银杏浊汁的酶法制备及其稳定机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银杏在我国分布很广,资源丰富。银杏不但具有很好的食用价值,而且还具有独特的功能性质和药用价值,深受消费者喜爱。我国银杏总产量占世界的90%左右,居世界银杏产量第一位。银杏以销售干果为主,大部分的银杏资源没有得到充分的利用,银杏深加工产品的开发能充分发挥银杏产业的资源优势,具有十分显著的社会和经济效益。银杏浊汁是以银杏种仁为原料加工而成,但是制备混浊稳定的银杏浊汁一直是生产中的难题。因此,对银杏浊汁加工技术的深入研究和对浊汁稳定机理的探讨具有重要的理论和现实意义。
     本文研究了复合酶法制备银杏浊汁、不同的杀菌方法处理银杏浊汁以及银杏浊汁的混浊稳定性、色泽稳定性和挥发性成分。主要研究内容如下:
     确定了糊化和制浆的条件。DSC测得银杏淀粉的糊化终了温度为81.904℃。通过研究银杏浆料的糊化温度和时间以及浆料的粒径分布对银杏浊汁品质的影响,确定银杏浆糊化温度和时间为90℃、10 min;银杏浆均质后更有利于酶解。
     通过研究不同的酶制剂对银杏浊汁品质的影响,发现使用淀粉酶单一酶制剂的效果不如淀粉酶和蛋白酶复合使用的效果,其中中温α-淀粉酶和Alcalase蛋白酶的复合可以最有效的提高银杏浊汁的悬浮稳定性和得率,改善银杏浊汁的品质。反应温度为60℃、淀粉酶用量为7.39 U/g果肉、蛋白酶用量为6.43 U/g果肉以及酶解时间为73 min。银杏浊汁保留了银杏种仁中大部分的营养物质。
     研究了高压脉冲电场(PEF)对银杏浊汁的杀菌效果,发现处理时间越长、电场强度越高、水浴温度越高杀灭效果越好。较佳的处理条件为:水浴温度为40℃,电场强度为30 kV/cm,处理时间为260μs,脉冲宽度为3μs,频率为303 Hz;或者水浴温度为15℃,电场强度为30 kV/cm ,处理时间为520μs,脉冲宽度为3μs,频率为303 Hz。PEF处理过程中热的影响是有限的,它和PEF杀菌具有协同作用。研究了PEF处理后银杏浊汁的货架寿命。以微生物的存活数为评价指标,在520μs,30 kV/cm和15℃的条件下,经过PEF处理后的银杏浊汁在4℃可以贮存18天,在室温下可以贮存15天。经过260μs、30 kV/cm和40℃条件下处理后的银杏浊汁,在4℃可以贮存15天,在室温下可以贮存6天。结果证明PEF处理可以延长银杏浊汁的货架寿命。
     确定了适合银杏浊汁的最佳杀菌方法。超高温瞬时杀菌在140℃保持5 s、10 s和15s均可使银杏浊汁达到商业无菌的要求。采用121℃高温杀菌、UHT杀菌和PEF杀菌对银杏浊汁品质的影响以及感官评定,确定适合银杏浊汁的最佳杀菌方式为超高温瞬时杀菌。
     探讨了银杏浊汁的混浊稳定性与酶制剂作用的关系。酶制剂的作用使银杏浆中淀粉水解为糊精和低聚糖,蛋白质水解为肽。银杏浊汁的悬浮颗粒受大分子糊精或果胶柔顺分子链构象的限制而产生空间排斥效应;酶制剂的作用使蛋白质水解以及浊汁中带负电的氨基酸残基的增加,不利于蛋白质和多糖之间的相互作用,浊汁的Zeta电位增加,悬浮颗粒间的静电排斥作用增强。空间排斥效应和静电排斥作用是银杏浊汁保持混浊稳定的主要原因。
     研究了杀菌方法对银杏浊汁混浊稳定性的影响。杀菌方法对悬浮颗粒的Zeta电位影响不大,但对悬浮颗粒的大小影响较大,PEF、UHT、121℃杀菌后银杏浊汁悬浮颗粒的平均粒径分别为:0.925μm,1.333μm,2.467μm,混浊稳定性的效果为:PEF >UHT > 121℃高温杀菌。
     不同的亲水胶体对银杏浊汁的稳定性影响不同。瓜尔豆胶的增稠作用最显著,亚麻籽胶具有一定的乳化性能。在30℃、35℃和40℃贮存温度下对UHT杀菌的银杏浊汁进行加速贮存实验,预测银杏浊汁在25℃时的货架寿命为388天。
     通过分析银杏浊汁的汁液和沉淀物的组成,探讨了贮存过程中银杏浊汁混浊稳定的机理:一方面大分子糊精通过空间排斥效应和静电排斥作用保持银杏浊汁的混浊稳定;另一方面糊精大分子彼此交联长大,杂乱无序的缠绕在一起,易将夹杂在大分子之间的颗粒一起纠缠,聚集成较大的颗粒,在重力的作用下沉降下来。糊精、脂肪-直链淀粉络合物、果胶-蛋白或蛋白质-多酚的复合物及其细胞碎片等之间的相互作用也会使颗粒长大而发生沉降。
     不同的加工阶段对银杏浆非酶褐变具有不同的影响。酶反应引起的褐变主要由于美拉德反应的发生,高温杀菌引起褐变可能是由美拉德反应和焦糖化反应产生。
     研究了贮存过程中银杏浊汁的色泽变化。贮存温度越高,时间越长,银杏浊汁的褐变越严重。美拉德反应是银杏浊汁贮存过程中发生非酶褐变的主要原因。将贮存过程中银杏浊汁褐变指数的变化曲线与动力学方程拟合,推测贮存期间银杏浊汁的非酶褐变符合零级动力学反应。酚类化合物的氧化聚合和维生素C的氧化降解不是主要影响因素。
     分析了加工过程和杀菌方法对银杏浊汁挥发性成分的影响。经SPME富集,GC-MS分离与检测,从新鲜银杏种仁中测定出46种化合物,主要为萜烯类物质。从糊化后的银杏浆料中测定出30种化合物,有20种化合物与新鲜银杏种仁的挥发性物质相同。从杀菌前的银杏浊汁中测定出49种化合物,与糊化后的银杏浆料有19种物质相同。PEF杀菌后的银杏浊汁中测定出41种化合物。与杀菌前相同的挥发性成分有36种,UHT杀菌的银杏浊汁中测定出57种化合物,与杀菌前有36种相同,121℃高温杀菌的银杏浊汁中测定出53种化合物,与杀菌前有33种相同,不同杀菌方式处理后的银杏浊汁都保留了杀菌前的大部分的挥发性成分。与银杏种仁比较,PEF杀菌后的果汁保留18种化合物;UHT杀菌后的浊汁保留18种物质;121℃杀菌后的浊汁仅保留12种。加工条件对挥发性物质影响较大,但银杏浊汁仍然保留了银杏特有的香味。在银杏浊汁的加工过程中,有些加工过程改善了银杏浊汁的风味,如酶处理过程;有些加工步骤如热处理导致大量羰基化合物以及一些褐变产物糠醛、吡啶、呋喃类化合物的生成,产生蒸煮风味。
Ginkgo, which widely distributed in China, has been consumed as not only a nice food, but also an herbal medication. The yield of ginkgo in China is around 90 percent of the total yield in world, presents the place of number one. Most of ginkgo is only sold as dried fruits, not fully used at present. Developing some new products from ginkgo could take advantage of ginkgo resource and promotes both social and economic benefits. Ginkgo cloudy juice was one of the main products made from ginkgo seeds. However, it is very difficult to make the juice stable. Therefore, study of processing technology and stable mechanism of ginkgo cloudy juice has the deep significant both in theory and reality.
