson Field Analysis within FLUENT to Model Electrostatic Liquid Spraying[C]. Electrical and Computer Engineering, 2007(CCECE 2007). Canadian Conference on 22-26 April 2007:1456-1459.
    [37] Camelia Matei Ghimbeu, Robert C. van Landschoot, Joop Schoonman, Martine Lumbreras. Tungsten trioxide thin films prepared by electrostatic spray deposition technique [J]. Thin Solid Films, 7 May 2007, 515 (13): 5498-5504.
    [38] J. K. Antonio, J. G. Wendelberger, G. P. Matthews, W. G. Trabold, M. H. Costin. Optiscan: the use of reflectometry for detecting quality attributes of basecoat paint[J]. General Motors Research Laboratories, Warren, M I, Research Report No.ET-426/MA-357,Dec.1986.
    [39] Schneberger G I. Understanding Paint and Paint Processes[M]. Fourth Edition,Hitchcock Publishing, Carol Stream, IL, 1989.
    
    [40] Mortenson M. Geometric Modeling[M]. New York: John Wiley & Sons, 1985.
    [41] C. de Boor. A Practical Guide to Splines[J]. Applied Mathematical Sciences Series, vol.27,Springer-Verlag, New York, NY, 1978.
    [42] Hyotyiemi. Minor moves—global results: Robot trajectory planning[C]. Proc.1990 IEEE Conf. on Decision and Control, December 1990,16-22.
    [43] J.K.Antonio. Optimal Trajectory Planning Problems for spray coating[C]. Proc.1994 IEEE Int'l Conference on Robotics and Automation, April 1993,pp.2570-2577.
    [44] J.K.Antonio, R.Ramabhadran, T.L.Ling. A Framework for Trajectory Planning for Automated Spray Coating[C]. International Journal of Robotics and Automation,vol.12,no.4,1997,pp.l24-134.
    [45]C.S.G.Lee,B.H.Lee.Resolved motion adaptive control for mechanical manipulators[J].ASME J.Dynamic Systems,Measurements and control,106,June 1984,134-142.
    [46]J.Y.S.Luh,M.W.Walker,R.P.C.Paul.Resolved acceleration control of mechanical manipulators[C],IEEE Trans.Automatic control,AC-25,June 1980,468-474.
    [47]L.E.Elsgolc.Calculus of Variations[M].Addison-Wesley,Reading,MA,1962.
    [48]汪朝晖,廖振方,高全杰等.基于OpenGL的静电喷涂雾化动画实现[J].计算机工程与应用,2008,44(22):81-83.
    [49]潘萌,曲道奎,徐方等.基于OpenGL的真空机器人三维图形仿真[J].机器人技术,2007,23(12-2):237-239.
    [50]马逸超.基于OpenGL的仿真可视化软件开发[J].航空兵器,2007,(6):43-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700