氧化应激和炎症反应在子痫前期中的作用及其相互关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景子痫前期是严重危害孕产妇健康及造成围产期新生儿死亡的重要原因。近年来,对子痫前期的的病因和病理生理有了更深的认识,但其病因和确切发病机制至今尚未阐明,给子痫前期的预防和治疗带来困难。国内外学者提出内皮细胞激活损伤学说、免疫学说、氧化应激学说、炎症学说、一元化学说等试图来阐明子痫前期的发病机制。
     大量研究表明,子痫前期发病的中心环节为广泛的血管内皮损伤,而氧化应激及氧自由基的产生是内皮细胞受损的重要因素。在缺氧状态下氧化应激及氧自由基生成增加,并且与胎盘低灌注和子痫前期发生相联系。氧化应激及氧自由基进一步加重内皮细胞的损伤,氧自由基和脂质过氧化物能抑制前列环素的产生,促进血栓素A2(TXA2)和一氧化氮(NO)的释放。氧化应激与神经内分泌系统过度激活、内皮功能障碍等病理生理机制相互作用,共同促进疾病的发生、发展,通过多个途径诱发子痫前期。
     近年来,子痫前期发病的炎症机制再次受到重视,越来越多的学者认识到,子痫前期是母体对妊娠的一种过度性炎症反应,血管内皮细胞损伤是子痫前期患者白细胞、凝血系统和补体系统等多种因素共同参与的血管内过度性炎症反应的一部分。脂联素(adiponectin)作为一种炎性细胞因子与子痫前期的关系引起关注。脂联素作为一种新型脂源性激素,不仅参与调节内皮细胞炎症反应,而且参与脂质代谢和内皮细胞功能的病理生理过程,与炎症反应、胰岛素抵抗、动脉粥样硬化等均有密切关系。许多研究证实子痫前期存在明显的脂质代谢紊乱、胰岛素抵抗、动脉粥样硬化和内皮细胞功能障碍。瘦素(leptin)是脂肪细胞分泌的蛋白质类激素,它在人体内多种组织脏器中均有表达,通过与其受体结合发挥多种生物学效应。瘦素与子痫前期之间的关系已有较多报道,但结论分歧较大。
     越来越多的证据显示环氧合酶-2(cyclooxyygenase-2,COX-2)与炎症及动脉粥样硬化有关。研究还证实,子痫前期存在炎症和动脉粥样硬化。研究表明COX-1和COX-2在胎盘组织中均有表达,而且,在正常妊娠孕妇胎盘组织中COX-1和/或COX-2水平升高。然而,国外有关子痫前期孕妇胎盘组织中COX-1和COX-2水平或活性的研究,结论分歧较大,既有子痫前期孕妇胎盘组织中COX水平增加的报道,也有研究认为COX在子痫前期胎盘组织中的表达不变,还有学者的结论是降低。国内尚无子痫前期孕妇胎盘组织中COX-1和COX-2水平或活性的研究。我们推测,COX-2作为前列腺素生物合成的限速酶,可能在子痫前期发生和发展中起到重要作用,因而,COX-2在胎盘组织中的水平或活性是否升高值得研究。
     本课题采用分子生物学和免疫学实验技术检测正常妊娠和子痫前期患者血浆高敏C-反应蛋白(hs-CRP)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)等炎症标志物和8-异前列腺素(8-isoprostane)、丙二醛(MDA)、氧化修饰低密度脂蛋白(ox-LDL)等氧化应激产物的浓度,以求进一步探讨氧化应激和炎症反应在子痫前期中的作用及其相互关系。同时测定血清脂联素和瘦素等脂源性细胞因子在子痫前期中的变化,探索脂源性细胞因子在子痫前期中的作用,为临床预防和治疗子痫前期提供理论依据。本课题还应用逆转录聚合酶链式反应(reverse transcriptional-polymerase chain reaction, RT-PCR)法和免疫组织化学法分别检测子痫前期患者和正常孕妇胎盘组织中COX-2 mRNA和蛋白的表达,以期进一步探讨COX-2在子痫前期发病机制中的作用。本研究分为以下三部分,现分述如下:
     第一部分氧化应激和炎症反应在子痫前期中的作用及其相互关系
     目的通过测定子痫前期患者氧化应激产物和炎症标志物的水平,进一步研究子痫前期的发病机制。方法以53例子痫前期孕妇为研究组(其中轻度子痫前期32例、重度子痫前期21例),20例同期分娩的正常孕妇为对照组。检测血浆8-异前列腺素(8-isoprostane)、丙二醛(MDA)、氧化修饰低密度脂蛋白(ox-LDL)和高敏C-反应蛋白(hs-CRP)、白细胞介素-6(IL-6)、肿瘤坏死因子-α(TNF-α)的浓度。结果①子痫前期患者血浆8-isoprostane、MDA、ox-LDL分别为(153.07±44.84)pg/ml、(5.25±0.11)μmol/L、(772.04±151.00)μg/L均高于对照组[(82.86±20.91)pg/ml、(4.67±0.38)μmol/L、(431.45±200.69)μg/L,P<0.01、P>0.05和P<0.05];②子痫前期患者血浆hs-CRP、IL-6、TNF-α水平分别为(2.17±1.29)mg/L、(26.49±12.73)pg/ml、(18.47±4.17)pg/ml均明显高于对照组[(1.46±1.00)mg/L、(13.35±5.01)pg/ml、(8.86±1.39)pg/ml,P值均<0.01];③子痫前期患者8-isoprostane与hs-CRP、IL-6、TNF-α呈显著正相关,而MDA及ox-LDL均与hs-CRP、IL-6、TNF-α没有相关性。结论氧化应激及炎症反应可能在子痫前期中发挥重要的作用,干预氧化应激及炎症反应可能有利于控制子痫前期的发生和发展。
     第二部分脂源性细胞因子与子痫前期关系的研究
     目的探讨子痫前期患者血清脂源性细胞因子(脂联素、瘦素)水平的变化及其意义。方法以53例子痫前期孕妇为研究组(其中轻度子痫前期32例、重度子痫前期21例),20例同期分娩的正常孕妇为对照组。采用ELISA法检测血清脂联素和瘦素水平。同时检测血清甘油三脂(TG)、总胆固醇(TC)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)水平。结果①轻度、重度子痫前期患者血清脂联素水平分别为(8.88±4.67)ng/ml及(5.14±2.79)ng/ml,明显低于对照组(11.61±2.90ng/ml),差异有统计学意义(P均<0.01)。而轻度、重度子痫前期患者血清瘦素水平为(21.79±15.19)ng/ml及(27.27±18.38)ng/ml,明显高于对照组(12.35±6.51ng/ml),差异有统计学意义(P<0.05, P<0.01)。②子痫前期患者血清脂联素与TG、TC、LDL-C、HDL-C均呈显著相关(r值分别为-0.658、-0.624、-0.419、0.461),瘦素水平也与上述指标呈显著相关(r值分别为0.534、0.707、0.418、-0.513)。③子痫前期患者血清脂联素及瘦素水平呈高度负相关(r=-0.760, P<0.01)。结论脂联素、瘦素等脂源性细胞因子在子痫前期的发病中可能发挥一定的作用。
     第三部分环氧合酶-2在子痫前期患者胎盘组织中的表达
     目的研究环氧合酶-2(cyclooxyygenase-2,COX-2)在子痫前期患者胎盘组织中的表达,探讨其在子痫前期发病机制中的作用。方法采用免疫组化SP法检测32例子痫前期患者(轻度18例,重度14例)及20例正常孕妇胎盘组织中COX-2的表达。应用逆转录多聚酶链反应(RT-PCR)检测30例子痫前期患者及12例正常孕妇的胎盘组织中COX-2 mRNA的表达。结果(1) COX-2主要表达于胎盘血管内皮细胞。子痫前期孕妇及正常孕妇胎盘组织中COX-2蛋白的阳性表达率分别为65.5%和50.0%,差异无显著性(P>0.05)。(2)子痫前期组COX-2 mRNA表达水平为0.50±0.22,对照组为0.44±0.17,两组比较,差异无显著性(P>0.05)。结论COX-2在子痫前期的作用尚难确定。