     This paper studied in the method of processing ginkgo cloudy juice by multiple enzymes, and the effect of different sterilized methods for ginkgo cloudy juice and their cloud stability, color stability and flavor.
     The conditions of gelatinization and processing of ginkgo soup were studied, the gelatinization temperature determined by DSC was 81.904℃. Then the research of the relationship between gelatinization temperature and time and particle distribution for quality of ginkgo cloudy juice was carried out, results showed that the gelatinization temperature and time were 90℃and 10 min, respectively. Homogeneous ginkgo soup was benefited for enzymatic hydrolysis.
     The influences of different enzymes for quality of ginkgo cloudy juice were investigated. The combination of amylase and proteinase had a desirable effect on the quality of ginkgo cloudy juice. An appropriate enzymatic formulation containing both mild temperaturesα- amylase and Alcalase proteinase could increase the juice yield and suspension stability, and improve quality of ginkgo cloudy juice.
     The optimal parameters of enzymatic reaction for ginkgo cloudy juice was determined. The single experiment and RSM experiment were designed to optimize hydrolysis conditions of middle temperatureα- amylase and Alcalase proteinase. The optimal processing conditions were obtained as follows: the ratio of raw and water was 1:5, initial pH was 7.0, reaction temperature was 60℃, amylase usage was 7.39 U /g pulp, Alcalase usage was 6.43 U/g pulp and hydrolysis time was 73 min. Components analysis indicated that ginkgo cloudy juice retained most of the nutritional components in fresh ginkgo kernel.
     Effects of inactivate microorganism in cloudy ginkgo juice by PEF treatment were investigated. The result showed that the higher the treatment time and electric fields strength, the greater microbial destruction. The optimal conditions were showed as follows: pulse duration of 3μs, electric field strength of 30kV/cm, treatment time of 520μs and the temperature of water bath of 15?C or 260μs at 40?C. PEF combination with mild thermal treatments enhanced microbial inactivation effectiveness. Heat, which is generated during the PEF processing, has a synergistic effect with PEF treatment.
     The shelf time of ginkgo cloudy juice by PEF treatment was studied. Survival numbers of microorganism was selected as evaluative index. The microbial shelf life of ginkgo juice by PEF treated at 520μs, 30kV/cm and 4?C was 18 days, 15 days at room temperature. The shelf life of ginkgo juice at 260μs, 30kV/cm and 4?C was 15 days, 6 days at room temperature. The results showed PEF processing could extend the shelf life of ginkgo cloudy juice.
     The sterilized method which suitable to ginkgo cloudy juice was determined. Ginkgo cloudy juice was treated by UHT at 140℃and kept for 5s, 10s and 15s, respectively. Ginkgo cloudy juice by UHT treatment reached commercially sterile requirements. The effects of 121℃treatment, UHT and PEF treatment for quality of ginkgo cloudy juice and sensory evaluation were investigated, and the best sterilized methods was decided as UHT treatment. The effects of enzymatic treatment on suspension stability of ginkgo cloudy juice were investigated. Starch molecules were treated byα- amylase to become dextrin and oligosaccharide, and protein treated by proteinase become peptides. Due to the effects of pliancy molecular chain of macromolecules dextrin or pectin, the steric repulsive effects were produced among suspended particles in ginkgo cloudy juice. Hydrolysis of protein by enzyme treatment and increasing of negative amino acid residues were not benefit to the attraction between protein and polysaccharide. And the increased zeta-potential of ginkgo cloudy juice also enhanced the exclusive effects of suspended particles. Therefore, the electrostatic repulsive effects were strengthened among suspended particles. Cloud stability of ginkgo cloudy juice mainly depended on the steric and electrostatic repulsive effects among suspended particles.
     Effects of ginkgo cloudy juice stability by sterilized methods were studied, and the effect of Zeta potential of suspended particle by sterilized methods was not significant. But sterilized methods could effects the particle size. The average particle size of suspended particle in ginkgo cloudy juice by PEF, UHT or 121℃treatment was 0.925μm, 1.333μm and 2.467μm, respectively. Comparison of cloud stability was PEF >UHT >121℃.
     Different hydrocolloids had different effects on cloud stability of ginkgo cloudy juice. Guar gum was the most thickening effect, and flaxseed gum possessed a little emulsification. By accelerated storage tests at 30, 35 and 40℃for ginkgo cloudy juice by UHT treatment, suspension stability was selected as evaluative index, the activation energies of the suspension stability was 70.44 kJ/mol. The shelf life of ginkgo cloudy juice was 388 days at 25℃.
     According to the results of the components of ginkgo cloudy juice and sedimentation, the mechanism of cloud stability of ginkgo cloudy juice was discussed. On one side, cloud stability of ginkgo cloudy juice mainly depended on the steric and electrostatic repulsive effects among suspended particles including macromolecular substances and suspended pulp substances. On the other side, during storage some macromolecular of dextrin occurred cross-linking with each other. Those macromolecular and some particles formed sedimentation due to the action of gravity. Macromolecular material, sugar-protein or protein-polyphenol compounds, fat-amylose complex and cell fragments were aggregated together and grown up to form more sediments.
     Different processing stage had different effects on non-enzymatic browning of ginkgo cloudy juice. Browning during enzymatic reaction was brought by Maillard reaction. Browning during high temperature sterilization may be caused by Maillard reaction and caramel reaction.
     Changes of color of ginkgo cloudy juice during storage were investigated. The result showed that the higher storage temperature or the longer storage time, the more seriously non-enzymatic browning. Maillard reaction was the most important cause resulting in non- enzymatic browning and non-enzymatic browning kinetics was preferred to zero order during ginkgo cloudy juice storage. Oxidation of polyphenols and Vitamin C were not main reason of browning.
     The volatile compounds of ginkgo cloudy juice were concentrated by SPME, separated and identified by GC-MS. 46 kinds of compounds were identified in volatile fraction of fresh ginkgo kernels, and the main components were terpene. 30, 49, 41, 57 and 53 kinds of compounds were identified in volatile fraction of gelatinized soup and those not sterilized, PEF treated, UHT treated and 121℃treated ginkgo cloudy juice. Volatile fraction of ginkgo cloudy juice by PEF, UHT and 121℃treatment compared with fresh ginkgo kernels retained 18, 18 and 12 kinds, respectively. The results indicated processing conditions had significant effect for volatile components, but ginkgo cloudy juice retained the main aroma components of fresh gingko kernels after processing. Some processing (such as enzymatic treatment) could improve flavor of ginkgo cloudy juice, however, another processing (such as heat treatment) made many of cooking aroma such as furfural, pyridine and furan.
引文
1.姚碧文,陈伟.银杏叶药理研究进展[J].浙江中西医结合杂志, 2005(3):192-193.
    2. Altiok N, Ersoz M, Karpuz V. Ginkgo biloba extract regulates differentially the cell death induced by hydrogen peroxide and simvastatin [J]. Neuro Toxicology, 2006, 27(2):15 8-163.
    3. Walesiuk A, Trofimiuk E and Jan J B. Ginkgo biloba normalizes stress- and corticosterone-induced impairment of recall in rats [J]. Pharmacological Research, 2006, 53(2): 123-128
    4.张中朋,刘秀芬.银杏叶提取物发展概述[J].中药研究与信息, 2005(2):38-40.
    5.车舟,谭华炳,贺琴等.银杏叶提取物药理与心血管和神经系统实验研究进展[J],实用心脑肺血管病杂志,2006,14 (4) : 331-334.
