无线网络同信道干扰性能分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信发展的背后始终伴随着一个不断激化的矛盾,即不断增长的业务需求一直挑战着日益匮乏的无线资源承载的极限。为了解决这一矛盾,高资源利用效率的无线通信技术不断涌现,从蜂窝概念到感知无线电,乃至多网络共存技术。但是,这些技术仍未跳脱通信系统可靠性与有效性的矛盾,大多数技术是在现有成本和科技水平的约束下在可靠性与有效性之间找到一个较优的权衡。因此,这些技术在提高资源利用率的同时也降低了信号之间的正交性,不仅引入大量同信道干扰,而且将干扰问题从单天线、点到点信道、参数固定的无衰落或平坦衰落信道的单干扰源问题演变为多天线、多跳信道、参数任意的频率选择性衰落信道多干扰源问题。
     本论文围绕干扰模型、性能指标和分析方法这三个要素展开研究,旨在解决以下四方面的科学问题:无线网络同信道干扰建模,无线网络同信道干扰性能刻画,干扰受限系统性能评估以及同信道干扰性能分析方法在铁路移动通信系统中的应用。本论文综合运用了随机理论、非线性估计、随机点过程、Fox's H函数及Fox’s H分布等数学工具。在分析无线通信系统衰落现象和同信道干扰现象生成机理的基础上,本文首先建立具有普遍适用性的同信道干扰模型。通过定义不同的参数,干扰模型可以分别描述不同干扰受限场景,如不同信道环境(平衰落信道、选择性信道、不同信道增益)、不同干扰源数目(单干扰源、多个独立同分布干扰源、多个参数任意独立干扰源)、不同合并接收方式(等增益接收、选择性接收、最大比接收)。针对有基础设施网络自干扰场景、无基础设施网络和多网络共存的互干扰场景以及铁路专用移动通信系统场景,分别提出复杂度低且具有普遍适用性的干扰性能解析分析方法,并通过解析表示从本质上解释影响干扰性能的关键因素和干扰现象的基本规律,研究干扰受限系统参数配置的内在联系,给出系统性能的解析表达,为网络规划和优化奠定基础。本文主要工作如下:(1)在有基础设施网络内部自干扰性能分析方面,论文首先设计迭代算法,给出存在多个参数任意的Nakagami-m干扰源时,干扰受限系统中断概率的迭代表达。其次,为了更全面地解决参数任意的随机变量代数运算的统计问题,论文证明了级联信道可以等效为一条简单的点到点信道,且低阶Fox's H函数是高阶Fox's H函数的特例。基于此定理并结合Fox's H函数和Fox's H分布的普遍适用性和统计特性,提出多个参数任意的Fox's H变量之和的分布估计算法,给出任意信道中,基于Fox's H函数的任意参数独立多干扰源性能解析研究方法,推导出多个参数任意的干扰源存在时的总干扰和信干比的概率密度函数、累积概率分布及一阶统计特性的估计算法和解析表达。另外,考虑到干扰现象的时变特性,论文从衰落现象的本质出发,将Rice模型拓展到更多类型的衰落信道中,并应用Fox's H函数积分定理推导出任意信道中,信干比二阶统计量的解析表示。
     (2)在以无基础设施网络和多网络共存的互干扰网络为例的分布式网络中,干扰区域和干扰源分布都与有基础设施自干扰网络中的情形产生很大的变化,是除了无线信道之外影响干扰性能的两个重要因素。为了区分干扰区域和干扰源分布对干扰性能的影响,论文分别考虑单干扰源和多干扰源存在时两种网络环境。单干扰源网络中,论文着重考虑干扰区域对分布式网络干扰性能的影响,依据干扰区域与服务区域之间相对位置不同,建立同中心和异中心两种分布式网络干扰模型。对于同中心分布式网络中,本文应用Fox's H函数的普适性和统计性质,考虑不同维度空间内,任意信道环境下同信道干扰统计性能的闭合表示。在异中心分布式网络中,本文基于空间几何理论,给出了同信道干扰统计性能的解析表示。多干扰受限网络中,着重分析干扰源分布对干扰性能的影响,分别讨论了无限范围和有限范围干扰区域中,存在非同分布独立多干扰源时,不同维度空间内同信道干扰性能解析表示。
     (3)通过分析干扰受限系统性能指标与信干比之间的定量关系,应用Fox's H函数和Fox's H分布的数学性质,将干扰受限无线通信系统性能分析问题归结为性能指标的加权平均问题,给出任意参数信道环境中,干扰受限系统性能指标的解析表示。给出任意参数信道环境中,干扰受限系统差错概率、中断概率和信道容量等性能指标及其高阶统计量的解析表示。然后,为了考察上述具有普遍适用性的同信道干扰性能分析方法的可行性,论文将其应用到铁路专用移动通信系统干扰性能分析中。由于铁路路轨宽度远远小于铁路长度,铁路正线无线网络呈现链状覆盖特性,且移动性也是影响铁路专用移动通信系统性能的关键因素之一,论文结合铁路专用移动通信系统实际工程要求,着重考虑链状覆盖模式和列车移动对无线通信系统的影响,建立干扰受限铁路移动通信系统模型,分别研究外部同信道干扰和移动环境中网络内部自干扰对铁路专用移动通信系统性能的影响。
The development of wireless communication is always with an increasingly intensified contradiction that flourishing demands of wireless services challenge the capacity of depletable resource. More and more high spectrum efficiency technologies, such as cellular networks, cognitive radio and coexistent networks, shed light on wireless communication. Meanwhile, the efficiency gain is paid by the cost of more interference, which degrades the system performance significantly. It is an open issue to establish a general framework interference analysis in various network environments. The framework aims to explain the intrinsinc connections among system parameters, and give closed or analytical expressions for interference with arbitrary parameters including channel gain, interference area, interferers'number and distribution. In this paper, a general framework is proposed to analyze both interference and system performance in various scenarios, such as self-interference in centralized network, mutual interference in distributed network and interference limited dedicated mobile system for railway. This paper comprehensively applies Fox's H function and variable, stochastic point process, probability theory, space geometry and others mathematic theory to establish system models, evaluate performance and design analysis methods. The proposed methods with low complexity explain the nature of interference and quantized dependence on system configurations. For both theoretical frameworks and practical algorithms, this dissertation demonstrates the disciplines which dominate the interference performance of wireless networks by using an analytic methodology so as to lay the foundation for wireless system design and network optimization. The main achievements are as follows.