Background Preeclampsia (PE ) is a complication unique to human pregnancy which cause largely remains to be understood. Although the mechanisms underlying the pathogenesis are not fully understood, oxidative stress and a generalized inflammatory state are features of the maternal syndrome.Up to date, many theories regarding its etiology and pathogenesis have been proposed. Of these theories, endothelial dysfunction, existed before the onset of PE, has been widely considered as playing an important role in the progression of PE. Several lines of evidence support oxidative stress and systemic inflammation are involved in the pathogenesis of PE. Some authorities believe that a systemic maternal inflammatory response to pregnancy is responsible for the endothelial dysfunction. Previous studies have provided evidence that PE results from exaggeration of a maternal systemic inflammatory response common to all pregnancies. Factors in the maternal circulation might induce oxidative stress and/or elicit an inflammatory response in the maternal endothelium, resulting in the altered expression of several genes involved in the regulation of vascular tone.The theory is consistent with many of the clinical observations and associations of PE. However, little is known about the association between oxidative stress and levels of inflammatory markers for PE. On the assumption that the effects of inflammatory reaction and oxidative stress and their interactions on vascular endothelial cells in PE patients and consequently contribute to the development of PE, changes in the production of oxidative stress (MDA,ox-LDL and 8-isoprostane)and inflammatory reaction markers (hs-CRP,IL-6,TNF-α) were measured in the plasma to investigate whether these changes would contribute to the occurrence or the development of PE.
     In addition, PE has many of the same pathophysiologic features as atherosclerosis. Endothelial dysfunction, insulin resistance and inflammation have been recognized features in PE. Many of adipocytes hormones such as tumor necrosis factor (TNF)- , leptin, adiponectin , and interleukin (IL)-6, collectively called adipokines, play important roles in the inflammatory and atherosclerotic processes. Adiponectin, one of the most abundant adipose tissue-specific proteins, is exclusively expressed and secreted from adipose tissue, which has been considered to improve insulin sensitivity and inhibit vascular inflammation and have anti-atherogenic effects. Hypoadiponectinemia has been found and considered as an independent risk factor in hypertension, especially in PE.Like adiponectin, leptin is yet another adipocytokine that is thought to have some role in regulating insulin sensitivity. Previous studies have suggested that leptin is increased in PE. The present study therefore hypothesized that there would be an inverse correlation between adiponectin and leptin in PE.
     Cyclooxygenase is the key enzyme in the biosynthesis of prostaglandins and thromboxane from arachidonic acid. Two isoenzymes,COX-1 and COX-2, have been identified,the former as a regulator of physiologic functions and the latter as a mediator in pathophysiologic reactions such as inflammation. COX-1 and COX-2 are expressed in the placental tissue samples and several studies have reported that placental levels of COX-2 were increased in the placentas of healthy pregnant women in labor at term. But there are controversial data regarding COX-2 levels or activities in the placentas of women with PE, which have been found increased,unchanged or decreased.
     The present study is divided into three parts as follows.