    6. Rodríguez M, Ringstad L, Sch?fer P, et al. Reduction of atherosclerotic nanoplaque formation and size by Ginkgo biloba (EGb 761) in cardiovascular high-risk patients [J]. Atherosclerosis, 2007, 192(2): 438-444
    7. Sch?fer P, Rodríguez M, Just S. The effect of Ginkgo biloba (EGb 761) on arteriosclerotic nanoplaque formation and size in a long-term clinical trial [J]. Desalination, 2006, 191: 426-431
    8. Smith J V, Luo Y I. Elevation of xidative free radicals in Alzheimer’s disease models can be attenuated by Ginkg biloba extract EGb 761 [J]. J of Alzheimer’s Dis, 2003, 5 (4): 287
    9. Woelk H, Arnoldt K H, Kieser M and Hoerr R. Ginkgo biloba special extract EGb 761 in generalized anxiety disorder and adjustment disorder with anxious mood: A randomized, double-blind, placebo-controlled trial [J]. Journal of Psychiatric Research, 2007, 41:472-480
    10. DeKosky S T, Fitzpatrick A. The Ginkgo Evaluation of Memory (GEM) study: Design and baseline data of a randomized trial of Ginkgo biloba extract in prevention of dementia [J]. Contemporary Clinical Trials, 2006, 27: 238-253.
    11. Bastianetto S, Quirion R. Natural extracts as possible p rotective agents of brain aging [J]. Neurobiology of Aging, 2002, 23 (5): 891.
    12. Welt K, Weiss J and Martin R. Ginkgo biloba extract protects ra t kidney from diabetic and hypoxic damage [J]. Phytomedicine, 2007, 14:196-203.
    13. Mark Blumenthal. Letter to the Editor: The effect of the ingestion of Ginkgo biloba extract (EGb 761) on the pharmacokinetics of metformin in non-diabetic and type 2 diabetic subjects—A double blindplacebo-controlled, crossover study [J]. Clinical Nutrition, 2007,26:164-165.
    14. Kudolo G B, Wang W. The effect of the ingestion of Ginkgo biloba extract (EGb 761) on the pharmacokinetics of metformin in non-diabetic and type 2 diabetic subjects—A double blind placebo-controlled, crossover study [J]. Clinical Nutrition, 2006,25:606-616.
    15. Kudolo G B, Wang W. Short-term ingestion of Ginkgo biloba extract does not alter whole body insulin sensitivity in non-diabetic, pre-diabetic or type 2 diabetic subjects—A randomized double-blind placebo-controlled crossover study [J]. Clinical Nutrition, 2006,25:123-134.
    16. Oh S M and Chung K H. Antiestrogenic activities of Ginkgo biloba extracts [J]. The Journal of Steroid Biochemistry and Molecular Biology, 2006,100: 167-176.
    17. Ilhan A, Iraz M, Kamisli S. Pentylenetetrazol-induced kindling seizure attenuated by Ginkgo biloba extract (EGb 761) in mice [J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 2006, 30:1504-1510.
    18. ?ener G, Kabasakal L, Atasoy B M. Ginkgo biloba extract protects against ionizing radiation-induced oxidative organ damage in rats [J]. Pharmacological Research, 2006, 53:241-252.
    19. Carlson J J, Safety J W. Efficacy of a Ginkgo Biloba–Containing Dietary Supplement on Cognitive Function, Quality of Life, and Platelet Function in Healthy, Cognitively Intact Older Adults [J]. Journal of the American Dietetic Association, 2007, 107:422-432.
    20. Hyla Cass. Herbs for the nervous system: Ginkgo, kava, valerian, passionflower [J]. Seminars in Integrative Medicine, 2004,2: 82-88.
    21.林协.银杏产品开发与市场前景展望[J ].林业科技开发, 2003, 17 (4) : 13- 15
    22.林协.关于银杏产业开发的思考[J].林业科技开发, 1999,(2):5-6
    23.梁立兴.银杏外种皮的研究现状及开发利用前景[J ].中国资源综合利用, 2003, (10) : 12- 14
    24.张素.银杏资源的开发与利用[J ].北京中医学院学报, 1992, (2) : 38
    25.陈盛霞,杨小明,张蓉仙等.槟榔碱与银杏外种皮提取物联合用药杀灭钉螺的研究[J],江苏大学学报(医学版). 2007, 17 (1):1-4.
    26.唐于平,楼凤昌,王欢等.银杏外种皮的化学成分和药理作用[J].药学进展, 2000,24(3):152-155.
    27.倪学文,吴谋成.银杏外种皮中银杏酚酸的提取及应用研究[J].湖北中医学院学报, 2001(4):22-24.
    28. Lee J S, Cho Y S, Park E J, et al. Phospholipase Crlinhibitory principles from the sarcotestas of Ginkgo biloba [J]. J Nat Prond, 1998,61:867-871.
    29. Irie J. Glycerol-3-phosphate Dehydrogenase Inhibitora, Anacardic Acids, from Ginkgo biloba [J]. Biotech Biochem, 1996, 60(2):240-243.
    30.许爱华,陈华圣,诸澄等.银杏外种皮多糖对人癌细胞株的抑制作用及与阿霉素的协同效应[J].中国新药杂志, 2000, 9 (11) : 753-755.
    31.吴向阳,茆广华,仰榴青.银杏外种皮粗多糖提取工艺研究[J],食品科学, 2006, 27(10):372.
    32.傅秀红,李峰,许成琼等.银杏良种大佛手种实生长及内含物的研究[J].广西植物, 1997, 17(3): 263-269.
    33.曹福亮.中国银杏[M ].江苏:江苏科学技术出版社, 2002.
    34. Trumbeckaite S, Bernatoniene J, Majiene D. Effect of Ginkgo biloba extract on the rat heart mitochondrial function [J]. Journal of Ethnopharmacology, 2007, 111: 512-516.
    35.阮征,吴谋成,胡筱波等.多不饱和脂肪酸的研究进展[ J ].中国油脂, 2003 (28) : 55- 59.
    36.刘军海,崔庆新,程霜.牛蒡籽油理化特性及脂肪酸组成的研究[ J ],中国油脂, 2000 (2): 51- 52.
    37.邓乾春,黄文,谢笔钧.白果清蛋白抑制肿瘤活性及其机制的初步研究[J].营养学报2006,28:259.
    38.王楠,汤仲明. MTT方法测定培养细胞抗药水平的评价[J].中国药理学通报, 1996,9: 78-81.
    39.黄文,谢笔钧,王益等.白果蛋白质的分离、纯化、理化特性及其抗氧化活性研究[J].中国农业科学, 2004,37:1537-1543.
    40. Wang H, Ng T B. Ginkbilobin, a novel antifungal protein from Ginkgo biloba seeds with sequence similarity to embryo-abundant protein [J]. Biochem Biophys Res Commun , 2000,279:407-411.
    41.黄文,谢笔钧,王益等.白果活性蛋白的抗生物氧化作用[J].营养学报, 2002,24:192-194.
    42. Kerry N M. The isoflavone genistein inhibits copper and peroxyl radical mediated low density lipop rotein oxidation in vitro [ J ]. Atheroselerois, l998 (140) : 341.
    43.凌关庭.抗氧化食品与健康[M ].北京:化学工业出版社, 2004:191.
    44. Worland P J, Kaur G, et al. Alteration of the phosphorylation state of P34 kinase by the flavone L86-8275 in breast carcinoma cells. Correlation with decreased H I kinse activity [J]. Biochem Phamacol, 1993, 46: 1831–1840.
    45. Ye B, Aponte M, Dai Y. Ginkgo biloba and ovarian cancer prevention: Epidemiological and biological evidence. Cancer Letters, 2007,251: 43-52.
    46. Nishida S, Satoh H. Comparative vasodilating actions among terpenoids and flavonoids contained in ginkgo biloba extract [J]. Clin Chim Acta, 2004, 339 (122): 129-133.
    47.张明艳.银杏黄酮抗心律失常作用的研究[J].中国误诊学杂志, 2003,3 (5): 695-696.