     (1) An iterated method is proposed to derive the exact and closed form expressions of outage probability in the presence of multiple Nakagami-m co-channel interferers with arbitrary parameters in centralized networks. However, Nakagami-m is not suitable for all scenarios except Rayleigh, Rice, Nakagami-m, and half Gauss channels, etc. Then, a general and analytical approach is proposed to derive analytical expressions for interference and system performance over all namely fading channels in virtue of the properties of Fox's H function and variable. Considering multiple interferers with arbitrary parameters, we suggest a novel parameter-estimation method by proving lower order Fox's H function is a special case of higher order Fox's H function. The analytical solution proposed is quite general, applicable to envelop and power statistics, aggregate interference of arbitrary input and signal-to-interference ratio (SIR), distributions and high order statistics over simple and composed fading channels.
     (2) Interference area and distribution in distributed networks are quite different from those of centralized networks, which exert a tremendous influence on interference except channel fluctuation. This paper specifically considers the cases with single interferer and multiple interferers to distinguish the influence from interference area between interference distributions. In single interferer case, co-center and different center network models are established by considering the relative location between the service network and the interference area. In co-center scenario, a method is proposed to give closed form expressions for interference in arbitrary channels and dimension space. And in distributed network, this paper analyzes non i.i.d interference performance with Poisson point process and Bernoulli point process to model interference distribution in infinite and finite interference area, respectively.
     (3) A unified approach is proposed for interference limited system performance based on Fox's H method in the last chapters. And this paper applies general interference methods in centralized and distributed networks to dedicated mobile communication system for railway with linear coverage network and mobile rails consideration. And also, both analytical expressions for interference and system performance are derived for network design and optimization in railway mobile communication system.
引文
[1]NOBLE D. The history of land-mobile radio communications [J]. IEEE Trans Veh. Technol., 1962,50(5):1406-1406.
    [2]MACDONALD V H. The cellular concept [J]. Journal of Bell Systems Technique,1979, 58(1):15-49.
    [3]Sendonaris A, Erkip E, and Aazhang B. User cooperation diversity Part I and Part Ⅱ [J]. IEEE Trans. Commun.,2003,51(11):1927-48.
    [4]MITOLA J. Cognitive radio:an integrated agent architecture for woftware defined radio [D]. Sweden:Royal Inst. Technol.,2000.
    [5]HAYKIN S. Cognitive radio:brain-empowered wireless communciations [J]. IEEE J. Select. Areas Commun.,2005,23(2):201-220.
    [6]ALNWAIMI G, ARSHAD K, MOESSNER K. Dynamic spectrum allocation algorithm with interference management in co-existing networks [J]. IEEE Commun. Lett.,2011, 15(9):923-934.
    [7]MOELKER D J, PRASAD R. Capacity of co-existent cellular CDMA and GSM with shadowing and imperfect sectorization, power control and notch filtering [C]//Proceedings of the IEEE Personal, Indoor and Mobile Radio Communications, HerSinki, Finhnd:IEEE Press,1997,1:27-31.
    [8]钟章队,艾渤,刘秋妍,等.GSM-R无线组网理论基础[M].北京:清华大学出版社,北京交通大学,2009:73-198.
    [9]MIDDLETON D. An introduction to statistical communication theory [M]. New York: McGraw-Hill,1960.
    [10]LEE W C Y. Mobile communication engineering:theory and applications [M]. New York: McGraw-Hill,1982.
    [11]RICE S O. Mathematical analysis of random noise [J]. Journal of Bell Systems Technique, 1944,23:282-332.
    [12]SCHULTE H J Jr. and CORNELL W A. Multi-area mobile telephone system [J]. IEEE Trans Veh. Commun.,1960,9(1):49-53.
    [13]CHALAMTAC I, CONTI M, LIU J N. Mobile ad hoc networking:imperatives and challenges [J]. Elsevier Ad Hoc Networks,2003,1:13-16.
    [14]SYED I M, YAO Y D. Fade statistics in an interference-limited environment with Nakagami fading [C]//Proceedings of IEEE 56th Vehicular Conference, Canada:IEEE Press,2002,4: 1983-1986.
    [15]YANG X and PETROPULU A P. Co-channel interference modeling and analysis in a Poisson field of interferers in wireless communications [J]. IEEE Trans Signal Process., 2003,51(1):64-76.
    [16]RICE S O. MICROWAVE Mobile communications, [M]. New York:IEEE Press,1994.
    [17]SIMON M K and ALOUIMI M S. Digital communication over fading channels [M]. New Jersy:John Wiely & Sons,2005.