     Part I The Study of Oxidative Stress and Inflammatory Reaction in Preeclampsia
     Objective The purpose of the present study was to investigate the changes in plasma markers of oxidative stress and inflammatory reaction in preeclampsia(PE) and to evaluate their clinical significance and interactions in the pathogenesis of preeclampsia. Methods A prospective study was conducted involving 53 women with PE(study group:including 32 cases of mild PE and 21 severe PE) and 20 normotensive pregnant women(control group) in the third trimester. The plasma concentrations of high-sensitive C-reactive protein (hs-CRP),interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha),malondialdehyde(MDA),and 8-isoprostane were determined. Results①The plasma comcentrations of hs-CRP,IL-6,TNF-alpha, 8-isoprostane and ox-LDL were significantly higher in the study group [(2.17±1.29)mg/L, (26.49±12.73)pg/ml, (18.47±4.17)pg/ml,(153.07±44.84)pg/ml, (772.04±151.00)μg/L, respectively] than those of the control(P<0.01,or P<0.05),while no significant differences were noted between the plasma levels of MDA in these two groups [(5.25±0.11)μmol/L vs (4.67±0.38)μmol/L, P>0.05].②The plasma levels of hs-CRP,IL-6,TNF-alpha, and 8-isoprostane were markedly elevated in the severe PE group[(2.84±1.76)mg/L, (27.27±18.38)pg/ml, (22.13±12.35)pg/ml, (163.99±51.01) pg/ml, respectively] than those mild PE group (P<0.01,or P<0.05),while there were no significant differences between the plasma levels of MDA as well as ox-LDL between the MPE and SPE group[(5.49±0.15)μmol/L vs (5.08±0.19)umol/L,P>0.05; (809.29±211.83)μg/L vs (741.66±190.73)μg/L,P>0.05].③Plasma levels of 8-isoprostane were significantly correlated with the plasma levels of hs-CRP,IL-6,and TNF-alpha in PE women (r=0.618,P<0.01; r=0.689,P<0.01;r=0.712,P<0.01;respectively). But plasma levels of MDA were uncorrelated with the plasma levels of hs-CRP,IL-6,and TNF-alpha (r=0.168,P>0.05;r=0.113,P>0.05;and =0.110,P>0.05,respectively). In addition, no significant relationship was observed between plasma levels of ox-LDL and hs-CRP, IL-6 and TNF-alpha in PE women (r=0.140, P>0.05;r=0.134,P>0.05;and r=0.144, P>0.05, respectively). Conclusion Oxidative stress and inflammatory reaction are closely associated with PE, and the interactions play an important role in the pathogenesis of PE. Antioxidant treatment and anti-inflammatory treatment may prevent the onset and progression of PE.
     Part II The Study of Relationship between Adipocytokine and Preeclampsia
     Objective To explore the role of adipocytokine, adiponectin and leptin,in the pathogenesis of preeclampsia(PE). Methods The serum levels of adiponectin and leptin were measured using the enzyme-linked immunosorbent assay in 53 PE patients and 20 normal pregnant women. Seventy-three women were divided into three groups: group A consisted of 20 normotensive pregnant women (NPW); group B consisted of 32 women with mild preeclampsia (MPE); and group C consisted of 21 women with severe preeclampsia (SPE). Results The serum levels of adiponectin in women with MPE or SPE were significantly lower (8.88±4.67 ng/ml,5.14±2.79 ng/ml,respectively)than those in NPW(11.61±2.90ng/ml; bothP<0.01) .While the serum levels of leptin in women with MPE or SPE were significantly higher than those in NPW(MPE: 21.79±15.19 ng/ml versus 12.35±6.51 ng/ml,P<0.05; SPE: 27.27±18.38 ng/ml versus 12.35±6.51 ng/ml,P<0.01). In the pre-eclamptic women serum levels of triglycerides(TG),total cholesterol(TC) and low-density lipoprotein -cholesterol(LDL-C) were significantly increased (P<0.01),while high-density lipoprotein -cholesterol(HDL-C) were significantly decreased compared to levels in NPW (P<0.01). Serum levels of adiponectin were correlated significantly with TG, TC, LDL-C, and HDL-C in pre-eclamptic women (r=-0.658,P<0.01;r=-0.624,P<0.01; r=-0.419,P<0.05; r= 0.461, P<0.05, respectively). In addition,serum levels of leptin were significantly correlated with the serum levels of TG, TC,LDL-C,and HDL-C in pre-eclamptic women (r=0.534,P<0.05;r=0.707,P<0.01;r=0.418, P<0.05;and r=-0.513, P<0.01, respectively). There was a negative correlation between the serum levels of adiponectin and leptin in preeclamptic women (r=-0.760,P<0.01). Conclusion These findings suggest that adiponectin and leptin may be involved in the pathogenesis of PE. Moreover,reduced serum concentrations of adiponectin and elevated leptin are associated with development of severe disease.
     Part III The Study of COX-2 in Preeclampsia
     Objective The purpose of the present study was to investigate the expression of cyclooxyygenase-2(COX-2)in placentas with preeclapsia(PE) and to evaluate its clinical significance. Methods Placentas of 32 PE pregnancies(PE group) and 20 normotensive pregnancies(control group) were investigated for COX-2 protein and mRNA expression using immunohistochemistry and RT-PCR. Results There was no statistical difference in the expression positive rate of COX-2 protein between PE group and control group(65.5% vs 50%, P>0.05). Similarly,no significant difference was noted between the mRNA levels in the PE group and those in control group[(0.50±0.22) vs (0.44±0.17), P>0.05]. Conclusion Our findings suggest that the role of COX-2 in the pathogenesis of PE is uncertain and complicated.
引文
1 Harma M, Harma M, Erel O.Oxidative stress in women with preeclampsia. Am J Obstet Gynecol,2005,192:656-657.
    2 Hung TH,Charnock DS,Skepper JN,et al. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro:a potiential mediator of the inflammatory response in preeclampsia. Am J Pathol,2004,164:1049-1061.
    3林其德.子痫前期子痫病因及发病机制的研究进展.中国实用妇科与产科杂志,2004,10:577-579.
    4乐杰主编.妇产科学.第6版.北京:人民卫生出版社,2004,99-100.
    5王溯,王云杰,金维澍,等.氧化应激与肺癌和慢性阻塞性肺病的相关性研究.中国肿瘤临床,2003,30(9):614-616.
    6 Barden A,Ritchie J,Walters B,et al. Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension,2001,38:803-808.
    7 Hubel CA. Dyslipidemia,iron,and oxidative stress in preeclampsia:assessment of maternal and feto-placental interactions. Semin Reprod Endocrinol,1998,16:75-92.