    48.田中忍.杏叶类黄酮对大鼠食后血糖升高的抑制作用[J].国外医学中医中药分册, 2005,27(5): 305.
    49.俞灵莺,李向荣.植物黄酮类抗糖尿病及其并发症的研究进展[J].国外医学卫生学分册, 2000, 27 (6) : 331- 335.
    50. Mustafa A, El-Medany A, Hanan H. Ginkgo biloba attenuates mucosal damage in a rat model of ulcerative colitis. Pharmacological Research, 2006, 53:324-330.
    51. Kim H K, Son K H, Chang H W et al. Inhibition of rat adjuvant induced arthritis by ginkgetin, a biflavone from ginkgo biloba, leaves [J]. PlantaMed, 1999,65 (5): 465-467.
    52.张黎,赵春晖.银杏叶总黄酮镇痛作用及机制的探讨[J].安徽大学学报, 2001, 36 (4) : 263- 266.
    53. Knitght D C, Eden J A. A review of the clinical effects of phytoestrogens [J]. Obstet Gynecol, 1994, 87: 897-904.
    54. Niaa L M A, Zarga M H A, Abdalla S S, Isolation and inhibitory effects of eupatilin, a flavone isolated from A rtem isia m onosperm a Del. on rat isolated smooth muscle [J]. Int. J. Pharmacogn, 1996, 34:134-140.
    55. Mustafa E. H., Zarga M. H. A, Sabri S, et al. Effects of cirsiliol, a flavone isolated from Achillea fragrantissim a, on rat isolated smooth muscle [J]. Int. J. Pharmacogn. 1995(33) : 204-209
    56.胡小松,肖华志,牛丽影等,中国果蔬产业发展状况与预测[J],饮料工业, 2002, 15(3):25-31.
    57.葛毅强,陈颖,张振华等,国内外果蔬加工业发展趋势[J],保鲜与加工, 2005(2):1-3.
    58.胡小松,中国果蔬加工产业现状与发展态势[J],权威论坛, 2005(3):4-9.
    59.张欣,葛毅强,蔡同一,苹果浓缩汁的后混浊[J],食品科学, 1998,19(1):22-24.
    60.高福成,王海鸥,郑建仙等,现代食品工程高新技术[M],北京:中国轻工业出版社, 1997.
    61.陈穗,何松,酶技术在果蔬汁加工中的最新应用[J],食品科技, 2001,1:51-52.
    62.李庆,蒲彪,刘远鹏,酶液化法对果蔬汁加工的影响概述[J],综述与述评, 2007,10:9-11.
    63.孙爱东,葛毅强,张欣,水果制品增香技术研究进展[J],食品与发酵工业, 1999, 1:44-49.
    64. Gunata Y Z, Bayonove C L, Baumes R L, Extraction and determination of fre and glyco-sidically bound fractions of some grape aroma components [J]. Journal of Chromate,1985,331:83-93.
    65. Williams P J, Strauss C R, Wilson B. Novel monterpene disaccharide glycoid of vitis vinifera grapes and wines [J], Phytochemistry, 1982,(21):2013-2020.
    66. Abdullah A G L, Sulaiman N M, Aroua M K. Response surface optimization of conditions for clarification of carambola fruit juice using a commercial enzyme [J]. Journal of Food Engineering, 2007,81: 65-71.
    67. Landbo A K, Kaack K and Meyer A S. Statistically designed two step response surface optimization of enzymatic prepress treatment to increase juice yield and lower turbidity of elderberry juice [J]. Innovative Food Science & Emerging Technologies, 2007, 8:135-142.
    68. Croak S and Corredig M. The role of pectin in orange juice stabilization: Effect of pectin methylesterase and pectinase activity on the size of cloud particles [J]. Food Hydrocolloids, 2006, 20:961-965.
    69. Reiter M, Stupari M, Neidhart S. et al. The role of process technology in carrot juice cloud stability [J]. Lebensmittel-Wissenschaftund-Technologe, 2003, 36:165-172.
    70. Beveridge T. Opalescent and Cloudy Fruit Juices: Formation and Particle Stability [J]. Critical Reviews in Food Science and Nutrition, 2002, 42:317-337.
    71. Wicker L, Ackerley J L and Hunter J L. Modification of pectin by pectinmethylesterase and the role in stability of juice beverages[J]. Food Hydrocolloids, 2003, 17:809-814.
    72. Genovese D B and Lozano J E. Contribution of colloidal forces to the viscosity and stability of cloudy apple juice [J]. Food Hydrocolloids, 2006,20:767-773.
    73. Mollov P, Mihalev K, Buleva M, et al. Cloud stability of apple juices in relation to their particle charge properties studied by electro-optics [J]. Food Research International, 2006, 39: 519-524.
    74. Genovese D B, Elustondo M P, Lozano J E. Color and cloud stabilization in cloudy apple juice by steam heating during crushing [J]. J Food Sci, 1997, 62(6):1171- 1175.
    75. Arbaisah S M, Asbi B A, Junainah A H, et al. Soursop pectinesterases: thermostability and effect oncloud stability of soursop juice [J]. Carbohydrate Polymers, 1997, 34:177-182.
    76.赵光远,李娜,影响浊苹果汁混浊稳定性的因素[J],食品科技, 2007, 1:147-150.
    77. Pecoroni S. Production of light - coloured cloudy apple juice [J]. Flussiges Obst, 1996, 63(1):11-15.
    78. Yemenicioglu A, Gunaydin N, Cemeroglu B. Cloud stabilization of naturally cloudy apple juices by heat treatments [J]. Fruit Processing, 2000,10(7):278-282.
    79. Genovese D B, Lozano J E. The effect of hydrocolloids on the stability and viscosity of cloudy apple juices [J]. Journal of Food Hyrocolloids, 2001,15(1):1-7.
    80. Quoc A L, Mondor M, Lamarche F, et al. Effect of a combination of electrodialysis with bipolar membranes and mild heat treatment on the browning and opalescence stability of cloudy apple juice [J]. Food Research International, 2006, 39:755-760.
    81.陈清泉.果汁非酵素性褐变及其抑制方法(下) [J].食品工业, 1992, 24(1): 45-53.
    82. Roig M G, Bello J F, Rivera Z S, et al. Studies on the occurrence of nonenzymatic browning during storage of citrus juice [J]. Food Research International, 1999,32: 609-619.
    83. Choi M H, Kim G H and Lee H S. Effects of ascorbic acid retention on juice color and pigment stability in blood orange (Citrus sinensis) juice during refrigerated storage [J]. Food Research International, 2002, 35:753-759.
    84. Torreggiani D, Forni E, Guercilena I, et al. Modification of glass transition temperature through carbohydrates additions: effect upon colour and anthocyanin pigment stability in frozen strawberry juices [J]. Food Research International, 1999,32:441-446.
    85. K?rca A, ?zkan M and Cemeroglu B. Stability of black carrot anthocyanins in various fruit juices and nectars [J]. Food Chemistry, 2006, 97:598-605.
    86.曾劲松,白路,超高温杀菌技术[J],广州食品工业科技, 2003(19):94-96.
    87.田红云,孔繁东,祖国仁.高压脉冲电场杀菌技术的研究与展望[J ].饮料工业, 2004,7(4) : 1- 5.
    88.赵武奇,殷涌光,王忠东.高压脉冲电场杀菌技术研究现状及发展[J].农业工程学报, 2001,17 (5) : 139-142
    89.赵武奇,殷涌光,关伟等.高压脉冲电场杀菌系统设计与试验[J].农业机械学报, 2002,33(3): 67-70.
    90.王黎明,史梓男,关志成等.脉冲电场非热杀菌效果分析[J ] .高电压技术, 2005 , 31 (2) :64-66.