    [18]GULTAI K, CHOPRA A, HEATH R W, et al. MIMO receiver design in the presence of ratio frequency interference [C]//Proceedings of the IEEE Global Communication Conference, New Orleans, USA:IEEE Press,2008:1-5.
    [19]STUBER G L. Principles of mobile communication [M]. Boston:Kluwer Academic Publishers,2001:24-86.
    [20]STAVROULAKIS P. Interference analysis and reduction for wireless systems [M]. London: Artech House,2003:49-158.
    [21]BLUM R S, KOZICK R J and Sadler B. An adaptive spatial diversity receiver for non-Gaussian interference and noise [J]. IEEE Trans. Signal Process.,1999, 47(8):2100-2111.
    [22]BACCELLI F and BLASZYCZYSZYN B. Stochastic geometry and wireless networks, volume 2-application [J]. In Foundations and Trends in Networking. Noe Publishers Inc., 2009,4(1-2):1-312.
    [23]SHANNON C E. A mathematical theory of communication [J]. Journal of Bell System Technical,1948,27:379-423,623-656.
    [24]AGARWAL A and KUMAR P R. Capacity bounds for ad hoc and hybrid wireless networks [C]//Proceedings of ACM Special Interest Group on Data Communication, Portland:ACM Press,2004,34(3):71-81.
    [25]钟章队,李旭,蒋文怡.铁路GSM-R数字移动通信系统[M].北京:中国铁道出版社,2007.
    [26]梁嘉文WCDMA在台湾高铁环境下之通讯优化研究[D].台湾中兴大学,2010.
    [27]GUAN K, ZHONG Z D, AI B. Assessment of LTE-R using high speed railway channel model [C]//Proceedings of the International Conference on Communications and Mobile Computing, Qingdao, China:CPS,2011:461-464.
    [28]GOLDSMITH A. Wireless communications [M]. London:Cambridge University Press, 2005.
    [29]COX D C. Cochannel interference considerations in frequency reuse small-coverage-area radio systems [J], IEEE Transactions on Communications,1982,30(1):135-142.
    [30]DAIKOKU K. and OHDATE H. Optimal channel reuse in cellular land mobile radio systems [J]. IEEE Trans. Veh. Technol.,1983,32(3):217-224.
    [31]YACOUB M D, TOLEDO F, GOMEZ P R C, et al. Reuse pattern for microcellular networks [J]. International Journal of Wireless Information Networks,1999,6(1):1-6.
    [32]RATCLIFFE J A, PAWSEY J L. A study of the intensity variations of downcoming wireless waves [J]. Proceedings of the Cambridge Philosophical Society,1933,29(2):301-318.
    [33]PAWSEY J L, RATCLIFFE J A. Further investigations of the amplitude variations of downcoming wireless waves [J]. Proceedings of the Cambridge Philosophical Society,1935, 31(1):125-144.
    [34]BOND F E and MEYER H F. The effect of fading on communication circuits subject to interference [J]. Proceedings of the IRE,1957,45(5):636-642.
    [35]CLARKE K K and COHN J. Carrier-to-noise statistics for various carrier and interference characteristics [J]. Proceedings of the IRE,1958,46(5):889-895.
    [36]LUNDQUIST L, PERITSKY M M. Co-channel interference rejection in a mobile radio space diversity system [J]. IEEE Trans Veh. Techonol.,1971,20(3):68-75.
    [37]SCHIFF L. Statistical suppression of interference with diversity in a mobile-radio environment [J]. IEEE Trans Veh. Technol.,1972,21(4):121-128.
    [38]NAKAGAMI M. The m-distribution- a general formula of intensity distribution of rapid fading [J]. Statistical Methods of Radio Wave Propagation, Oxford, England:Pergamon, 1960.
    [39]LOO C. A statistical model for a land mobile satellite link [J]. IEEE Trans. Veh. Technol., 1985,34(3):122-127.
    [40]GOLLER M. Application of GSM in high speed trains:measurements and simulations [C]// Proceedings of the IEE Colloquium on Radiocommunications in Transportation, London: IEEE Press,1995.
    [41]ZHANG Q T. Outage probability of cellular mobile radio in the presence of multiple Nakagami interferers with arbitrary parameters [J]. IEEE Trans. Veh. Technol.,1995, 44(3):661-667.
    [42]ZHANG Q T. Outage probability in cellular mobile radio due to Nakagami signal and interferers with arbitrary parameters [J]. IEEE Trans. Veh. Technol.,1996,45(2):364-372.
    [43]TELLAMBURA C and BHARGAVA V K. Outage probability analysis for the cellular mobile radio with multiple, arbitrary Nakagami interferers [C]//Proceedings of the IEEE Vehicular Techonology Conference, Chicago, USA:IEEE Press,1995,1:384-372.
    [44]TELLAMBURA C and BHARGAVE V K. Outage probability analysis for cellular mobile radio systems subject to Nakagami fading and shadowing [J]. IEICE Transactions on Communication,1995,78-B(10).
    [45]TELLAMBURA C. Cochannel interference computation for arbitrary Nakagami fading [J]. IEEE Trans. Veh. Technol.,1999,48(2):487-489.
    [46]REIG J, CARDONA N, RUBIO L. Approximation of outage probability on Nakagami fading channels with multiple interferers [J]. Electronics Letters,2000,36(19):1649-1650.
    [47]MATHAR R and PFEIFER D. Stochastic of Information, Berlin:Springer,1990.
    [48]PRASAD R. Performance analysis of mobile packet radio networks in real channels with habit-sense multiple accesses [J]. IEE Proceedings on Communications, Speech and Vision, 1991,138(5):458-464.