    8 Homzova M,Ostro A. Current views on the etiopathogenesis of preeclampsia. Ceska Gynekol,2001,66:276-280.
    9 Davidge ST. Oxidative stress and altered endothelial cell function in preeclampsia. Semin Reprod Endocrinol,1998,16:65-73.
    10 Holmes VA,Young IS,Maresh JA,et al. The diabetes and preeclampsia interventional trial. Int J Gynecol Obstet,2004,87(1):66-71.
    11 Hung TH,Charnock DS,Skepper JN,et al. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro:a potiential mediator of the inflammatory response in preeclampsia. Am J Pathol,2004,164(3):1049-1061.
    12 Roberts JM,Specr P. Antioxidant therapy to prevent preeclampsia. Semin Nephrol, 2004,6:557-564.
    13 Henriksen T. The role of lipid oxidation and oxidative lipid derivatives in the development of preeclampsia. Semin Perinatol,2000,24:29-32.
    14 Sibai BM. Preeclampsia: An inflammatory syndrome? Am J Obstet Gynecol, 2004, 191:1061-1062.
    15 Staff AC, Halvorsen B. Isoprostanes--new markers of oxidative stress. Tidsskr Nor Laegeforen,2003,123:315-318.
    16 Walsh SW, Vaughan JE, Wang Y,et al. Placental isoprostane is significantly increased in preeclampsia. FASEB J. 2000,14(10):1289-1296.
    17 Holthe MR,Staff AC,Berge LN,et al. Leukocyte adhension molecules and reactive oxygen species in preeclampsia. Obstet Gynecol,2004,103(5):913-922.
    18 Orshal JM,Khalil RA. Reduced endothelial NO-cGMP-mediated vascular relaxation and hypertension in IL-6-infused pregnant rats. Hypertension, 2004,43(2):434-444.
    19 Little RE,Gladen BC. Levels of lipid peroxides in uncomplicated pregnancy: a review of the literature. Reprod Toxicol,1999,13:347-352.
    20 Morris JM,Gopaul NK,Endresen MJ,et al. Circulating markers of oxidative stress are raised in normal pregnancy and preeclampsia. BJOG,1998,105:1195-1199.
    21 Many A,Hubel CA,Fisher SJ,et al.Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia.Am J Pathol,2000,156(1):321-331.
    22单伟颖,谢延香,王丽冬,等.妊娠高血压综合征与一氧化氮代谢及氧化应激的关系.第四军医大学学报,2004,25(17):1615-1617.
    23 Yska W,Klejewski A,Karolkiewicz J,et al. Imbalance of prooxidants antioxidants in blood of pregnant women with pregnancy induced hypertension. Ginekol Pol, 2002, 73:14-18.
    24 Redman CW,Sacks GP,Sargent IL,et al. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol,1999,180:499-506.
    25 Chiaffarino F,Parazzini F,Paladini D,et al. A small randomised trial of low-dose aspirin in women at high risk of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol,2004,112:142-144.
    26 Teran E,Escudero C,Calle A. C-reactive protein during normal pregnancy and preeclampsia. Int J Gynecol Obstet,2005,89:299-300.
    27 Benyo DF,Smarason A,Redman CW,et al. Expression of inflammatory cytokines in placentas from women with preeclampsia. J Clin Endocrinol Metab,2001,86: 2505-2512.
    28 Matsubara K,Abe E,Ochi H,et al. Changes in serum concentrations of tumor necrosis factor alpha and adhesion molecules in normal pregnant women and those with pregnancy-induced hypertension. J Obstet Gynaecol Res, 2003,29(6): 422-426.
    29 Lum H,Roebuck KA. Oxidant stress and endothelial dysfunction. Am J Physio Cell Physiol,2001,280:C719-C741.
    30 Holthe MR,Staff AC,Berge LN,et al. Leukocyte adhension molecules and reactive oxygen species in preeclampsia. Obstet Gynecol,2004,103:913-922.
    1 Ramsay JE, Jamieson N, Greer IA,et al. Paradoxical elevation in adiponectin concentrations in women with preeclampsia. Hypertension,2003,42:891-894.
    2孙瑜,白文佩,周世梅,等.脂代谢异常在妊娠高血压综合征发病中的作用.中华围产医学杂志,2001,4(2):70-72.
    3 Kaaja R, Laivuori H, Pulkki P,et al. Is there any link between insulin resistance and inflammation in established preeclampsia? Metabolism. 2004,53(11):1433-1435.
    4 Llurba E,Casals E,Dominguez C,et al. Atherogenic lipoprotein subfraction profile in preeclamptic women with and without high triglycerides:different pathophysiologic subsets in preeclampsia. Metabolism,2005,54:1504-1509.
    5 Daniel A,Enquobahri E,Michelle A,et al. Maternal plasma lipid concentrations in early pregnancy and risk of preeclampsia. Am J Hypertension,2004,17:574-581.
    6 Gratacos E. Lipid-mediated endothelial dysfunction: a common factor to preeclampsia and chornic vascular disease. Eur J Obstet Gynecol Reprod Biol, 2000, 92:63-66.
    7 Bayhan G,Kocyigit Y,Atamer A,et al. Potential atherogenic roles of lipids, lipoprotein(a) and lipid peroxidation in preeclampsia. Gynecol Endocrinol, 2005, 21:1-6.
    8 Sibai BM. Preeclampsia: An inflammatory syndrome? Am J Obstet Gynecol, 2004, 191(4),1061-1062.
    9 Naruse K, Yamasaki M, Umekage H,et al. Peripheral blood concentrations of adiponectin, an adipocyte-specific plasma protein, in normal pregnancy and preeclampsia. J Reprod Immunol, 2005,65(1):65-75.
    10蒋荣珍,陈汉平.妊娠高血压综合征患者及其新生儿静脉血清瘦素水平的测定.中华妇产科杂志,2003,38(1):32-33.
    11 Chan TF,Su JH,Chung YF, et al. Amniotic fluid and maternal serum leptin levels in pregnant women who subsequently develop preclampsia . Eu J of Obstet & Gynecol and reprod bio ,2003 ,108 :50-53.