    91.丁宏伟,殷涌光,崔彦如.高压脉冲电场(PEF)对发酵乳的非热杀菌研究[J].乳业科学与技术, 2005, 112 (3) :100-102.
    92.杜存臣,颜惠庚.高压脉冲电场非热杀菌技术研究进展[J].现代食品科技, 2005, 85 (3) : 151-154.
    93. Mercado H V, Belloso O M, Bai L, et al. Non-thermal food preservation: Pulsed electic fields [ J ] . Food Science & Technology, 1997,8 (2):151-157.
    94.张鹰,曾新安,扶雄等.高场强脉冲电场液体非热灭菌效果研究[J].食品工业,2004 (1) :42-44.
    95. Yecen H W, Zhang Q H, Dunne C P. Inactivation of papain by pulsed elect ric fields in a continous system [ J ]. Food Chemistry, 1999, 67 (1):53-59.
    96. Ayhan Z, Yeom H W, Zhang Q H, et al. Favor color and vitamin C retention of pulsed electric field processed orange juice indifferent packaging materials [J]. Journal of Agricultural and Food Chemistry, 2001,49 (2):669-674.
    97. Min S, Jin Z T, Zhang Q H. Commercial scale pulsed elect ricfield processing of tomato juice [J]. Journal of Agricultural and Food Chemistry, 2003, 51 (4):3338-3344.
    98.殷涌光,金声琅.高压脉冲电场非热杀菌技术对原料乳的预处理[J].包装与食品机械, 2005,23 (1):124.
    99.王维琴,盖玲,王剑平.高压脉冲电场预处理对甘薯干燥的影响[J].农业机械学报, 2005,36 (8): 154-156.
    100. Adams D M , Barach J T. Effect of psychotropic bacteria from raw milk on milk proteins [J]. Journal of Dairy Sci., 1976, 59: 823-827.
    101.张水华,孙君社,薛毅.食品感官鉴评[M ].广州:华南理工大学出版社, 2003: 91-93.
    102. Bai L, Barbosa Canovas G V, Swanson B G, et al. Inactivating microorganisms using a pulsed electric field continuoust reatment system [J]. IEEE Trans on Industry Applications, 1998,34 (1):43-50.
    103. Arevalo P, Npadi M O, Bazhal M I, et al. Impact of pulsed electric fields on the dehydration and physical properties of apple and potato slices [J]. Drying Technology, 2004, 22 (5): 1233-1246.
    104. Jan G M, Top S, Angersbach A, Knorr D. Impact of pulsed electric fields treatment on the recovery and quality of plant oils [J]. J of Food Engineering, 2004 (26):281-287.
    105.高大维,李国全.高压静电场灭菌效果研究[J].微生物学通报, 1998,25(5): 268-271.
    106. Knorr, D., Geulen, M. Food application of high electric field pulses [J]. Trends in food science and technology, 1994, 15(3): 20-25.
    107.殷涌光,闫琳娜,李玉娟.用高压脉冲电场对桃汁非热杀菌的研究[J],农业机械学报, 2006(37):89-92.
    108.高梦祥,马海乐,郭康权.西瓜汁的脉冲磁场杀菌试验[J].食品与发酵工业, 2004,30(3): 14-17.
    109.吴继军,肖更生,陈卫东.高压脉冲电场在桑果汁杀菌中的应用[J],农产品加工(学刊) , 2005,12:40-42.
    110. Ayhan Z, Yeom H W, Zhang Q H, et al. Flavor, color, and Vitamin C retention of pulsed electric field processed orange juice in different packaging materials [J]. Journal of Agricultural and Food Chemistry, 2001,49(2):669-647.
    111. Min S, Jin Z T, Zhang Q H. Commercial scale pulsed electric field processing of tomato juice [J]. Journal of Agricultral and food Chemistry, 2003,51:3338-3344.
    112. Akdemir G E, Jin Z T, Ruhlman K T, et al. Microbial safety and shelf-life of apple juice and cider processed by bench and pilot scale PEF systems [J]. Innovative Food Science & Emerging Technologies, 2000(1):77-86.
    113. Ayhan Z, Zhang Q H, Min D B. Effects of pulsed electric field processing and storage on the quality and stability of single-strength orange juice [J]. Journal of Food Protection, 2002,65(10):1623-1627.
    114. Gongora-Nieto M M, Pedrow P D, Swanson B G, et al. Energy analysis of liquid whole egg pasteurized by pulsed electric field [J]. Journal of Food Engineering, 2003,57:209-216.
    115. Amami E, Fersi A, Khezami L, Vorobiev E, et al. Centrifugal osmotic dehydration and rehydration of carrot tissue pre-treated by pulsed electric field [J]. LWT - Food Science and Technology, 2007, 40: 1156-1166.
    116. Aguilar-Rosas S F, Ballinas-Casarrubias M L, Nevarez-Moorillon G V. Thermal and pulsed electric fields pasteurization of apple juice: Effects on physicochemical properties and flavour compounds [J]. Journal of Food Engineering, 2007, 83:41-46.
    117. Mosqueda-Melgar J, Raybaudi-Massilia R M and Martín-Belloso O. Influence of treatment time and pulse frequency on Salmonella Enteritidis, Escherichia coli and Listeria monocytogenes populations inoculated in melon and watermelon juices treated by pulsed electric fields [J]. International Journal of Food Microbiology, 2007, 117:192-200.
    118. Sampedro F, Rivas A, Rodrigo D, Martínez A, et al. Pulsed electric fields inactivation of Lactobacillus plantarum in an orange juice–milk based beverage: Effect of process parameters [J]. Journal of Food Engineering, 2007, 80: 931-938.
    119. Nguyen P and Mittal G S. Inactivation of naturally occurring microorganisms in tomato juice using pulsed electric field (PEF) with and without antimicrobials [J]. Chemical Engineering and Processing, 2007, 46: 360-365.
    120. Elez-Martínez P and Martín-Belloso O. Effects of high intensity pulsed electric field processing conditions on vitamin C and antioxidant capacity of orange juice and gazpacho, a cold vegetable soup [J]. Food Chemistry, 2007,102: 201-209.
    121. Rivas A, Rodrigo D, Company B. Effects of pulsed electric fields on water-soluble vitamins and ACE inhibitory peptides added to a mixed orange juice and milk beverage [J]. Food Chemistry, 2007, 104:1550-1559.
    122. Elez-Martínez P, Suárez-Recio M and Martín-Belloso O. Modeling the reduction of pectin methyl esterase activity in orange juice by high intensity pulsed electric fields [J]. Journal of Food Engineering, 2007, 78:184-193.
    123. Cortés C, Esteve M J, Rodrigo D, et al. Changes of colour and carotenoids contents during high intensity pulsed electric field treatment in orange juices [J]. Food and Chemical Toxicology, 2006, 44:1932-1939.
    124. Roodenburg B, Morren J, Berg H E, et al. Metal release in a stainless steel pulsed electric field (PEF) system: Part II. The treatment of orange juice related to legislation and treatment chamber lifetime[J]. Innovative Food Science & Emerging Technologies, 2005, 6: 337-345.
    125. Elez-Martínez P, Escolà-Hernández J, Soliva-Fortuny R C, et al. Inactivation of Lactobacillus brevis in orange juice by high-intensity pulsed electric fields [J]. Food Microbiology, 2005, 22:311-319.
    126. Schilling S, Alber T, Toepf S, et al. Effects of pulsed electric field treatment of apple mash on juiceyield and quality attributes of apple juices [J]. Innovative Food Science & Emerging Technologies, 2007, 8:127-134.
    127. Lebovka N I, Praporscic I and Vorobiev E. Combined treatment of apples by pulsed electric fields and by heating at moderate temperature [J]. Journal of Food Engineering, 2004, 65:211-217.