    [49]STEFFAN H. Lists of Alpha-stable distributions [M]. Berlin:Springer,1993.
    [50]TAKAI M, MARTIN J and BAGRODIA R. Effects of wireless physical layer modeling in mobile ad hoc networks [C]//Proceedings of the 2nd ACM International Symposium Mobile Ad Hoc Networking Computing, USA:ACM Press,2001.
    [51]SAGIAS N C, KARAGIANNIDIS G K, et al. Performance analysis of dual selection diversity in correlated Weibull fading channels [J]. IEEE Trans. Commun.,2004, 52(7):103-106.
    [52]HASHEMI H. The indoor radio propagation channel [J]. Proceedings of the IEEE,1993, 81(7):943-968.
    [53]ADAWI N S. Coverage prediction for mobile radio systems operating in the 800/900 MHz frequency range [J]. IEEE Trans. Veh. Technol.,1988,37(1):3-72.
    [54]BABICH F and LOMBARDI G. Statistical analysis and characterization of the indoor propagation channel [J]. IEEE Trans. Commun.,2000,48(3):455-464.
    [55]MORRIS J M and CHANGE J L. Burst error statistics of simulated Viterbi decoded BFSK and high-rate punctured codes on fading and scintillating channels [J]. IEEE Trans. Commun.,1995,43(234):695-700.
    [56]GOLDSMITH A J and CHUA S G. Variable-rate coded MQAM for fading channels [J]. IEEE Trans. Commun.,1997,45(10):1218-1230.
    [57]CHANG L F. Throughput estimation of ARQ protocols for a Rayeligh fading channel using fade and interfade-duration statistics [J]. IEEE Trans. Veh. Technol.,1991,40(1):223-229.
    [58]DONG X, BEAULIEU N C. Average level crossing rate and average fade duration of selection diversity [J]. IEEE Commun. Lett.,2001,5(10):396-398.
    [59]RICE S O. Statistical properties of a sine wave plus random noise [J]. Bell System Technical Journal,1948,24:109-157.
    [60]LEE W. C. Y, Mobile communication engineering:theory and applications [M]. New York: McGraw-Hill,1982:1-14.
    [61]GRAZIOSI F, SANTUCCI F. Analysis of second order statistics of the SIR in cellular mobile networks [C]//Proceedings of the IEEE 50th Vehicular Technology Conference,1999, 3:1316-1320.
    [62]GRAZIOSI F, FUCIARELLI L, SANTUCCI F. Second order statistics of the SIR for cellular mobile networks in the presence of correlated cochannel interferers [C]// Proceedings of the IEEE 53rd Vehicular Technology Conference,2001,4:2499-2503.
    [63]GRAZIOSI F and SANTUCCI F. A general correlation modle for shadow fading in mobile radio systems [J]. IEEE Commun. Lett.,2002,6(3):102-104.
    [64]GRAZIOSI F, SANTUCCI F. On SIR statistics in Rayleigh-Lognormal Channels [C]// Proceedings of the IEEE International Conference on Communication, New York:IEEE Press,2002,3:1352-1357.
    [65]RAMOS F, KONTORVITCH V Y, LARA M. On the second order statistics of SIR in wireless Nakagami channels [C]//Proceedings of the IEEE Transactions on Vehicular Technology Conference, Florida:IEEE Press,2003:3131-3135.
    [66]ZORAN H V Level crossing rate and average fade duration of selection combining with Rician-faded cochannel interferers [J]. IEEE Commun. Lett.,2006,10(9):649-651.
    [67]ZORAN H V. Level crossing rate and average fade duration of EGC systems with cochannel interference in Rayleigh fading [J]. IEEE Trans. Commun.,2007,55(11):2104-2113.
    [68]ZORAN H V. Level crossing rate and average fade duration of dual selection combining with cochannel interference and Nakagami fading [J]. IEEE Trans. Wireless Commun.,2007, 6(11):3870-3876.
    [69]ZORAN H V. Second-order statistics of selection combining systems with cochannel interference in various fading channels [C]//Proceedings of the 18th Annual IEEE Internationsl Symposium on Personal, Indoor and Mobile Radio Communicaitons,2007:1-5.
    [70]SRINIVASA S and HAENGGI M. Distance distributions in finite uniformly random networks:Theory and applications [J]. IEEE Trans. Veh. Technol.,2010,59(2):940-949.
    [71]CHANDEASEKHAR V and ANDREWS J G. Uplink capacity and interference avoidance for two-tier femtocell networks [J]. IEEE Trans. Wireless Commun.,2009,8(7):3498-3509.
    [72]CHANDRASEKHAR V, ANDREWS J G and GATHERER A. Femtocell networks:a survey [J]. IEEE Commun. Mag.,2008,46(9):59-67.
    [73]KINGMAN J F C. Poisson Processes [M]. Oxford:Clarendon Press,2002.
    [74]MCFADDEN J A. The entropy of a point process [J]. J. Soc. Ind. Appl. Math.,1965, 13(4):988-994.
    [75]SOUSA E S. Performance of a spread spectrum packet radio network link in a Poisson field of interferers [J]. IEEE Trans. Inform. Theory,1992,38:1743-1754.
    [76]MIDDLETON D. Statistical-physical models of electromagnetic interference [J]. IEEE Trans. Electromagnetic Compatibolity,1977,19(3):106-127.
    [77]FURUTSU K and ISHIDA T. On the theory of amplitude distribution of impulsive random noise [J]. Journal of Applied Phys.,1961,32(7):1206-1221.