    12 Anim-Nyame N,Sooranna SR. Longitudinal analysis of maternal plasma leptin concentration during normal pregnancy and preeclampsia. Hum Reprod, 2000, 15: 2033-2036.
    13 Sattar N, Ramsay J, Crawford L,et al. Classic and novel risk factor parameters in women with a history of preeclampsia. Hypertension, 2003,42(1):39-42.
    14乐杰,主编.妇产科学.第6版.北京:人民卫生出版社,2004,99-100.
    15 Pajvani UB,DU X,Combs TP,et al. Structure-function studies of the adipocyte-secreted hormone Acrp30/adiponectin. Implications for metabolic regulation and bioactivity. J Biol Chem,2003,278(11): 9073-9085.
    16 Ouchi N,Kihara S,Arita Y,et al. Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation,2001,103(8):1057-1063.
    17 Kershaw EE,Flier JS.Adipose tissue as an endocrine organ. J Clin Endocrinol Metab, 2004,89(6):2548-2556.
    18 Ouchi N,Kihara S,Arita Y,et al. Adiponectin,an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation,2000,102(11):1296-301.
    19 Maeda N,Shimomura I,Kishida K,et al. Diet-induecd insulin resistance in mice lacking adiponectin / Acrp30. Nat Med,2002,8(7):731-737.
    20 Ouchi N,Ohishi M,Kihara S,et al. Association of hypoadiponectinemia with impaired vasoreactivity. Hypertension,2003,42(3):231-234.
    21 Hattori Y,Suzuki M,Hattori S,et al. Globular adiponectin upregulates nitric oxide production in vascular endothelial cells. Diabetologia,2003,46(11):1543-1549.
    22 Seely EW, Solomon CG. Insulin resistance and its potential role in pregnancy-induced hypertension. J Clin Endocrinol Metab. 2003,88:2393–2398.
    23 Shimabukuro M,Higa N,Asahi T,et al. Hypoadiponectinemia is closely linked to endothelial dysfunction in human. J Clin Endocrinol Metab,2003,88(7):3236-3240.
    24 Anato V,Garmendia JV,Bianco NE,et al. Antihypertensive treatment decreased serum leptin levels in severe preeclampsia during pregnancy. Ann Nutr Metab,2001,45:190- 192.
    25 Dotch J,Knerr I,Rascher W,et al. Leptin and neuropeptide Y gene expression in human placenta:Ontogeny and evidence for similarties to hypothalamic regulation. J ClinEndocrinol Metab,1999,84(7):2755-2758.
    26 Chappell LC, Seed PT, Briley A, et al. Longitudinal study of biochemical variables in women at risk of preeclampsia. Am J Obstet Gynecol, 2002,187:127–136.
    27 Mise H,Sagawa N,Matsumoto T,et al. Augmented placental production of leptin in preeclampsia: possible involvement of placental hypoxia. J Clin Endocrinol Metab, 1998,83:3225-3229.
    28 Park KG,Park KS,Kim MJ,et al.Relationship between serum adiponectin and leptin concentrations and body fat distribution.Diabetes Res Clin Pract,2004,63(2):135-142.
    29 Hendler I,Blackwell SC,Mehta SH, et al. The levels of leptin, adiponectin, and resistin in normal weight, overweight, and obese pregnant women with and without preeclampsia. Am J Obstet Gynecol, 2005,193:979-983
    30 D'Anna R, Baviera G, Corrado F, et al. Plasma adiponectin concentration in early pregnancy and subsequent risk of hypertensive disorders. Obstet Gynecol,2005,106: 340-344.
    31 Satter N,Bendomir A,Berry C,et al. Lipoprotein subfraction concentrations in preeclampsia:pathogenic parallels to atherosclerosis. Obstet Gynecol, 1997, 89: 403-408.
    32 Wakatsuki A,Ikenoue N,Yujiokatan I,et al. Lipoprotein particles in preeclampsia: susceptibility to oxidative modification. Obstet Gynecol,2000,96:55-59.
    33 Satter N,Austin MA,Scott MG,et al. Potential pathogenic roles of aberrant lipoprotein and fatty acid metabolism in preeclampsia. Br J Obstet Gynaecol,1996,103:614-620.
    34王伽略,杨孜,王荣,等.子痫前期患者血脂代谢调节的探讨.现代妇产科进展, 2006, 15:438-441.
    1 Linton MF, Fazio S. Cyclooxygenase - 2 and inflammation in atherosclerosis. Curr Opin Pharmacol. 2004, 4 (2):116-123.
    2 Schonbeck U, Sukhova GK, Graber H, et al. Augmented expression of cyclooxygenase-2 in human atherosclerotic lesions. Am J Pathol,1999,155(4): 1281-1291.
    3 McGeer PL, McGeer EG, Yasojima K. Expression of COX -1 and COX-2 in atherosclerotic plaques. Exp Gerontol, 2002,37(7):925-929.
    4 Kaaja R, Laivuori H, Pulkki P,et al. Is there any link between insulin resistance and inflammation in established preeclampsia? Metabolism. 2004,53(11):1433-1435.
    5 Sibai BM. Preeclampsia: An inflammatory syndrome? Am J Obstet Gynecol, 2004, 191(4);1061-1062.
    6 Llurba E,Casals E,Dominguez C,et al. Atherogenic lipoprotein subfraction profile in preeclamptic women with and without high triglycerides:different pathophysiologic subsets in preeclampsia. Metabolism,2005,54:1504-1509.
    7 Satter N,Bendomir A,Berry C,et al. Lipoprotein subfraction concentrations in preeclampsia:pathogenic parallels to atherosclerosis. Obstet Gynecol, 1997, 89: 403-408.
    8 Daniel A,Enquobahri E,Michelle A,et al. Maternal plasma lipid concentrations in early pregnancy and risk of preeclampsia. Am J Hypertension,2004,17:574-581.