    128. Heinz V, Toepfl S, and Knorr D. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment [J]. Innovative Food Science & Emerging Technologies, 2003, 4:167-175.
    129. Praporscic I, Lebovka N, Vorobiev E, et al. Pulsed electric field enhanced expression and juice quality of white grapes [J]. Separation and Purification Technology, 2007, 52: 520-526.
    130. Wu Y, Mittal G S and Griffiths M W. Effect of Pulsed Electric Field on the Inactivation of Microorganisms in Grape Juices with and without Antimicrobials [J]. Biosystems Engineering, 2005, 90: 1-7.
    131. Rivas A, Rodrigo D, Martínez A, et al. Effect of PEF and heat pasteurization on the physical–chemical characteristics of blended orange and carrot juice [J]. LWT - Food Science and Technology, 2006, 39:1163-1170
    132. Torregrosa F, Esteve M J, Frígola A and Cortés C. Ascorbic acid stability during refrigerated storage of orange–carrot juice treated by high pulsed electric field and comparison with pasteurized juice [J]. Journal of Food Engineering, 2006, 73:339-345.
    133. Selma M V, Salmerón M C, Valero M, et al. Control of Lactobacillus plantarum and Escherichia coli by pulsed electric fields in MRS Broth, Nutrient Broth and orange–carrot juice [J]. Food Microbiology, 2004, 21:519-525.
    134.鲍志英,德力格尔桑.食品加工中超高压灭菌的机理[J].农产品加工, 2003,(11):14-15.
    135.孙美琴,彭超英,郝惠英.冷杀菌技术及其在果汁生产中的应用[J].饮料工业, 2003,6(1):6- 9.
    136.陈祥奎,超高压杀菌新技术[J],食品与发酵工业, 1995 (4): 69.
    137. Campos F P and Cristianini M. Inactivation of Saccharomyces cerevisiae and Lactobacillus plantarum in orange juice using ultra high-pressure homogenization [J]. Innovative Food Science & Emerging Technologies, 2007, 8:226-229.
    138. Tahiri I, Makhlouf J, Paquin P, et al. Inactivation of food spoilage bacteria and Escherichia coli O157:H7 in phosphate buffer and orange juice using dynamic high pressure [J]. Food Research International, 2006, 39:98-105.
    139. Lacroix N, Fliss I and Makhlouf J. Inactivation of pectin methylesterase and stabilization of opalescence in orange juice by dynamic high pressure [J]. Food Research International, 2005, 38:569-576.
    140. Baron A, Dénes J and Durier C. High-pressure treatment of cloudy apple juice [J]. LWT - Food Science and Technology, 2006, 39:1005-1013.
    141.王雪青,兰风英,邵茹梅.高压对猕猴桃酱质量的影响[J].食品与发酵工业, 2001,27(8): 28–30.
    142. Corwin H, Shellhammer T H. Combined carbon dioxide and high pressure inactivation of pectin methylesterase, polyphenol oxidase, Lactobacillus plantarum and Escherichia coil [J]. J of Food Sci, 2002,67(2):697- 701.
    143. Park S J, et al. Effects of a combined process of high pressure carbon dioxide and high hydrostatic pressure on the quality of carrot juice [J]. J of Food Sci, 2002,67(5):1827-1834.
    144. Mckenna D R, Nanke K E, Olson D G. The effects of irradiation, high hydrostatic pressure and temperature during pressurization on the characteristics of cooked– reheated salmon and catfish fillets [J]. J of Food Sci, 2003,68(1):368-377.
    1. Neidleman S L. Enzymes in the food industry: A backward glance [J]. Food Technology, 1991, 1: 88-91.
    2. Alkorta I, Garbisu C, Llama M J, et al. Industrial applications of pectic enzymes: a review [J]. Process Biochem., 1998,33(1): 21-28.
    3.敖自华.银杏汁的制备及其稳定机理研究[D].无锡轻工大学博士学位论文,2000.
    4.田怀香,王璋.酶法制备混浊银杏饮料[J].食品工业科技, 2002,23(9):57-59.
    5.罗平.饮料分析与检验[M].北京:中国轻工业出版社,1992.
    6.宁正祥.食品成分分析手册[M] .北京:中国轻工业出版社,1998.
    7. Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars andrelated substance [J]. Analytical Chem., 1956,28:350-356.
    8. Dugh C S and Amerine M A. Methods for analysis of musts and wines [M] (Second Edition). New York: A Wiley-Intercience Publication John Wiley & Sons,1998.
    9. Kintner P K and Van Buren J P. Carbohydrate interference and its correction in pectin analysis using the m-hydroxydiphenyl method [J]. Journal of Food Science,1982,47(3):756-759,764.
    10.无锡轻工大学,食品酶学实验讲义.1995.
    11. Sims, C. A., Balaban, M. O., & Matthews, R. F.. Optimization of carrot juice color and cloud stability [J]. Journal of Food Science, 1993,58, 1129-1131.
    12. Meydav, S., Saguy, I., & Kopelman, I. J. Browning Determination in Citrus Products [J]. Journal of Agriculture Food Chemistry. 1977,25 (3), 602-604.
    13.傅秀红,李峰,许成琼等.银杏良种大佛手种实生长及内含物的研究[J].广西植物,1997,17(3): 263-269.
    14.江如兰,王英强,梁红等.广东佛手和圆子银杏品种种仁有机营养成分分析[J].中国生态农业学报, 2002,10(3): 30-32.
    15.刑世岩,皇桂月,仇九等.银杏优良品种种子的营养成分分析[J].果树科学, 1997, 14(1): 39-41.
    16.仲飞.红星苹果多酚氧化酶某些特性及其抑制的研究[J].园艺学报, 1998, 25(2): 184-186.
    17.郁志芳,彭贵霞,夏志华等.鲜切山药酶促褐变机理的研究[J].食品科学, 2003, 24(5): 44-49.
    18.张学杰,屈冬玉,金黎平.马铃薯酶褐变机理及其控制途径[J].中国马铃薯, 2000, 14(3): 158-161.
    19.张勇,池建伟,温其标等.香蕉酶促褐变的研究[J].食品科学, 2004, 25(3): 45-48.
    20. Fennema O R著.王璋,许时婴,江波等译.食品化学[M] (第三版).北京:中国轻工业出版社, 2003.
    21. Adler Nissen, J Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid [J]. Journal of Agriculture and Food Chemistry, 1979,27(6): 1256-1262.
    1.李洪恩,苗津.超高温瞬时灭菌乳的质量控制[J].口岸卫生控制,2005,9(5):25-29.
    2.夏震.超高温灭菌乳加工系统及其灭菌原理[J].中国乳品工业, 1998,26(2):28-31.
    3.方炜.超高温灭菌乳在贮藏过程中的质量变化[J].中国乳品工业, 1996,24(3)
    4.阐清华,蔡为荣,黄小东.超高温灭菌乳的灭菌原理及品质变化探析[J].山西食品工业,2001,3:4-8.
    5.芝崎勋,许有成译.新编食品杀菌工艺学[M].农业出版社,1990:66-77.
    6. Adams D. M. and Brawley T. G. Factors Influencing heat resistance of a heat - resistant Lipase of Pseudomonas [J] . Journal of Food Science, 1981,46 :673-676.
    7. Barach J.T., Adams O. M. and Speck M. L. Stabilization of a psychrotrophic presudomonas by calcium against thermal inactivation in milk at ultrahigh temperature [J]. Appliled and Environmental microbiology. 1976,31(6) :875-879.
    8.田红云,孔繁东,祖国仁.高压脉冲电场杀菌技术的研究与展望[J].饮料工业,2004,7(4):1-5.