    [78]GIORDANO A and HABER F. Modeling of atmosphere noise [J]. Radio Sci.,1972, 7(11):1011-1023.
    [79]NIKIAS C L and SHAO M. Signal processing with alpha-stable noise distributions and applications [M]. New York:Wiley,1995.
    [80]ILOW J and HATZINAKOS D. Analytic alpha-stable noise modeling and analysis in a poission field of interferers in wireless communications [J]. IEEE Trans. Signal Process., 1998,46(6):1601-1611.
    [81]HAENGGI M and GANTI R K. Interference in large wireless networks [J]. Foundations and Trends in Networking,2008,3(2):127-248.
    [82]GULATI K, CHOPRA A, EVANS B L, et al. Statistical modeling of cochannel interference [C]//Proceedings of the IEEE Global Telecommuncations Conference, USA:IEEE Press, 2009:1-6.
    [83]GULATI K, EVANS B L and TINSLEY K R. Statistical modeling of co-channel interference in a field of poisson distributed interferers [C]//Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, Texas:IEEE Press, 2010:3490-3493.
    [84]GOVINDASAMY S, ANTIC F, BLISS D, et al. The performance of libear multiple-antenna receivers with interferers distributed on a plane [C]//Proceedings of the IEEE Workshop on Signal Proc. Advances in Wireless Commun., New York:IEEE Press,2005:880-884.
    [85]PINTO P C. Communication in a Poisson field of interferers [D]. USA:Massachusetts Institute of Technology,2006.
    [86]PINTO P C and WIN M Z. Spectral outage due to aggregate interference in a Poisson field of nodes [C]//Proceedings of the IEEE Global Telecommuncations Conference, USA:IEEE Press,2006:1-6.
    [87]PINTO P C, CHONG C C, GIORGETTI A, et al. Narrowband communication in a Poisson field of ultrawideband interferers [C]//Proceedings of the International Conference on Ultra-Wideband, USA:IEEE Press,2006:387-392.
    [88]PINTO P C and WIN M Z. Communication in a Poisson field of interferers [C]// Proceedings of the 40th Annual Conference on Information Sciences and Systems, New Jersey:IEEE Press,2006:432-437.
    [89]RABBACHIN A, QUEK T Q S, PINTO P C,et al. UWB energy detection in the presence of multiple narroband interferers [C]//Proceedings of the IEEE International Conference on Ultra-Wideband,2007:857-862.
    [90]PINTO P C, GIORGETTI A, WIN M Z. A stochastic geometry approach to coexistence in heterogeneous wireless networks [J]. IEEE J. Selec. Areas Commun.,2009, 27(7):1268-1282.
    [91]PINTO P C and WIN M Z. Communication in a Poisson field of interferers—Part Ⅰ: interference distribution and error probability [J]. IEEE Trans. Wireless Commun.,2010, 9(7):2176-2186.
    [92]PINTO P C and WIN M Z. Communication in a Poisson field of interferers—Part Ⅱ: channel capacity and interference spectrum [J]. IEEE Trans. Wireless Commun.,2010, 9(7):2187-2195.
    [93]YANG X and PRTROPULU P. Co-channel interference modeling and analysis in a Poisson field of interferers in wireless communications [J]. IEEE Trans. Signal Process.,2003, 51(1):64-76.
    [94]ANANT S, NIELS H, RAHUL T. Some fundamental limits on cognitive radio [C]// Proceedings of the 42nd Allerton Conference on Communication, Control, and Computing, 2004:1-11.
    [95]GULATI K, EVANS B L, ANDREWS J G Statistics of co-channel interference in a field of Poisson and Poisson-Poisson clustered interferers [J]. IEEE Trans. Signal Process.,2010, 58(12):6207-6222.
    [96]SRINIVASA S and HAENGGI M. Distributions in finite uniformly random networks: theory and applications [J]. IEEE Trans. Veh. Technol.,2010,59(2):940-949.
    [97]LIU Q Y, ZHONG D Z, AI B, et al. Exact Outage probability caused by multiple Nakagami interferers with arbitrary parameters [C]//Proceedings of the IEEE 2010 Fall 72nd Vehicular Technology Conference (VTC 2010 Fall), Toronto:IEEE Press,2010:1-5.
    [98]LIU Q Y, ZHONG D Z. A unified approach to the analytical expressions of interference performance in general distributed networks [J]. Submitted to IEEE Trans. Veh. Technol., 2012:1-18.
    [99]LIU Q Y, ZHONG Z D, AI B. A unified approach to the anilateral bounds of interference performance [C]//Proceedings of the IEEE 2010 International Conference on Wireless Communications, Networking and Information, Beijing:IEEE Press,2010:45-49.
    [100]LIU Q Y, SONG J Y, WANG M, et al. Error outage probabilities of dual-hop relay channels in a Poisson interference Field [J]. China Communications,2010,7(4):108-113.
    [101]WANG M, LIU Q Y, ZHONG Z D, CHEN X. Fade duration distribution and minimum duration outage in Weibull fading channels [C]//Proceedings of the IEEE 2011 73rd Vehicular Technology Conference (VTC 2011 Spring),2010:1-5.
    [102]WANG M, ZHONG Z D, LIU Q Y. Calculating the second order statistics of some random process by a novel method [C]//Proceedings of the 6th IEEE International Conference on Wireless Communications Networking and Mobile Computing, Chengdu:IEEE Press,2010: 1-4.
    [103]LIU Q Y, ZHONG Z D. Statistical analysis of interference in cognitive networks [C]// Proceeding of the IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC 2009),2009:1-5.