    9 Bayhan G,Kocyigit Y,Atamer A,et al. Potential atherogenic roles of lipids, lipoprotein(a) and lipid peroxidation in preeclampsia. Gynecol Endocrinol, 2005, 21:1-6.
    10 Johnson RD,Walsh SW,Everson WV, et al. Differentiation and growth on a fibrin matrix modulate the cyclooxygenase expression and thromboxane production by cultured human placental trophoblasts. Prostaglandins, Leukot Essent Fatty Acids, 1995,52:21–27.
    11 Hirsch E, Golstein M,Filipovich Y,et al.Placental expression of enzymes regulating prostaglandin synthesis and degradation. Am J Obstet Gynecol,2005,192:1836–1843.
    12 Hirst JJ, Mijovic JE,Zakar T,et al.Prostaglandin endoperoxide H synthase-1 and -2 mRNA levels and enzyme activity in human decidua at term labor.J Soc Gynecol Invest,1998,5:13–20.
    13 Wetzka B,Nusing R,Charnock-Jones DS,et al. Cyclooxygenase-1 and -2 in human placenta and placental bed after normal and pre-eclamptic pregnancies. Hum Reprod, 1997,12(10):2313-2320.
    14 Khan I,Al-Yatama M,Nandakumaran M. Expression of the Na+-H+ exchanger isoform-1 and cyclooxygenases in human placentas: their implications in pre-eclampsia. Biochem Mol Biol Int,1999,715–722.
    15 Chiaffarino F,Parazzini F,Paladini D,et al. A small randomised trial of low-dose aspirin in women at high risk of pre-eclampsia. Eur J Obstet Gynecol Reprod Biol, 2004,112:142-144.
    16 Hauth JC, Goldenberg RL, Parker CR Jr, et al. Low-dose aspirin therapy to prevent preeclampsia. Am J Obstet Gynecol,1993,168:1083-1091.
    17 McParland P, Pearce JM, Chamberlain VP. Doppler ultrasound and aspirin in recognition and prevention of pregnancy-induced hypertension.Lancet,1990, 335: 1552-1555.
    18 Imperiale TF, Petrulis AS. A meta-analysis of low-dose aspirin for the prevention of pregnancy-induced hypertensive disease. JAMA ,1991,266:260-264.
    19 Benigni A, Gregorini G, Frusca T, et al. Effect of low-dose aspirin on fetal and maternal generation of thromboxane by platelets in women at risk for pregnancy-induced hypertension. N Engl J Med, 1989,321:357-362.
    20 Sibai BM, Mirro R, Chesney CM, Leffler C. Low-dose aspirin in pregnancy. Obstet Gynecol,1989,74:551-557.
    21 Caritis S,Sibai B,Hauth J,et al.Low-dose aspirin to prevent preeclampsia in women at high risk.N Engl J Med,1998,1233(11):756-757
    22 Italian Study of Aspirin in Pregnancy. Low-dose aspirin in prevention and treatment of intrauterine growth retardation and pregnancy-induced hypertension. Lancet 1993;341:396-400.
    23 Sibai BM, Caritis SN, Thom E, et al. Prevention of preeclampsia with low-dose aspirin in healthy, nulliparous pregnant women. N Engl J Med 1993;329:1213-1218.
    24 CLASP (Collaborative Low-dose Aspirin Study in Pregnancy): a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. Lancet, 1994,343:619-629.
    25 ECPPA (Estudo Colaborativo para Preven??o da Pré-eclampsia com Aspirina): randomised trial of low dose aspirin for the prevention of maternal and fetal complications in high risk pregnant women. Br J Obstet Gynaecol ,1996,103:39-47.
    26乐杰,主编妇产科学.第6版.北京:人民卫生出版社,2004,99-100.
    27 Soslow RA,Dannenberg AJ,Rush D,et al. COX-2 is expressed in human pulmonary, colonic,and mammary tumors. Cancer,2000,89(12):2637-2645.
    28 Meekins JW, Pijnen BR, Hanssens M,et al. Immunohistochemical detection of lipoprotein(a) in normal and severve preeclmptic pregnancies.Placenta,1994, 15:511-524.
    29徐也鲁.动脉粥样硬化——一种慢性炎症过程.中国动脉硬化杂志.2001,9(2): 93-95.
    30 Shah TJ,Walsh SW. Activation of NF-κB and expression of COX-2 in association with neutrophil infiltration in systemic vascular tissue of women with preeclampsia.Am J Obstet Gynecol,2007,196(1),48,e1-8.
    31 Borekci B,Aksoy H,Toker A,et al. Placental tissue cyclo-oxygenase 1 and 2 in preeclampstic and normal pregnancy. Int J Gynaecol Obstet. 2006,95(2):127-31.
    32 Fujimoto Y, Uno E,Sakuma S. Effects of reactive oxygen and nitrogen species on cyclooxygenase-1 and cyclooxygenase -2 activities.Prostaglandins,Leukot Essent Fatty Acids,2004,71:335–340.
    33 Akarasereenont P,Techatraisak K,Chotewuttakorn S. The expression of cyclooxygenase-2 in human umbilical vein endothelial cell culture from preeclampsia. J Med Assoc Thai,1999,82(2):167-172.
    1林其德.子痫前期子痫病因及发病机制的研究进展.中国实用妇科与产科杂志,2004,10:577-579.
    2 Harma M, Harma M, Erel O. Oxidative stress in women with preeclampsia. Am J Obstet Gynecol,2005,192:656-657.
    3 Hung TH,Charnock DS,Skepper JN,et al. Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia-reoxygenation causes endothelial cell activation in vitro:a potiential mediator of the inflammatory response in preeclampsia. Am J Pathol,2004,164:1049-1061.
    4 Henriksen T. The role of lipid oxidation and oxidative lipid derivatives in the development of preeclampsia. Semin Perinatol,2000,24:29-32.