    9.赵武奇,殷涌光,王忠东.高压脉冲电场杀菌技术研究现状及发展[J].农业工程学报,2001,17 (5):139-142.
    10. Mertens, B., Knorr, D. Developments of nonthermal processes for food preservation [J]. Food Technology, 1992,46(5):125-133.
    11. Ayhan, Z., Yeom, H.W. Zhang, Q.H., Min, D.B. Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials [J]. Journal of Agriculture Food Chemistry, 2001,49:669-674.
    12. Hodgins, A.M. Pasteurization of orange juice using pulsed electric field [D] . Master Thesis, 2001.
    13. Evrendilek, G.A., Zhang, Q.H., Richter, E.R. Application of Pulsed Electric Fields to Skim Milkinoculated with Staphylococcus aureus [J] . Biosystems Engineering. 2004,87(2): 137-144.
    14.王维琴,盖玲,王剑平.高压脉冲电场预处理对甘薯干燥的影响[J].农业机械学报, 2005,36(8): 154-156.
    15. Evrendilek, G.A., Zhang, Q.H. Effects of pulse polarity and pulse delaying time on pulsed electric fields-induced pasteurization of E. coli O157:H7[J]. Journal of Food Engineering. 2005,68:271-276.
    16. Calderon-Miranda,M.L., Barbosa-Canovas, G.V., Swanson, B.G. Transmission electron microscopy of Listeria innocua treated by pulsed electric fields and nisin in skimmed milk [J]. International Journal of Food Microbiology. 1999,51:31-38.
    17. Aronsson,K., Lindgren,M., Johansson, B.R., Ronner,U.,. Inactivation of microorganisms using pulsed electric fields: the influence of process parameters on Escherichia coli, Listeria innocua, Leuconostoc mesenteroides and Saccharomyces cerevisiae [J]. Innovative Food Science and Emerging Technologies. 2001,2:41-54.
    18. Sepulveda, D.R., Gongora-Nieto, M.M, San-Martin, M.F., Barbosa-Canovas, G.V. Influence of reatment temperature on the inactivation of Listeria innocua by pulsed electric fields [J] . Lebensm.-Wiss.u.-Technol. 2005,38: 167-172.
    19. Vega-Mercado,H., Pothakamury, U. R., Fu-Jung, C., Barbosa-Canovas, G. V., Swanson, B. G. Inactivation of Escherichia coli by combining pH, ionic strength and pulsed electric fields hurdles [J]. Food Research International. 1996,29(2),117-121.
    20. Qin, B.L., Chang, F.J., Barbosa-Canovas,G.V., Swanson,B.G. Nonthermal inactivation of Saccharomyces cerevisiae in apple juice using pulsed elecreic fields [J] . Lebensm.-Wiss.u.-Technol., 1995,28:564-568.
    21. Jin, Z. T., Zhang, Q.H., Pulsed electric field inactivation of microorganisms and preservation of quality of cranberry juice [J]. Journal of Food Processing Preservation. 1999, 23, 481-497.
    22. Heinz, V., Toepfl, S., Knorr, D. Impact of temperature on lethality and energy efficiency of apple juice pasteurization by pulsed electric fields treatment [J]. Innovative Food Science and Emerging Technologies. 2003,4:167-175.
    23.张水华,孙君社,薛毅.食品感官鉴评[M ].广州:华南理工大学出版社, 2003:91- 93.
    24. Matsumoto, Y., Statake, T., Shioji N., & Sakum, A. Inactivation of microorganisms by pulsed high voltage application [M]. Conference Record of IEEE Industrial Application Society Annual Meeting 1991, pp. 652-659.
    25. Sale, A. J. H., Hamilton, W. A. Effects of high electric fields on micro-organisms. (I) Killing bacteria and yeast [J]. Biochimica et Biophysica Acta 1967,148, 781-788.
    26. Harrison, S.L., Barbosa-Canovas, G.V., Swanson, B.G., Saccharomyces cerevisiae Structural changes induced by pulsed electric field treament [J] . Lebensm.-Wiss.u.-Technol., 1997,30: 236-240.
    27. Dutreux, N., Notermans, S., Wijtzes, T., Gongora-Nieto, M.M., Barbosa-Canovas, G.V., Swanson, B.G. Pulsed electric fields inactivation of attached and free-living Escherichia coil and Listeria innocuaunder several conditions [J] . International Journal of Food Microbiology. 2000, 54, 91-98.
    28. Simpson, R.K., Whittington, R., Earnshaw, R.G., Russell, N.J. Pulsed high electric field causes‘all or nothing’membrane damage in Listeria monocytogenes and Salmonella typhimurium, but membrane H+-ATPase is not a primary target [J]. International Journal of Food Microbiology. 1999,48, 1-10.
    29. Pothakamury, U.R., Monsalve-Gonzalez, A., Barbosa-Canovas,G.V., Swanson,B.G.(). Inactivation of Escherichia coli and Staphylococcus aureus in model foods by pulsed electric field technology [J]. Food Research International. 1995, 28(2), 167-171.
    30. Hulsheger, H., Pottel, J., Niemann, E. Killing of bateria with electric pulses of high field strength [J]. Radiation and Environmental Biophysics, 1981,20, 53-65.
    31. Jayaram, S., Castle, G.S.P. Kinetics of Sterilization of Lactobacillus brevis cells by the application of high voltage pulses [J]. Biotechnology and Bioengineering, 1992,40, 1412-1420.
    32. Disalvo, E. A., Bakas, L. S.(1986). Influence of the surface charge distribution and water layers on the permeability properties of lipid bilayers. PP. 63-76 In: B. Martin (ed.), Electrical double layers in biology. Plenum Press, NEW YORK.
    33. Stanley, D. Biological membrance deterioration and associated quality losses in food tissues [J]. Critical Reviews in Food Science and Nutrition, 1991,30(5), 487-553.
    34. Zhang, Q., Qin, B.L., Barbosa-Canovas, G. V., & Swanson, B.G. Inactivation of Saccharomyces cerevisiae in apple juice by square wave and exponential decay-pulsed electric fields [J]. Journal of Food Processing Engineering. 1994,17(4), 469-478.
    35. Zimmermannu. Electrical breakdown, electropermeabilization and electrofusion [J]. Reviews of physiology biochemistry and pharmacology. 1986,105:175-256.
    36. Heinz V., Alvarez L., Angersbach A., et al. Preservation of liquid foods by high intensity pulsed electric fields basic concepts for Process design [J]. Trends in Food Science &Technology, 2002,(12):3-11.
    37. Unal, R., Yousef, A. E., Dunne, C. P. Spectrofluorimetric assessment of bacterial cell membrane damage by pulsed electric field [J]. Innovative Food Science and Emerging Technologies. 2002, 3, 247-254.
    38. Qin, B., Pothakamury, U., Vega, H., Martin, O., Barbosa-Canovas,G., Swanson,B. Food pasteurization using high-intensity pulsed electric fields [J]. Food Technology. 1995a ,49(12), 55-60.
    39. Liand, S.Q.,Zhang,Q.H.. Inactivation of E.coli8739 in enriched soymilk using pulsed electric fields [J]. Journal of Food Science. 2004,69(7)169-174.
    40. Barbosa-Canovas G.V,Gongora-Nieto M.M, Pothaka-mury U.R, etal., Preservation of Foods with Pulsed Electric Fields [M]. San Diego USA: Academic Press,1999.
    41. Hülsheger H, Potel J, Niemann E.G. Killing of bacteria with electric pulses of high fields strength [J]. Radiationand Environmental Biophysics, 1981,20,53-65.
    42. Pothakamury UR, Vega H, Zhang Q, etal., Effect of growth stage and processing temperature on the inactivation of E.coli by pulsed electric fields [J]. Journal of Food Protection,1996,59,1167-1171.