    [104]LIU Q Y, ZHONG Z D. Outage analysis of cognitive network [C]//Proceeding of the 5th International Conference on Wireless Communications, Networking and Mobile Computing, France:ACM Press,2009:1-4.
    [105]LIU Q Y, ZHONG Z D, AI B. Statistical analysis of external interference in wireless networks [C]//Proceedings of the 6th International Wireless Communications and Mobile Computer Conference (IWCMC),2010:261-266.
    [106]LIU Q Y, ZHONG Z D. Analysis of BER contours and design of cells for highway cellular system [C]//Proceedings of 2009 Cross-Strait Conference on Information Science and Technology and iCube, Taiwan:IEEE Press,2009:1-49.
    [107]LIU Q Y, WANG M, ZHONG Z D. Statistics of capacity analysis in high speed railway communication systems [J]. Tamkang Journal of Science and Engineering,2011,11(3): 209-215.
    [108]钟章队,刘秋妍.对中国GSM-R发展的研究.铁路信号工程与技术[J].2009,6(1):1-7.
    [109]LIU Q Y, ZHANG D Z, XU R T. Design of cells for high speed railway system [J]. Journal of Internet Technology,2010,11 (1):109-113.
    [110]LIU Q Y, ZHONG Z D. Analysis on interference characteristics for wireless communications in high speed railway [C]//Proceedings of 2010 Cross-Strait Conference on Information Science and Technology and iCube, Qinhuangdao:IEEE Press,2010:1-4.
    [111]SIMON M K and DIVSALAR D. Some new twists o problems involving the Gaussian probability integral [J]. IEEE Trans. Commun.,1998,46(2):200-210.
    [112]WEGMA E J, SCHWARTZ S C and THOMAS J B. Topics in nonGaussian signal processing [M]. New York:Spronger,1989.
    [113]YANG X and PETROPULU A P. Cochannel interference modeling and analysis in a Poisson field of interferers in wireless communications [J]. IEEE Trans. Signal Process., 2003,51(1):64-76.
    [114]MIDDLETON D. Statistical-physical models of electromagnetic interference [R]. U. S. Department of Commerce, Office of Telecommunications,1976.
    [115]ILOW J and HATZINAKOS D. Analytic alpha-stable noise modeling in a Poisson field of interferers or scatters [J]. IEEE Transactions on Signal Processing,1998,46:1601-1611.
    [116]MIDDLETON D. Non-Gaussian noise models in signal processing for telecommications: new methods and results for class A and class B noise models [J]. IEEE Trans. Info. Theory, 1999,45(4):1129-1149.
    [117]FURUTSU K and ISHIDA T. On the theory of amplitude distribution of impulsive random noise [J]. Journal of Applied Phisicis,1961,32(7):1206-1221.
    [118]GIORDANO A and HABER F. Modeling of atmosphere noise [J]. Radio Sci.,1972,7(11).
    [119]NIKIAS C L and SHAO M. Signal processing with alpha-stable distributions and applications [M]. New York:Wiley,1995.
    [120]张业荣,竺南直,程勇.蜂窝移动通信网络规划与优化.[M].北京:电子工业出版社.2003.
    [121]TSE D, VISWANATH P. Fundamentals of wireless communication [M]. New York: Cambridge University Press,2005:10-30.
    [122]SAGIAS N C, KARAIANNIDIS G K, et al. Performance analysis of dual selection diversity in correlated Weibull fading channels [J]. IEEE Trans. Commun.,2004, 52(7):103-106.
    [123]HASHEMI H. The indoor radio propagation channel [J]. Proceedings of the IEEE,1993, 81(7):943-968.
    [124]ADAWIN S. Coverage prediction for mobile radio systems operating in the 800/900 MHz frequency range [J]. IEEE Transactions on Vehicular Technology,1988,37(1):3-72.
    [125]CHARALAMBOUS C D, MENEMENLIS N. Stochastic models for short-term multipath fading channels:chi-square and Ornsterin-Uhlenbeck process [C]//Proceedings of the 38th IEEE Conference on Decision and Control,2002,5:4959-4964.
    [126]CARTER B D. On the probability distribution of rational functions of independent H-function variates [D]. University of Arkansas,1972.
    [127]CARTER B D and SPRINGER M D. The distribution of products, quotients and powers of independent H-function variates [J]. Society for industrial and applied mathematics journal of applied mathematics,1977,33(4):542-558.
    [128]BODENSCHATZ C D. For the sum of independent H-function variates [D]. Austin:The University of Texas,1992:24-26.
    [129]EPSTEIN B. Some applications of the Mellin transform in statistics [J]. Annals of Mathematical Statistics,1948,19(3):370-379.
    [130]KIBAS A A, SAIGO M. H-transforms:theory and applications [M]. New York:Chapman & Hall/CRC Press.2004:56-62.
    [131]ERDELYI A, MAGNUS W, OBERHETTINGER F, et al. Higher transcedental functions [M]. New York:McGraw,1953,1:213-222.
    [132]LUKE Y L. The special functions and their applications [M]. Mathematics in Science Engineering. New York:Academic Press.1969,53.
    [133]MATHAI A M and SAXENA R K. Generalized hypergeometic functions with applications in statistics and physical sciences, Lecture Notes in Math. Berlin:Spinger,1973,284-340.
    [134]PRUDNIKOV A P, BRYCHKOV Y and MARICHEV O I. Integrals and series [M]. New York:Elementary Functions, Gordon and Breach Science Publisher.1986,1:157-182.
    [135]MATHAI A M, SAXENA R K and HAUHOLD H J. The H-function:theory and applications [M]. New York:Springer.2009,21-31.