    5 Christopher WG, Redman MD, Gavin P. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol,1999,180:499-506.
    6 Lum H,Roebuck KA. Oxidant stress and endothelial cell dysfunction. Am J Cell Physiol,2001,280:719-7410.
    7 Staff AC, Halvorsen B. Isoprostanes--new markers of oxidative stress. Tidsskr Nor Laegeforen,2003,123(3):315-318.
    8 Jauniaux E,Watson AL,Hempstock J,et al. Onset of maternal arterial blood flow and placental oxidative stress.A possible factor in human early pregnancy failure.Am J Pathol,2000,157(6):2111-2122.
    9 Myatt L,Cui X. Oxidative stress in the placental. Histochem Cell Biol, 2004, 122(4): 369-382.
    10 Raijmakers MT,Peter WH,Stagers EA,et al. NADPH oxidase associated superoxide production in human placental from normotensive and preeclamptic women. Placenta,2004,25(Suppl A):S85-S89.
    11 Jauniaux E, Hempstock J, Greenwold N, et al.Trophoblastic oxidative stress in relation to temporal and regional difference in maternal placental blood flow in normal and abnormal early pregnancies.Am J Pathol,2003,162(1):115-125.
    12 Moretti ML,Phillips ML,Abouzeid AD,et al. Increased breath markers of oxidative stress in normal pregnancy and in preeclampsia. Am J Obstet Gynecol, 2004, 190(6):1184-1190.
    13 Roberts JM,Specr P. Antioxidant therapy to prevent preeclampsia. Semin Nephrol, 2004,6:557-564.
    14 Jaffe R. First trimester utero-placental circulation : maternal-fetal interaction. J Perinat Med,1998,26:168-174.
    15 Verity MA. Oxidative damage and repair in the developing nervous system. Neurotoxicology,1994,15:81-91.
    16 Hubel CA. Oxidative stress in the pathogenesis of preeclampsia. Proc Soc Exp Biol Med,1999,222:222-235.
    17 Morris JM,Gopaul NK,Endresen MJ,et al. Circulating markers of oxidative stress are raised in normal pregnancy and preeclampsia. BJOG,1998,1195-1199.
    18 Hubel CA. Dyslipidemia,iron,and oxidative stress in preeclampsia:assessment ofmaternal and feto-placental interactions. Semin Reprod Endocrinol,1998,16:75-92.
    19 Homzova M,Ostro A. Current views on the etiopathogenesis of preeclampsia. Ceska Gynekol,2001,66:276-280.
    20 Davidge ST. Oxidative stress and altered endothelial cell function in preeclampsia. Semin Reprod Endocrinol,1998,16:65-73.
    21 Holthe MR,Staff AC,Berge LN,et al. Leukocyte adhension molecules and reactive oxygen species in preeclampsia. Obstet Gynecol,2004,103(5):913-922.
    22 Connell P,Young VM,Toborek M,et al.Zinc attenuates tumor necrosis factor-mediated activation of transcription factors in endothelial cells.J Am Coll Nutr, 1997, 16: 411-417.
    23 Qiu C,Luthy DA,Zhang C,et al.A prospective study of maternal serum C-reactive protein concentrations and risk of preeclampsia.Am J Hypertens, 2004,17(2):154-160.
    24 Barden A,Ritchie J,Walters B,et al. Study of plasma factors associated with neutrophil activation and lipid peroxidation in preeclampsia. Hypertension, 2001,38:803-808.
    25 Henriksen T. The role of lipid oxidation and oxidative lipid derivatives in the development of preeclampsia. Semin Perinatol,2000,24:29-32.
    26 Roberts JM,Lain KY. Recent insights into the pathogenesis of preeclampsia. Placenta, 2002, 23:359-372.
    27 Haddad T. Update on preeclampsia. Internatinal Anesthesiology Clinics, 2002, 40: 115-135.
    28 Tolando R,Jovanovic A,Brigelius FR,et al.Reactive oxygen species and proinflammatory cytokine signaling in endothelial cells:effect of selenium supplementation.Free Radic Biol Med,2000,28:979-986.
    29 Tuomson NF,Thornton S,Josep H. The effects of placental extracts from nomotensive and preeclamptic women on vasoconstriction and oxidative metabolism. Am J Obstet Gynecol,2000,183:206-210.
    30 Amal SA,Meena K,Jing ZM,et al. Neutrophils are stimulated by syncytiotrophoblastmicrovillous membranes to generate supperoxide radicals in women with preeclampsia. Am J Obstet Gynecol,2004,190:252-258.
    31 Sargent IL,Germain SJ,Sacks GP,et al.Trophoblast deportation and the maternal inflammatory response in preeclampsia. J Repro Immunol,2003,59(2):153-160.
    32 James M,Roberts MD,Carl AH. Oxidative stress in preeclampsia. Am J Obstet Gynecol, 2004,190:1177-1178.
    33 Belo L,Caslake M,Gaffney D,et al.Changes in LDL size and HDL concentration in normal and preeclamptic pregnancies. Atherosclerosis, 2002,162(2):425-432.
    34 Bolokadze N,Varazashvili M,Salia N,et al.Lipid peroxidation in the erythrocytes under condition of their increased aggregation. Clin Hemorheol Microcirc, 2004,30(3-4):453-455.
    35 Raijmakers MT,Zusterzeel PL,Roes EM,et al. Oxidized and free whole blood thiols in preeclampsia. Obstet Gynecol,2001,97:272-276.
    36 Tug N,Celik G,Cikim C,et al.The correlation between plasma homocysteine and malondialdehyde levels in preeclampsia. Neuro Endocrinol Lett,2003, 24(6):445-448.
    37 Aly AS,Khandelwal M,Zhao J,et al. Neutrophils are stimulated by syncytiotrophoblast microvillous membranes to generate superoxide radicals in women with preeclampsia. Am J Obstet Gynecol, 2004,190(1): 252-258.
    38 Virginia M,Paulene A,Sonja C,et al.NADPH oxidase activity in preeclampsia with immortalized lymphoblasts used as models. Hypertension, 2003,41(4):925-931.