    43. Weibull W., A statistical distribution function of wide applicability [J]. Journal of Applied Mechanics,1951,51,293-297.
    44. Cole MB, Davies KW, Munro G,etal. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes [J]. Journal of Industrial Microbiology, 1993, (12):232-239.
    1.张龙翔,张庭芳,李令媛.生物实验方法和技术[M].北京:人民教育出版社,1981.
    2. Dugh C S and Amerine M A. Methods for analysis of musts and wines (Second Edition) [M]. New York: A Wiley-Intercience Publication John Wiley & Sons,1998.
    3.张惟杰.糖复合物生化技术研究(第二版) [M].杭州:浙江大学出版社,1999.
    4.敖自华.银杏浊汁的制备及其稳定机理的研究[D].江南大学博士学位论文, 2000, pp: 22-24.
    5. Dickinson E. An introduction to food colloids [M]. London: Oxford University Press, 1992.
    6. Fennema O R著.王璋,许时婴,江波等译.食品化学(第三版) [M].北京:中国轻工业出版社, 2003.
    7.陈海华,许时婴,王璋.亚麻籽胶化学组成和结构研究.食品工业科技, 2004, 1:103-105.
    8. Ilan S. Protein coagulation cloud in citrus fruit extract. 1. Formation of coagulates and their bound pectin and neutral sugars [J]. J Agric. Food Chem.,1991,39: 2263-2266.
    9. Genovese D B and Lozano J E. The effect of hydrocolloids on the stability and viscosity of cloudy apple juices [J]. Food hydrocolloids, 2001, 15: 1-7.
    10. Sherman P. Rheology of dispersed systems [M]. In industrial Rheology. London: Academic Press, 1970. pp: 97-183.
    11. Swanson M A. Studies on the structure of polysaccharides 4. Relation of the iodine color to the structure [J]. J Biol. Chem., 1984, 172:825-837
    12. Silverio J, Fredriksson H, Andersson R, et al. The effect of temperature cycling on the amylopectin retrogradation of starches with different amylopectin unit-chain length distribution [J]. Carbohydrate Polymers, 2000, 42: 175–184.
    13. Levine H, Slade L. Influences of the glassy and rubbery states on the thermal, mechanical, and structural properties of doughs and baked products. In H. Faridi & J. M. Faubion (Eds.), DoughRheology and Baked Product Texture, (pp. 157–330). New York: Van Nostrand Reinhold. 1990.
    14. Siebert K J, Troukhanova N V and Lynm P Y. N ature of polyphenol-protein interactions [J]. J Agric. Food Chem., 1996, 44(1):80-85.
    15. Hsu J C, Heatherbell D A and Yorgey B M. Effects of fruit storage and processing on clarity, Proteins, and stability of Granny Smith apple juice [J]. J Food Sci., 1989, 54(3):660-662.
    16. Waters E J, Wallace W, Tate M E, et al. Isolation and partial characterization of a natural haze protective factor from wine [J]. J Agic. Food Chem., 1993, 41(5): 724-730.
    17. Ishii S, Yokotsuko T. Clarification of fruit juice by pectin trans-eliminase [J], J Agric. Food Chem., 1972, 20(2): 787-791.
    18.秦兰,蔬菜汁——南瓜混汁和胡萝卜混汁的研究[D].江南大学博士学位论文, 2005, pp: 90-92.
    1.罗平.饮料分析与检验[M].北京:轻工业出版社, 1993, 132-136.
    2.马霞,王瑞明,关凤梅等.果汁非酶褐变的反应机制及其影响因素[J].粮油加工与食品机械, 2002, 9: 46-48.
    3. Fennema O R著.王璋,许时婴,江波等译.食品化学(第三版) [M].北京:中国轻工业出版社,2003.
    4. Nagy S, Lee H, Rouseff R L and Lin J C C. Nonenzymic browning of commercially canned and bottled graoefruit juice. J Agri. Food Chem. [J], 1990, 38: 343-346.
    5.秦兰.蔬菜汁---南瓜混汁和胡萝卜混汁的研究[D].江南大学博士学位论文. 2005, pp: 97-98.
    6. Saguy J, Kopelman I J and Mizrahi S. Extent of nonenzymatic browning in grapefruit juice during thermal and congcentration processes: kinetics and prediction [J]. J Food Protection, 1978, 2:175-184.
    7. Toribio J L and Lozano J E. Nonenzymatic browning in apple juice concentration during storage [J]. J Food Sci., 1984, 49(3): 889-892.
    8. Ibarz A, Pagan J, Garza S. Kinetic models of non-enzymatic browning in apple puree [J], J. Science of Food Agriculture [J], 2000, 80, 1162-1168.
    9. Garza S, Ibarz A, Pagan J and Giner J. Non-enzymatic browning in peach puree during heating [J]. Food Research International, 1999, 32 (5): 335-343.
    10. Lee H S and Nagy S. Relationship of sugar degradation to detrimental changes in citrus in citrus juice quality. Food Technol. [J], 1988, 42: 91-97.
    11.陈清泉.果汁非酵素性褐变及其抑制方法(上) [J].食品工业(台湾), 1992, 24(1): 45-53.
    1.吴继红,胡小松,周珊,等.固相微萃取和气-质联用技术在快速测定苹果中挥发性成分中的应用[J].中国食品学报,2003,3(2):63-66.
    2. Jia M,Zhang QH and Min DB. Optimization of solid-phase microextraction analysis of headspace flavor compounds of orange juice. J Agric. Food Chem [J]. 1998,46(7):2744-2747.
    3. Golaszewski R, CA, O’Keefe SFO,et al. Senory attributes and volite components of stored strawberry juice. J Food Sci. [J]. 1998,63(4):734-738.
    4.吴继红,张美莉,陈芳,等.固相微萃取GC-MS法测定苹果不同品种中主要芳香成分的研究[J].分析测试学报, 2005,24(4):101-104
    5.汪立平,徐岩,赵光鳌,等.顶空固相微萃取法快速测定苹果果酒中的香味物质[J].无锡轻工大学学报, 2003,22(1):1-7.
    6. Zhang Z., etal. Headspacesolid-phasemicroextraction [J]. Anal.Chem..1993, 65:1843-1852.
    7. Zhang Z., Yang M J and Pawliszyn J. Solid-phase microextraction A solven-free alternative for sample preparation [J]. Anal.Chem. 1994, 66: 845A-853A.
    8. Pan, etal. Determination of fatty acids using solid-phase microextraction [J]. Anal.Chem. 1995, 67: 4396.
    9. Kataoka H, Lord H L and Pawliszyn J. Applications od Solid-phase microextraction in food analysis [J]. J Chromatography A, 2000, 880:35-62.
    10. Steffen A and Pawliszyn J. Analysis of flavour volatiles using headspace solid-phase microextraction[J]. J Agric. Food Chem., 1996,44(8):2187-2192.
    11. Liu T T and Yang T S. Optimization of solid-phlid-phase microextraction analysis for studying change of headspace flavor compounds of banana during ripening [J]. J Agric. Food Chem., 2002,50(4): 653-657.
    12.孙宝国,何坚.香料概论[M].北京:化学工业出版社.1996.
    13.丁耐克.食品风味化学[M].北京:中国轻工业出版社, 1996.
    14. Ayhan, Z., Yeom, H.W. Zhang, Q.H., Min, D.B. Flavor, color, and vitamin C retention of pulsed electric field processed orange juice in different packaging materials [J]. Journal of Agriculture Food Chemistry, 2001,49, 669-674.
    15. Hodgins, A.M. Pasteurization of orange juice using pulsed electric field [D]. Master Thesis . 2001.
    16. Fennema O R著.王璋,许时婴,江波等译.食品化学(第三版)[M].北京:中国轻工业出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700