    [136]MATHAI A M and SAXENA R K. The H-function with applications in statistics and other disciplines [M]. New York:John Wiley & Sons,1978:10-12.
    [137]ELDRED B S. A methodology for obtaining the probability density function of the present worth of probabilistic cash flow profiles [D]. Austin:University of Texas,1979:104-108.
    [138]SPRINGER M D. The algebra of random variables [M]. New York:John Wiley & Sons, 1979:202-207.
    [139]COOK I D. The H-function and probability density functions of certain algebraic combinations of independent random variables with H-function probability distributions [D]. Austin:University of Texas,1981:85-87.
    [140]COOK I D and BARNES J W. Evaluation of the H-function integral and of probability distributions of functions of independent random variables [J]. American Journal of Mathematical and Management Sciences,1981,1:293-339.
    [141]BODENSCHATZ C D and BOEDIGHEIMER R A. An application of the H-function to curve-fitting and density estimation [D]. Air Force Institute of Technology,1983:17-22.
    [142]BODENSCHATZ C D, BOEDIGHEIMER R A and COOK I D. New and generalized H-function distributions [J]. American Journal of Mathematical and Management Sciences, 1990,10:185-191.
    [143]BRAUN W R, DERSCH U. A physical mobile radio channel model [J]. IEEE Trans. Veh. Technol,1991,40(2):1-5.
    [144]ABU-DAYYA A, BEAULIEU N C. Outage probabilities of cellular mobile radio systems with multiple Nakagami interferers [J]. IEEE Trans. Veh. Technol.,40(6):757-767.
    [145]YAO K, SIMON M K and BIGLIERI E. Statistical modeling of fading channel statistics based on SIRP and H-function [C]//Proceedings of the 2004 International Conference on Communications, Circuits and Systems,2004,1:265-268.
    [146]YAO K, SIMON M K and BIGLIERI E. A unified theory on wireless communication fading statistics based on SIRP [C]//Proceedings of the 2004 IEEE 5th Workshop on Signal Process Advances in Wireless Communications,2004:135-139.
    [147]YILMAZ F and ALOUINI M-S. Product of the powers of generalized Nakagami-m variates and performance of cascaded fading channels [C]//Proceedings of the IEEE Global Telecommunications Conference,2009:1-8.
    [148]YILMAZ F and ALOUINI M-S. Product of shifted exponential variates and outage capacity of multicarrier systems [C]//Proceedings of the European Wireless Conference, 2009:282-286.
    [149]YILMAZ F, KUCUR O and ALOUINI M-S. A unified framework for the statistical characterization of the SNR of amplify-and-forward multihop channels [C]//Proceedings of the 2010 17th International Conference on Telecommunications,2010:324-330.
    [150]YILMAZ F and ALOUINI M-S. Outage capacity of multicarrier systems [C]//Proceedings of 2010 17th International Conference on Telecommunications,2010:260-265.
    [151]YILMAZ F, KUCUR O and ALOUINI M-S. Exact capacity analysis of multihop transmission over amplify-and-forward relay fading channels [C]//Proceedings of the 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications,2010:2293-2298.
    [152]YILMAZ F, KUCUR O and ALOUINI M-S. A novel framework on exact average symbol error probabilities of multihop transmission over amplify-and-forward relay fading channels [C]//Proceedings of the 2010 7th International Symposium on Wireless Communication System,2010:546-550.
    [153]SALO J, EL-SALLABIH M and VAINIKAINEN P. Impact of double-Rayleigh fading on system performance [C]//Proceedings of the IEEE 1st Symposium on Wireless Pervasive Computing,2006:1-5.
    [154]CHIZHIK D, FOSHINI G J, GANS M J, et al. Keyhole, correlations, and capacities of multielement transmit and receive antenna [J]. IEEE Trans. Wireless Commun.,2002, 1(2):361-368.
    [155]ERCERG V, FORTUNE S J, LING J, et al. Comparison of a compute-based propagation prediction tool with experimental data collected in urban microcellular environment [J]. IEEE Journal on Selected Areas Commun.,1997,15(4):677-684.
    [156]ZLATANOV N, VELKOV Z H and KARAGIANNIDIS G K. Level crossing rate and average fade duration of the double Nakagami-m random process and application in MIMO keyhole fading channels [J]. IEEE Communications Letters,2008,12(11):822-824.
    [157]ANDERSEN J B. Statistical distribution in mobile communications using multiple scattering [C]//Proceedings of the 27th URSI General Assembly of International Union of Radio Science,2002:1-4.
    [158]KARAGIANNIDIS G K, SAGIAS N C, MATHIOPOULOS P T. N*Nakagami:a novel stochastic model for cascaded fading channels [J]. IEEE Trans. Commun.,55(8):1453-1458.
    [159]TALHA B, P□TZOLD M. On the statistical properties of double Rice channels [C]// Proceedings of the 10th International Symposium on Wireless Personal Multimedia Communications,2007:517-522.
    [160]SHIN H and LEE J H. Performance analaysis of space-time block codes over keyhole Nakagami-m fading channels [J]. IEEE Trans. Veh. Technol.,53(2):351-362.
    [161]ANDERSEN J B and KOVACS I Z. Power distributions revisited [C]//Proceedings of COST 231 Meeting,2001.
    [162]RAFIQ G, HOGSTAD B O and P□TZOLD M. Statistical properties of the capacity of double Nakagami-m channels for applications in V2V dualhop communication systems [M]. Vehicular Technologies:Increasing Connectivity, InTech:IEEE Press,2011:153-164.