    39 Karabulut AB,Kafkasli A,Burak F.Maternal and fetal plasma adenosine deaminase,xanthine oxidase and malondialdehyde levels in pre-eclampsia. Cell Biochem Funct, 2005,23(4):279-283.
    40 Kim YJ,Wiuiamson RA,Chen K,et al.Lipoprotein lipase gene mutations and the genetic susceptibility of preeclampsia. Hypertension,2001, 38(5):992-996.
    41 Aksoy H,Taysi S,Altinkaynak K,et al.Antioxidant potential and transferrin, ceruloplasmin,and lipid peroxidation levels in women with preeclampsia.J InvestigMed,2003,51(5):284-287.
    42 Raijmakers MT,Dechend R,Poston L.Oxidative stress and preeclampsia: Rationale for antioxidant clinical trials.Hypertension,2004,44(4):374-380.
    43 Kumru S,Aydin S,Gursu M,et al.Changes of serum paraoxonase(an HDL-cholesterol-associated lipophilic antioxidant) and arylesterase activities in severe preeclamptic women. Eur J Obstet Gynecol Reprod Biol,2004, 114(2): 177-181.
    44 Uzun H,Benian A,Madazli R,et al.Circulating oxidized low-density lipoprotein and paraoxonase activity in preeclampsia.Gynecol Obstet Invest,2005,60(4):195-200.
    45 Serdar Z,Gur E,Colakoethullary M,et al.Lipid and protein oxidation and antioxidant function in women with mild and severe preeclampsia. Arch Gynecol, 2003, 268(1): 19-25.
    46 Rumbold A,Duley L,Crowther C,et al.Antioxidants for preventing pre-eclampsia. Cochrane Database Syst Rev,2005,19(4):422-427.
    47 Sibai BM. Preeclampsia: an inflammatory syndrome? Am J Obstet Gynecol, 2004, 191(4):1061-1062.
    48 Poston L,Raijmakers M,Kelly F.Vitamin E in pre eclampsia. Ann N Y Acad Sci, 2004, 1031:242-248.
    49 Dupuy AM,Terrier N,Senecal L,et al.Is C-reactive protein a marker of inflammation? Nephrologie,2003,24(7):337-341.
    50 Roberts WL,Sedrick R,Moulton L,et al.Evaluation of four automated high sensitivity C-reactive protein methods: implications for clinical and epidemiological applications.Clin Chem,2000,46(4):461-468.
    51 Sibai B,Dekker G,Kupferminc M. Pre-eclampsia.Lancet,2005,365(9461):785-799.
    52 Borzychowski AM,Croy BA,Chan WL,et al.Changes in systemic type1 and type2 immunity in normal pregnancy and pre-eclampsia may be mediated by natural killer cells.Eur J Immunol,2005,35(10):3054-3063.
    53 Biondi C, Pavan B,Lunghi L,et al.The role and modulation of the oxidative balance inpregnancy.Curr Pharm Des,2005,11(16):2075-2089.
    54 Sacks GP, Studena K, Sargent IL,et al. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes into those of sepsis.Am J Obstet Gynecol,1998,179:80-86.
    55 Freeman DJ,Mcmanus F,Brown EA,et al.Short- and long-term changes in plasma inflammatory markers associated with preeclampsia. Hypertension, 2004,44:708-714.
    56 Takacs P,Green KL,Nikaeo A,et al.Increased vascular endothelial cell production of interleukin-6 in severe preeclampsia. Am J Obstet Gynecol,2003,188(3):740-744.
    57 Kauma S,Takacs P,Scordalakes C.Increased endothelial monpcyte chemoattractant protein-1 and interleukin-8 in preeclampsia.Obstrtrics Gynecology, 2002, 100(4): 706-714.
    58 Azizieh FR,aghupathy R,Makhseed M.Maternal cytokine production patterns in women with preeclampsia.Am J Reprod Immunol,2005,54(1):30-37.
    59 Herrera JA,Chaudhuri G,Lopez-Jaramillo P. Is infection a major risk factor for preeclampsia?Medical Hypotheses,2001,57(3):393-397.
    60 Mellembakken JR,Aukrust P,Olafsen MK,et al. Activation of leukocytes during the uteroplacental passage in preeclampsia.Hypertension,2002,39:155-160.
    61 Redman CW,Sacks GP,Sargent IL.Preeclampsia:an excessive maternal inflammatory response to pregnancy.Am J Obstet Gynecol,1999,180:499.
    62 Serdar Z,Gur E,Colakoethullary M,et al.Lipid and protein oxidation and antioxidant function in women with mild and severe preeclampsia. Arch Gynecol Obstet,2003,268(1):19-25.
    63 Spector A. Review: Oxidative stress and disease. J Ocul Pharmacol Ther, 2000, 16: 193-201.
    64 AustgulenR.Recent knowledge on mechanisms underlying development of pre-eclampsia.Tidsskr Nor Laegeforen,2004,124(1):21-24.
    65 Lum H,Roebuck KA. Oxidant stress and endothelial dysfunction. Am J Physio CellPhysiol,2001,280:C719-C741.
    66 Beckmann I, Efraim SB, Vervoort M,et al. Tumor necrosis factor-alpha in whole blood cultures of preeclamptic patients and healthy pregnant and nonpregnant women. Hypertens Pregnancy,2004,23(3):319-329.
    67 Matsubara K,Abe E,Ochi H,et al. Changes in serum concentrations of tumor necrosis factor alpha and adhesion molecules in normal pregnant women and those with pregnancy-induced hypertension. J Obstet Gynaecol Res, 2003,29(6): 422-426.
    68 Davidge ST. Oxidative stress and altered endothelial cell function in preeclampsia. Semin Reprod Endocrinol,1998,16:65-73.
    69 Harma M, Harma M, Erel O. Oxidative stress in women with preeclampsia. Am J Obstet Gynecol,2005,192(2):656-657.
    70 Holthe MR,Staff AC,Berge LN,et al. Leukocyte adhension molecules and reactive oxygen species in preeclampsia. Obstet Gynecol,2004,103:913-922.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700