    [163]VELKOV Z H, ZLATANOV N, KARAGIANNIDIS G K. On the second order statistics of the multihop Rayleigh fading channel [J]. IEEE Trans. Commun.,2009,57(6):1815-1823.
    [164]LANEMAN J N, TSE D N C, WORNELL G W. Cooperative diversity in wireless networks:efficient protocols and outage behavior [J]. IEEE Trans. Info. Theory,2004, 50(12):3062-3080.
    [165]SENDONARIS A, ERKIP E, AAZHANG B. User cooperation diversity-Part Ⅰ:system description [J]. IEEE Trans. Commun.,2003,51(11):1927-1938.
    [166]BOEDIGHEIMER R A, BODENSCHATZ C D, and COOK I D. An application of the H-function to curve-fitting and density estimation [R]. Graduate Program in Operations Research Technical Report Series, the University of Texas at Austin, ORP91-09,1984.
    [167]BODENSCHATZ C D. Finding an H-function distribution for the sum of independent H-function variates [D]. The University of Texas at Austin,1992.
    [168]杨庆扬.非线性方程组的数值解法[M].北京:科学出版社.1999:38-83.
    [169]JACK W C. Microwave mobile communications [M]. New York:IEEE Press,1994.
    [170]YACOUB M D, Bautista J E, and Guedes L G R. On higher order statistics of the Nakagami-m distribution [J]. IEEE Trans. Veh. Technol.,1999,48(3):790-794.
    [171]PROAKIS J G, Salehi M. Digital communicaitons [M].5th ed., New York:McGraw-Hill Higher Eduation,2007:17-94.
    [172]KAHN R E, GRONEMEYER S A, BURCHFIEL J, et al. Advances in packet radio technology [J]. Proceedings of the IEEE,1978,66(11):1468-1496.
    [173]KLEINROCK L and SILVESTER J. Optimum transmission radii for packet radio networks or why six is a magic number [C]//Proceedings of the IEEE National Telecommunications Conference, Birmingham:IEEE Press,1978,1:4.3.1-4.3.5.
    [174]EPHREMIDES A, WIESELTHIER J E, and BAKER D J. A design concept for reliable mobile radio networks with frequency hopping signaling [J]. Proceeding of the IEEE,1987, 75(1):56-73.
    [175]JUBIN J and TORNOW J D. The DARPA packet radio network protocols [J]. Proceedings of the IEEE,1987,75(1):21-32.
    [176]PUESLEY M B. The role of spread spectrum in packet radio networks [J]. Proceedings of the IEEE,1987,75(1):116-134.
    [177]TOBAGI F A. Modeling and performance analysis of multihop packet radio networks [J]. Proceedings of the IEEE,1987,75(1):135-155.
    [178]WANG S W and RAPPAPORT S S. Signal-to-interference calculations for corner-excited cellular communications systems [J]. IEEE Trans. Commun.,1991,39(12):1886-1896.
    [179]YAO Y D and SHEIKH A U H. Investigations into cochannel interference in microcellular mobile radio systems [J]. IEEE Trans. Veh. Technol.,1992,41(2):114-123.
    [180]MORAIS C D, AGRAWAL D P, and SADOK D H. Interference modeling and performance of bluetooth MAC protocol [J]. IEEE Trans. Wireless Commun.,2003, 2(6):1240-1246.
    [181]STOYAN D, KENDAL W S, and MECKE J. Stochastic geometry and its applications [M]. 2nd ed., New Jersey:John Wiley & Sons,1995.
    [182]KLEINROCK L and SILVESTER J. Spatial reuse in multihop packet radio networks [J]. Proceedings of the IEEE,1987,75(1):156-167.
    [183]郭懋正.实变函数与泛函分析[M].北京:北京大学出版社,2005:45-87.
    [184]RAPPAPORT T S. Wireless communications:princeples and practice [M]. New Jersey: Prentice Hall,1991.
    [185]STOYAN D, KENDALL W S, and MEJCKE J. Stochastic geometry and its applications [M]. New York:John Wiley & Sons,1978.
    [186]HAENGGI M. On distances in uniformly random nwetworks [J]. IEEE Trans. Info. Theory, 2005,51(10):3584-3586.
    [187]OZAROW L, SHAMAI S, and WYNER A. Information theoretic considerations for cellular mobile radio [J]. IEEE Trans. Veh. Technol.,1994,43(2):359-378.
    [188]SIMON M K, HINEDI S M and LINDSEY W C. Digital communication techniques: signal design and detection [M]. Englewood Cliffs, New Jersy:Prentice-Hall,1995.
    [189]CRAIG J. A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations [C]//Proceedings of thes-Military Communication Conference, Washington:IEEE Press,1991,2:571-575.
    [190]WEINSTEIN F S. Simplified relationships for the probability distribution of the phase of a sine wave in narrow-band normal noise [J]. IEEE Trans. Info. Theory,1974,20(5):658-661.
    [191]林毅夫.发展与转型——思潮、战略和自生能力[R].剑桥大学马歇尔讲座,2007.
    [192]张晓东,刘凯.铁路车站站间距离调整问题的研究[J].中国铁路,1998,4:22-24.
    [193]刘华.高速铁路车站合理站间距探讨[J].西南交通大学学报,2001,36(3):245-249.
    [194]曾勇.350km/h高速铁路最小曲线半径研究[J].铁道建筑.2008,9:101-103.
    [195]MISCHA D, ROBERT W H, ANGEL L, et al. Is the PHY layer dead? [J]. IEEE Commun. Mag.,2011,49(4):159-165.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700